/* * * Alchemy Au1x00 ethernet driver * * Copyright 2001-2003, 2006 MontaVista Software Inc. * Copyright 2002 TimeSys Corp. * Added ethtool/mii-tool support, * Copyright 2004 Matt Porter * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de * or riemer@riemer-nt.de: fixed the link beat detection with * ioctls (SIOCGMIIPHY) * Copyright 2006 Herbert Valerio Riedel * converted to use linux-2.6.x's PHY framework * * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * ######################################################################## * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * ######################################################################## * * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "au1000_eth.h" #ifdef AU1000_ETH_DEBUG static int au1000_debug = 5; #else static int au1000_debug = 3; #endif #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK) #define DRV_NAME "au1000_eth" #define DRV_VERSION "1.6" #define DRV_AUTHOR "Pete Popov " #define DRV_DESC "Au1xxx on-chip Ethernet driver" MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /* * Theory of operation * * The Au1000 MACs use a simple rx and tx descriptor ring scheme. * There are four receive and four transmit descriptors. These * descriptors are not in memory; rather, they are just a set of * hardware registers. * * Since the Au1000 has a coherent data cache, the receive and * transmit buffers are allocated from the KSEG0 segment. The * hardware registers, however, are still mapped at KSEG1 to * make sure there's no out-of-order writes, and that all writes * complete immediately. */ /* These addresses are only used if yamon doesn't tell us what * the mac address is, and the mac address is not passed on the * command line. */ static unsigned char au1000_mac_addr[6] __devinitdata = { 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 }; struct au1000_private *au_macs[NUM_ETH_INTERFACES]; /* * board-specific configurations * * PHY detection algorithm * * If phy_static_config is undefined, the PHY setup is * autodetected: * * mii_probe() first searches the current MAC's MII bus for a PHY, * selecting the first (or last, if phy_search_highest_addr is * defined) PHY address not already claimed by another netdev. * * If nothing was found that way when searching for the 2nd ethernet * controller's PHY and phy1_search_mac0 is defined, then * the first MII bus is searched as well for an unclaimed PHY; this is * needed in case of a dual-PHY accessible only through the MAC0's MII * bus. * * Finally, if no PHY is found, then the corresponding ethernet * controller is not registered to the network subsystem. */ /* autodetection defaults: phy1_search_mac0 */ /* static PHY setup * * most boards PHY setup should be detectable properly with the * autodetection algorithm in mii_probe(), but in some cases (e.g. if * you have a switch attached, or want to use the PHY's interrupt * notification capabilities) you can provide a static PHY * configuration here * * IRQs may only be set, if a PHY address was configured * If a PHY address is given, also a bus id is required to be set * * ps: make sure the used irqs are configured properly in the board * specific irq-map */ static void au1000_enable_mac(struct net_device *dev, int force_reset) { unsigned long flags; struct au1000_private *aup = netdev_priv(dev); spin_lock_irqsave(&aup->lock, flags); if(force_reset || (!aup->mac_enabled)) { *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE); au_sync_delay(2); aup->mac_enabled = 1; } spin_unlock_irqrestore(&aup->lock, flags); } /* * MII operations */ static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) { struct au1000_private *aup = netdev_priv(dev); volatile u32 *const mii_control_reg = &aup->mac->mii_control; volatile u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: read_MII busy timeout!!\n", dev->name); return -1; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; *mii_control_reg = mii_control; timedout = 20; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_read busy timeout!!