/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "radeon_reg.h" /* * Common GART table functions. */ int radeon_gart_table_ram_alloc(struct radeon_device *rdev) { void *ptr; ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, &rdev->gart.table_addr); if (ptr == NULL) { return -ENOMEM; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_uc((unsigned long)ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif rdev->gart.ptr = ptr; memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size); return 0; } void radeon_gart_table_ram_free(struct radeon_device *rdev) { if (rdev->gart.ptr == NULL) { return; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_wb((unsigned long)rdev->gart.ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif pci_free_consistent(rdev->pdev, rdev->gart.table_size, (void *)rdev->gart.ptr, rdev->gart.table_addr); rdev->gart.ptr = NULL; rdev->gart.table_addr = 0; } int radeon_gart_table_vram_alloc(struct radeon_device *rdev) { int r; if (rdev->gart.robj == NULL) { r = radeon_bo_create(rdev, rdev->gart.table_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, NULL, &rdev->gart.robj); if (r) { return r; } } return 0; } int radeon_gart_table_vram_pin(struct radeon_device *rdev) { uint64_t gpu_addr; int r; r = radeon_bo_reserve(rdev->gart.robj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->gart.robj, RADEON_GEM_DOMAIN_VRAM, &gpu_addr); if (r) { radeon_bo_unreserve(rdev->gart.robj); return r; } r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr); if (r) radeon_bo_unpin(rdev->gart.robj); radeon_bo_unreserve(rdev->gart.robj); rdev->gart.table_addr = gpu_addr; return r; } void radeon_gart_table_vram_unpin(struct radeon_device *rdev) { int r; if (rdev->gart.robj == NULL) { return; } r = radeon_bo_reserve(rdev->gart.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->gart.robj); radeon_bo_unpin(rdev->gart.robj); radeon_bo_unreserve(rdev->gart.robj); rdev->gart.ptr = NULL; } } void radeon_gart_table_vram_free(struct radeon_device *rdev) { if (rdev->gart.robj == NULL) { return; } radeon_gart_table_vram_unpin(rdev); radeon_bo_unref(&rdev->gart.robj); } /* * Common gart functions. */ void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, int pages) { unsigned t; unsigned p; int i, j; u64 page_base; if (!rdev->gart.ready) { WARN(1, "trying to unbind memory from uninitialized GART !\n"); return; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { if (rdev->gart.pages[p]) { rdev->gart.pages[p] = NULL; rdev->gart.pages_addr[p] = rdev->dummy_page.addr; page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { if (rdev->gart.ptr) { radeon_gart_set_page(rdev, t, page_base); } page_base += RADEON_GPU_PAGE_SIZE; } } } mb(); radeon_gart_tlb_flush(rdev); } int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, int pages, struct page **pagelist, dma_addr_t *dma_addr) { unsigned t; unsigned p; uint64_t page_base; int i, j; if (!rdev->gart.ready) { WARN(1, "trying to bind memory to uninitialized GART !\n"); return -EINVAL; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { rdev->gart.pages_addr[p] = dma_addr[i]; rdev->gart.pages[p] = pagelist[i]; if (rdev->gart.ptr) { page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } } mb(); radeon_gart_tlb_flush(rdev); return 0; } void radeon_gart_restore(struct radeon_device *rdev) { int i, j, t; u64 page_base; if (!rdev->gart.ptr) { return; } for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { page_base = rdev->gart.pages_addr[i]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } mb(); radeon_gart_tlb_flush(rdev); } int radeon_gart_init(struct radeon_device *rdev) { int r, i; if (rdev->gart.pages) { return 0; } /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { DRM_ERROR("Page size is smaller than GPU page size!