\n", dev->name); return -1; } } return (int)*mii_data_reg; } static void au1000_mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value) { struct au1000_private *aup = netdev_priv(dev); volatile u32 *const mii_control_reg = &aup->mac->mii_control; volatile u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_write busy timeout!!\n", dev->name); return; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; *mii_data_reg = value; *mii_control_reg = mii_control; } static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) { /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */ struct net_device *const dev = bus->priv; au1000_enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ return au1000_mdio_read(dev, phy_addr, regnum); } static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value) { struct net_device *const dev = bus->priv; au1000_enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ au1000_mdio_write(dev, phy_addr, regnum, value); return 0; } static int au1000_mdiobus_reset(struct mii_bus *bus) { struct net_device *const dev = bus->priv; au1000_enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ return 0; } static void au1000_hard_stop(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); if (au1000_debug > 4) printk(KERN_INFO "%s: hard stop\n", dev->name); aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void au1000_enable_rx_tx(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); if (au1000_debug > 4) printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void au1000_adjust_link(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct phy_device *phydev = aup->phy_dev; unsigned long flags; int status_change = 0; BUG_ON(!aup->phy_dev); spin_lock_irqsave(&aup->lock, flags); if (phydev->link && (aup->old_speed != phydev->speed)) { /* speed changed */ switch (phydev->speed) { case SPEED_10: case SPEED_100: break; default: printk(KERN_WARNING "%s: Speed (%d) is not 10/100 ???\n", dev->name, phydev->speed); break; } aup->old_speed = phydev->speed; status_change = 1; } if (phydev->link && (aup->old_duplex != phydev->duplex)) { /* duplex mode changed */ /* switching duplex mode requires to disable rx and tx! */ au1000_hard_stop(dev); if (DUPLEX_FULL == phydev->duplex) aup->mac->control = ((aup->mac->control | MAC_FULL_DUPLEX) & ~MAC_DISABLE_RX_OWN); else aup->mac->control = ((aup->mac->control & ~MAC_FULL_DUPLEX) | MAC_DISABLE_RX_OWN); au_sync_delay(1); au1000_enable_rx_tx(dev); aup->old_duplex = phydev->duplex; status_change = 1; } if (phydev->link != aup->old_link) { /* link state changed */ if (!phydev->link) { /* link went down */ aup->old_speed = 0; aup->old_duplex = -1; } aup->old_link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&aup->lock, flags); if (status_change) { if (phydev->link) printk(KERN_INFO "%s: link up (%d/%s)\n", dev->name, phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); else printk(KERN_INFO "%s: link down\n", dev->name); } } static int au1000_mii_probe (struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); struct phy_device *phydev = NULL; if (aup->phy_static_config) { BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); if (aup->phy_addr) phydev = aup->mii_bus->phy_map[aup->phy_addr]; else printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", dev->name); return 0; } else { int phy_addr; /* find the first (lowest address) PHY on the current MAC's MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) if (aup->mii_bus->phy_map[phy_addr]) { phydev = aup->mii_bus->phy_map[phy_addr]; if (!aup->phy_search_highest_addr) break; /* break out with first one found */ } if (aup->phy1_search_mac0) { /* try harder to find a PHY */ if (!phydev && (aup->mac_id == 1)) { /* no PHY found, maybe we have a dual PHY? */ printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, " "let's see if it's attached to MAC0...\n"); /* find the first (lowest address) non-attached PHY on * the MAC0 MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { struct phy_device *const tmp_phydev = aup->mii_bus->phy_map[phy_addr]; if (aup->mac_id == 1) break; if (!tmp_phydev) continue; /* no PHY here... */ if (tmp_phydev->attached_dev) continue; /* already claimed by MAC0 */ phydev = tmp_phydev; break; /* found it */ } } } } if (!phydev) { printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name); return -1; } /* now we are supposed to have a proper phydev, to attach to... */ BUG_ON(phydev->attached_dev); phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link, 0, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(phydev); } /* mask with MAC supported features */ phydev->supported &= (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ | SUPPORTED_MII | SUPPORTED_TP); phydev->advertising = phydev->supported; aup->old_link = 0; aup->old_speed = 0; aup->old_duplex = -1; aup->phy_dev = phydev; printk(KERN_INFO "%s: attached PHY driver [%s] " "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq); return 0; } /* * Buffer allocation/deallocation routines. The buffer descriptor returned * has the virtual and dma address of a buffer suitable for * both, receive and transmit operations. */ static db_dest_t *au1000_GetFreeDB(struct au1000_private *aup) { db_dest_t *pDB; pDB = aup->pDBfree; if (pDB) { aup->pDBfree = pDB->pnext; } return pDB; } void au1000_ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) { db_dest_t *pDBfree = aup->pDBfree; if (pDBfree) pDBfree->pnext = pDB; aup->pDBfree = pDB; } static void au1000_reset_mac_unlocked(struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); int i; au1000_hard_stop(dev); *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = 0; au_sync_delay(2); aup->tx_full = 0; for (i = 0; i < NUM_RX_DMA; i++) { /* reset control bits */ aup->rx_dma_ring[i]->buff_stat &= ~0xf; } for (i = 0; i < NUM_TX_DMA; i++) { /* reset control bits */ aup->tx_dma_ring[i]->buff_stat &= ~0xf; } aup->mac_enabled = 0; } static void au1000_reset_mac(struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); unsigned long flags; if (au1000_debug > 4) printk(KERN_INFO "%s: reset mac, aup %x\n", dev->name, (unsigned)aup); spin_lock_irqsave(&aup->lock, flags); au1000_reset_mac_unlocked (dev); spin_unlock_irqrestore(&aup->lock, flags); } /* * Setup the receive and transmit "rings". These pointers are the addresses * of the rx and tx MAC DMA registers so they are fixed by the hardware -- * these are not descriptors sitting in memory. */ static void au1000_setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) { int i; for (i = 0; i < NUM_RX_DMA; i++) { aup->rx_dma_ring[i] = (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); } for (i = 0; i < NUM_TX_DMA; i++) { aup->tx_dma_ring[i] = (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); } } /* * ethtool operations */ static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct au1000_private *aup = netdev_priv(dev); if (aup->phy_dev) return phy_ethtool_gset(aup->phy_dev, cmd); return -EINVAL; } static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct au1000_private *aup = netdev_priv(dev); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (aup->phy_dev) return phy_ethtool_sset(aup->phy_dev, cmd); return -EINVAL; } static void au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct au1000_private *aup = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); info->fw_version[0] = '\0'; sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); info->regdump_len = 0; } static void au1000_set_msglevel(struct net_device *dev, u32 value) { struct au1000_private *aup = netdev_priv(dev); aup->msg_enable = value; } static u32 au1000_get_msglevel(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); return aup->msg_enable; } static const struct ethtool_ops au1000_ethtool_ops = { .get_settings = au1000_get_settings, .set_settings = au1000_set_settings, .get_drvinfo = au1000_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = au1000_get_msglevel, .set_msglevel = au1000_set_msglevel, }; /* * Initialize the interface. * * When the device powers up, the clocks are disabled and the * mac is in reset state. When the interface is closed, we * do the same -- reset the device and disable the clocks to * conserve power. Thus, whenever au1000_init() is called, * the device should already be in reset state. */ static int