\n"); return -EINVAL; } r = radeon_dummy_page_init(rdev); if (r) return r; /* Compute table size */ rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); /* Allocate pages table */ rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages, GFP_KERNEL); if (rdev->gart.pages == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) * rdev->gart.num_cpu_pages, GFP_KERNEL); if (rdev->gart.pages_addr == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } /* set GART entry to point to the dummy page by default */ for (i = 0; i < rdev->gart.num_cpu_pages; i++) { rdev->gart.pages_addr[i] = rdev->dummy_page.addr; } return 0; } void radeon_gart_fini(struct radeon_device *rdev) { if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { /* unbind pages */ radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); } rdev->gart.ready = false; kfree(rdev->gart.pages); kfree(rdev->gart.pages_addr); rdev->gart.pages = NULL; rdev->gart.pages_addr = NULL; radeon_dummy_page_fini(rdev); } /* * vm helpers * * TODO bind a default page at vm initialization for default address */ int radeon_vm_manager_init(struct radeon_device *rdev) { int r; rdev->vm_manager.enabled = false; /* mark first vm as always in use, it's the system one */ r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager, rdev->vm_manager.max_pfn * 8, RADEON_GEM_DOMAIN_VRAM); if (r) { dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n", (rdev->vm_manager.max_pfn * 8) >> 10); return r; } r = rdev->vm_manager.funcs->init(rdev); if (r == 0) rdev->vm_manager.enabled = true; return r; } /* global mutex must be lock */ static void radeon_vm_unbind_locked(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va; if (vm->id == -1) { return; } /* wait for vm use to end */ if (vm->fence) { radeon_fence_wait(vm->fence, false); radeon_fence_unref(&vm->fence); } /* hw unbind */ rdev->vm_manager.funcs->unbind(rdev, vm); rdev->vm_manager.use_bitmap &= ~(1 << vm->id); list_del_init(&vm->list); vm->id = -1; radeon_sa_bo_free(rdev, &vm->sa_bo, NULL); vm->pt = NULL; list_for_each_entry(bo_va, &vm->va, vm_list) { bo_va->valid = false; } } void radeon_vm_manager_fini(struct radeon_device *rdev) { if (rdev->vm_manager.sa_manager.bo == NULL) return; radeon_vm_manager_suspend(rdev); rdev->vm_manager.funcs->fini(rdev); radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager); rdev->vm_manager.enabled = false; } int radeon_vm_manager_start(struct radeon_device *rdev) { if (rdev->vm_manager.sa_manager.bo == NULL) { return -EINVAL; } return radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager); } int radeon_vm_manager_suspend(struct radeon_device *rdev) { struct radeon_vm *vm, *tmp; mutex_lock(&rdev->vm_manager.lock); /* unbind all active vm */ list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) { radeon_vm_unbind_locked(rdev, vm); } rdev->vm_manager.funcs->fini(rdev); mutex_unlock(&rdev->vm_manager.lock); return radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager); } /* global mutex must be locked */ void radeon_vm_unbind(struct radeon_device *rdev, struct radeon_vm *vm) { mutex_lock(&vm->mutex); radeon_vm_unbind_locked(rdev, vm); mutex_unlock(&vm->mutex); } /* global and local mutex must be locked */ int radeon_vm_bind(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_vm *vm_evict; unsigned i; int id = -1, r; if (vm == NULL) { return -EINVAL; } if (vm->id != -1) { /* update lru */ list_del_init(&vm->list); list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); return 0; } retry: r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->sa_bo, RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8), RADEON_GPU_PAGE_SIZE, false); if (r) { if (list_empty(&rdev->vm_manager.lru_vm)) { return r; } vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list); radeon_vm_unbind(rdev, vm_evict); goto retry; } vm->pt = radeon_sa_bo_cpu_addr(vm->sa_bo); vm->pt_gpu_addr = radeon_sa_bo_gpu_addr(vm->sa_bo); memset(vm->pt, 0, RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8)); retry_id: /* search for free vm */ for (i = 0; i < rdev->vm_manager.nvm; i++) { if (!