au1000_init(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); unsigned long flags; int i; u32 control; if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name); /* bring the device out of reset */ au1000_enable_mac(dev, 1); spin_lock_irqsave(&aup->lock, flags); aup->mac->control = 0; aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->tx_tail = aup->tx_head; aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | dev->dev_addr[1]<<8 | dev->dev_addr[0]; for (i = 0; i < NUM_RX_DMA; i++) { aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; } au_sync(); control = MAC_RX_ENABLE | MAC_TX_ENABLE; #ifndef CONFIG_CPU_LITTLE_ENDIAN control |= MAC_BIG_ENDIAN; #endif if (aup->phy_dev) { if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) control |= MAC_FULL_DUPLEX; else control |= MAC_DISABLE_RX_OWN; } else { /* PHY-less op, assume full-duplex */ control |= MAC_FULL_DUPLEX; } aup->mac->control = control; aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ au_sync(); spin_unlock_irqrestore(&aup->lock, flags); return 0; } static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) { struct net_device_stats *ps = &dev->stats; ps->rx_packets++; if (status & RX_MCAST_FRAME) ps->multicast++; if (status & RX_ERROR) { ps->rx_errors++; if (status & RX_MISSED_FRAME) ps->rx_missed_errors++; if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) ps->rx_length_errors++; if (status & RX_CRC_ERROR) ps->rx_crc_errors++; if (status & RX_COLL) ps->collisions++; } else ps->rx_bytes += status & RX_FRAME_LEN_MASK; } /* * Au1000 receive routine. */ static int au1000_rx(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct sk_buff *skb; volatile rx_dma_t *prxd; u32 buff_stat, status; db_dest_t *pDB; u32 frmlen; if (au1000_debug > 5) printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; while (buff_stat & RX_T_DONE) { status = prxd->status; pDB = aup->rx_db_inuse[aup->rx_head]; au1000_update_rx_stats(dev, status); if (!(status & RX_ERROR)) { /* good frame */ frmlen = (status & RX_FRAME_LEN_MASK); frmlen -= 4; /* Remove FCS */ skb = dev_alloc_skb(frmlen + 2); if (skb == NULL) { printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name); dev->stats.rx_dropped++; continue; } skb_reserve(skb, 2); /* 16 byte IP header align */ skb_copy_to_linear_data(skb, (unsigned char *)pDB->vaddr, frmlen); skb_put(skb, frmlen); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* pass the packet to upper layers */ } else { if (au1000_debug > 4) { if (status & RX_MISSED_FRAME) printk("rx miss\n"); if (status & RX_WDOG_TIMER) printk("rx wdog\n"); if (status & RX_RUNT) printk("rx runt\n"); if (status & RX_OVERLEN) printk("rx overlen\n"); if (status & RX_COLL) printk("rx coll\n"); if (status & RX_MII_ERROR) printk("rx mii error\n"); if (status & RX_CRC_ERROR) printk("rx crc error\n"); if (status & RX_LEN_ERROR) printk("rx len error\n"); if (status & RX_U_CNTRL_FRAME) printk("rx u control frame\n"); } } prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); au_sync(); /* next descriptor */ prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; } return 0; } static void au1000_update_tx_stats(struct net_device *dev, u32 status) { struct au1000_private *aup = netdev_priv(dev); struct net_device_stats *ps = &dev->stats; if (status & TX_FRAME_ABORTED) { if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { /* any other tx errors are only valid * in half duplex mode */ ps->tx_errors++; ps->tx_aborted_errors++; } } else { ps->tx_errors++; ps->tx_aborted_errors++; if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) ps->tx_carrier_errors++; } } } /* * Called from the interrupt service routine to acknowledge * the TX DONE bits. This is a must if the irq is setup as * edge triggered. */ static void au1000_tx_ack(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); volatile tx_dma_t *ptxd; ptxd = aup->tx_dma_ring[aup->tx_tail]; while (ptxd->buff_stat & TX_T_DONE) { au1000_update_tx_stats(dev, ptxd->status); ptxd->buff_stat &= ~TX_T_DONE; ptxd->len = 0; au_sync(); aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); ptxd = aup->tx_dma_ring[aup->tx_tail]; if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } } } /* * Au1000 interrupt service routine. */ static irqreturn_t au1000_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; /* Handle RX interrupts first to minimize chance of overrun */ au1000_rx(dev); au1000_tx_ack(dev); return IRQ_RETVAL(1); } static int au1000_open(struct net_device *dev) { int retval; struct au1000_private *aup = netdev_priv(dev); if (au1000_debug > 4) printk("%s: open: dev=%p\n", dev->name, dev); retval = request_irq(dev->irq, au1000_interrupt, 0, dev->name, dev); if (retval) { printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq); return retval; } retval = au1000_init(dev); if (retval) { printk(KERN_ERR "%s: error in au1000_init\n", dev->name); free_irq(dev->irq, dev); return retval; } if (aup->phy_dev) { /* cause the PHY state machine to schedule a link state check */ aup->phy_dev->state = PHY_CHANGELINK; phy_start(aup->phy_dev); } netif_start_queue(dev); if (au1000_debug > 4) printk("%s: open: Initialization done.\n", dev->name); return 0; } static int au1000_close(struct net_device *dev) { unsigned long flags; struct au1000_private *const aup = netdev_priv(dev); if (au1000_debug > 4) printk("%s: close: dev=%p\n", dev->name, dev); if (aup->phy_dev) phy_stop(aup->phy_dev); spin_lock_irqsave(&aup->lock, flags); au1000_reset_mac_unlocked (dev); /* stop the device */ netif_stop_queue(dev); /* disable the interrupt */ free_irq(dev->irq, dev); spin_unlock_irqrestore(&aup->lock, flags); return 0; } /* * Au1000 transmit routine. */ static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct net_device_stats *ps = &dev->stats; volatile tx_dma_t *ptxd; u32 buff_stat; db_dest_t *pDB; int i; if (au1000_debug > 5) printk("%s: tx: aup %x len=%d, data=%p, head %d\n", dev->name, (unsigned)aup, skb->len, skb->data, aup->tx_head); ptxd = aup->tx_dma_ring[aup->tx_head]; buff_stat = ptxd->buff_stat; if (buff_stat & TX_DMA_ENABLE) { /* We've wrapped around and the transmitter is still busy */ netif_stop_queue(dev); aup->tx_full = 1; return NETDEV_TX_BUSY; } else if (buff_stat & TX_T_DONE) { au1000_update_tx_stats(dev, ptxd->status); ptxd->len = 0; } if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } pDB = aup->tx_db_inuse[aup->tx_head]; skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); if (skb->len < ETH_ZLEN) { for (i = skb->len; i < ETH_ZLEN; i++) { ((char *)pDB->vaddr)[i] = 0; } ptxd->len = ETH_ZLEN; } else ptxd->len = skb->len; ps->tx_packets++; ps->tx_bytes += ptxd->len; ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; au_sync(); dev_kfree_skb(skb); aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); dev->trans_start = jiffies; return NETDEV_TX_OK; } /* * The Tx ring has been full longer than the watchdog timeout * value. The transmitter must be hung? */ static void au1000_tx_timeout(struct net_device *dev) { printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); au1000_reset_mac(dev); au1000_init(dev); dev->trans_start = jiffies; netif_wake_queue(dev); } static void au1000_multicast_list(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); if (au1000_debug > 4) printk("%s: au1000_multicast_list: flags=%x\n", dev->name, dev->flags); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ aup->mac->control |= MAC_PROMISCUOUS; } else if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { aup->mac->control |= MAC_PASS_ALL_MULTI; aup->mac->control &= ~MAC_PROMISCUOUS; printk(KERN_INFO "%s: Pass all multicast\n", dev->name); } else { struct netdev_hw_addr *ha; u32 mc_filter[2]; /* Multicast hash filter */ mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, (long *)mc_filter); aup->mac->multi_hash_high = mc_filter[1]; aup->mac->multi_hash_low = mc_filter[0]; aup->mac->control &= ~MAC_PROMISCUOUS; aup->mac->control |= MAC_HASH_MODE; } } static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct au1000_private *aup = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!aup->phy_dev) return -EINVAL; /* PHY not controllable */ return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd); } static const struct net_device_ops au1000_netdev_ops = { .ndo_open = au1000_open, .ndo_stop = au1000_close, .ndo_start_xmit = au1000_tx, .ndo_set_multicast_list = au1000_multicast_list, .ndo_do_ioctl = au1000_ioctl, .ndo_tx_timeout = au1000_tx_timeout, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, }; static int __devinit au1000_probe(struct platform_device *pdev) { static unsigned version_printed; struct au1000_private *aup = NULL; struct au1000_eth_platform_data *pd; struct net_device *dev = NULL; db_dest_t *pDB, *pDBfree; int irq, i, err = 0; struct resource *base, *macen; char ethaddr[6]; base = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!base) { printk(KERN_ERR DRV_NAME ": failed to retrieve base register\n"); err = -ENODEV; goto out; } macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!macen) { printk(KERN_ERR DRV_NAME ": failed to retrieve MAC Enable register\n"); err = -ENODEV; goto out; } irq = platform_get_irq(pdev, 0); if (irq < 0) { printk(KERN_ERR DRV_NAME ": failed to retrieve IRQ\n"); err = -ENODEV; goto out; } if (!request_mem_region(base->start, resource_size(base), pdev->name)) { printk(KERN_ERR DRV_NAME ": failed to request memory region for base registers\n"); err = -ENXIO; goto out; } if (!request_mem_region(macen->start, resource_size(macen), pdev->name)) { printk(KERN_ERR DRV_NAME ": failed to request memory region for MAC enable register\n"); err = -ENXIO; goto err_request; } dev = alloc_etherdev(sizeof(struct au1000_private)); if (!dev) { printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); err = -ENOMEM; goto err_alloc; } SET_NETDEV_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); aup = netdev_priv(dev); spin_lock_init(&aup->lock); aup->msg_enable = (au1000_debug < 4 ? AU1000_DEF_MSG_ENABLE : au1000_debug); /* Allocate the data buffers */ /* Snooping works fine with eth on all au1xxx */ aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), &aup->dma_addr, 0); if (!aup->vaddr) { printk(KERN_ERR DRV_NAME ": failed to allocate data buffers\n"); err = -ENOMEM; goto err_vaddr; } /* aup->mac is the base address of the MAC's registers */ aup->mac = (volatile mac_reg_t *)ioremap_nocache(base->start, resource_size(base)); if (!aup->mac) { printk(KERN_ERR DRV_NAME ": failed to ioremap MAC registers\n"); err = -ENXIO; goto err_remap1; } /* Setup some variables for quick register address access */ aup->enable = (volatile u32 *)ioremap_nocache(macen->start, resource_size(macen)); if (!aup->enable) { printk(KERN_ERR DRV_NAME ": failed to ioremap MAC enable register\n"); err = -ENXIO; goto err_remap2; } aup->mac_id = pdev->id; if (pdev->id == 0) { if (prom_get_ethernet_addr(ethaddr) == 0) memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); else { printk(KERN_INFO "%s: No MAC address found\n", dev->name); /* Use the hard coded MAC addresses */ } au1000_setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); } else if (pdev->id == 1) au1000_setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); /* * Assign to the Ethernet ports two consecutive MAC addresses * to match those that are printed on their stickers */ memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); dev->dev_addr[5] += pdev->id; *aup->enable = 0; aup->mac_enabled = 0; pd = pdev->dev.platform_data; if (!pd) { printk(KERN_INFO DRV_NAME ": no platform_data passed, PHY search on MAC0\n"); aup->phy1_search_mac0 = 1; } else { aup->phy_static_config = pd->phy_static_config; aup->phy_search_highest_addr = pd->phy_search_highest_addr; aup->phy1_search_mac0 = pd->phy1_search_mac0; aup->phy_addr = pd->phy_addr; aup->phy_busid = pd->phy_busid; aup->phy_irq = pd->phy_irq; } if (aup->phy_busid && aup->phy_busid > 0) { printk(KERN_ERR DRV_NAME ": MAC0-associated PHY attached 2nd MACs MII" "bus not supported yet\n"); err = -ENODEV; goto err_mdiobus_alloc; } aup->mii_bus = mdiobus_alloc(); if (aup->mii_bus == NULL) { printk(KERN_ERR DRV_NAME ": failed to allocate mdiobus structure\n"); err = -ENOMEM; goto err_mdiobus_alloc; } aup->mii_bus->priv = dev; aup->mii_bus->read = au1000_mdiobus_read; aup->mii_bus->write = au1000_mdiobus_write; aup->mii_bus->reset = au1000_mdiobus_reset; aup->mii_bus->name = "au1000_eth_mii"; snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id); aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); if (aup->mii_bus->irq == NULL) goto err_out; for (i = 0; i < PHY_MAX_ADDR; ++i) aup->mii_bus->irq[i] = PHY_POLL; /* if known, set corresponding PHY IRQs */ if (aup->phy_static_config) if (aup->phy_irq && aup->phy_busid == aup->mac_id) aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; err = mdiobus_register(aup->mii_bus); if (err) { printk(KERN_ERR DRV_NAME " failed to register MDIO bus\n"); goto err_mdiobus_reg; } if (au1000_mii_probe(dev) != 0) goto err_out; pDBfree = NULL; /* setup the data buffer descriptors and attach a buffer to each one */ pDB = aup->db; for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { pDB->pnext = pDBfree; pDBfree = pDB; pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); pDB++; } aup->pDBfree = pDBfree; for (i = 0; i < NUM_RX_DMA; i++) { pDB = au1000_GetFreeDB(aup); if (!pDB) { goto err_out; } aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->rx_db_inuse[i] = pDB; } for (i = 0; i < NUM_TX_DMA; i++) { pDB = au1000_GetFreeDB(aup); if (!pDB) { goto err_out; } aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->tx_dma_ring[i]->len = 0; aup->tx_db_inuse[i] = pDB; } dev->base_addr = base->start; dev->irq = irq; dev->netdev_ops = &au1000_netdev_ops; SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); dev->watchdog_timeo = ETH_TX_TIMEOUT; /* * The boot code uses the ethernet controller, so reset it to start * fresh. au1000_init() expects that the device is in reset state. */ au1000_reset_mac(dev); err = register_netdev(dev); if (err) { printk(KERN_ERR DRV_NAME "%s: Cannot register net device, aborting.\n", dev->name); goto err_out; } printk("%s: Au1xx0 Ethernet found at 0x%lx, irq %d\n", dev->name, (unsigned long)base->start, irq); if (version_printed++ == 0) printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); return 0; err_out: if (aup->mii_bus != NULL) mdiobus_unregister(aup->mii_bus); /* here we should have a valid dev plus aup-> register addresses * so we can reset the mac properly.*/ au1000_reset_mac(dev); for (i = 0; i < NUM_RX_DMA; i++) { if (aup->rx_db_inuse[i]) au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); } for (i = 0; i < NUM_TX_DMA; i++) { if (aup->tx_db_inuse[i]) au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); } err_mdiobus_reg: mdiobus_free(aup->mii_bus); err_mdiobus_alloc: iounmap(aup->enable); err_remap2: iounmap(aup->mac); err_remap1: dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), (void *)aup->vaddr, aup->dma_addr); err_vaddr: free_netdev(dev); err_alloc: release_mem_region(macen->start, resource_size(macen)); err_request: release_mem_region(base->start, resource_size(base)); out: return err; } static int __devexit au1000_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct au1000_private *aup = netdev_priv(dev); int i; struct resource *base, *macen; platform_set_drvdata(pdev, NULL); unregister_netdev(dev); mdiobus_unregister(aup->mii_bus); mdiobus_free(aup->mii_bus); for (i = 0; i < NUM_RX_DMA; i++) if (aup->rx_db_inuse[i]) au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); for (i = 0; i < NUM_TX_DMA; i++) if (aup->tx_db_inuse[i]) au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), (void *)aup->vaddr, aup->dma_addr); iounmap(aup->mac); iounmap(aup->enable); base = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(base->start, resource_size(base)); macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); release_mem_region(macen->start, resource_size(macen)); free_netdev(dev); return 0; } static struct platform_driver au1000_eth_driver = { .probe = au1000_probe, .remove = __devexit_p(au1000_remove), .driver = { .name = "au1000-eth", .owner = THIS_MODULE, }, }; MODULE_ALIAS("platform:au1000-eth"); static int __init au1000_init_module(void) { return platform_driver_register(&au1000_eth_driver); } static void __exit au1000_exit_module(void) { platform_driver_unregister(&au1000_eth_driver); } module_init(au1000_init_module); module_exit(au1000_exit_module);