(rdev->vm_manager.use_bitmap & (1 << i))) { id = i; break; } } /* evict vm if necessary */ if (id == -1) { vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list); radeon_vm_unbind(rdev, vm_evict); goto retry_id; } /* do hw bind */ r = rdev->vm_manager.funcs->bind(rdev, vm, id); if (r) { radeon_sa_bo_free(rdev, &vm->sa_bo, NULL); return r; } rdev->vm_manager.use_bitmap |= 1 << id; vm->id = id; list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); return radeon_vm_bo_update_pte(rdev, vm, rdev->ring_tmp_bo.bo, &rdev->ring_tmp_bo.bo->tbo.mem); } /* object have to be reserved */ int radeon_vm_bo_add(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo, uint64_t offset, uint32_t flags) { struct radeon_bo_va *bo_va, *tmp; struct list_head *head; uint64_t size = radeon_bo_size(bo), last_offset = 0; unsigned last_pfn; bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); if (bo_va == NULL) { return -ENOMEM; } bo_va->vm = vm; bo_va->bo = bo; bo_va->soffset = offset; bo_va->eoffset = offset + size; bo_va->flags = flags; bo_va->valid = false; INIT_LIST_HEAD(&bo_va->bo_list); INIT_LIST_HEAD(&bo_va->vm_list); /* make sure object fit at this offset */ if (bo_va->soffset >= bo_va->eoffset) { kfree(bo_va); return -EINVAL; } last_pfn = bo_va->eoffset / RADEON_GPU_PAGE_SIZE; if (last_pfn > rdev->vm_manager.max_pfn) { kfree(bo_va); dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", last_pfn, rdev->vm_manager.max_pfn); return -EINVAL; } mutex_lock(&vm->mutex); if (last_pfn > vm->last_pfn) { /* release mutex and lock in right order */ mutex_unlock(&vm->mutex); mutex_lock(&rdev->vm_manager.lock); mutex_lock(&vm->mutex); /* and check again */ if (last_pfn > vm->last_pfn) { /* grow va space 32M by 32M */ unsigned align = ((32 << 20) >> 12) - 1; radeon_vm_unbind_locked(rdev, vm); vm->last_pfn = (last_pfn + align) & ~align; } mutex_unlock(&rdev->vm_manager.lock); } head = &vm->va; last_offset = 0; list_for_each_entry(tmp, &vm->va, vm_list) { if (bo_va->soffset >= last_offset && bo_va->eoffset < tmp->soffset) { /* bo can be added before this one */ break; } if (bo_va->soffset >= tmp->soffset && bo_va->soffset < tmp->eoffset) { /* bo and tmp overlap, invalid offset */ dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n", bo, (unsigned)bo_va->soffset, tmp->bo, (unsigned)tmp->soffset, (unsigned)tmp->eoffset); kfree(bo_va); mutex_unlock(&vm->mutex); return -EINVAL; } last_offset = tmp->eoffset; head = &tmp->vm_list; } list_add(&bo_va->vm_list, head); list_add_tail(&bo_va->bo_list, &bo->va); mutex_unlock(&vm->mutex); return 0; } static u64 radeon_vm_get_addr(struct radeon_device *rdev, struct ttm_mem_reg *mem, unsigned pfn) { u64 addr = 0; switch (mem->mem_type) { case TTM_PL_VRAM: addr = (mem->start << PAGE_SHIFT); addr += pfn * RADEON_GPU_PAGE_SIZE; addr += rdev->vm_manager.vram_base_offset; break; case TTM_PL_TT: /* offset inside page table */ addr = mem->start << PAGE_SHIFT; addr += pfn * RADEON_GPU_PAGE_SIZE; addr = addr >> PAGE_SHIFT; /* page table offset */ addr = rdev->gart.pages_addr[addr]; /* in case cpu page size != gpu page size*/ addr += (pfn * RADEON_GPU_PAGE_SIZE) & (~PAGE_MASK); break; default: break; } return addr; } /* object have to be reserved & global and local mutex must be locked */ int radeon_vm_bo_update_pte(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo, struct ttm_mem_reg *mem) { struct radeon_bo_va *bo_va; unsigned ngpu_pages, i; uint64_t addr = 0, pfn; uint32_t flags; /* nothing to do if vm isn't bound */ if (vm->id == -1) return 0; bo_va = radeon_bo_va(bo, vm); if (bo_va == NULL) { dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm); return -EINVAL; } if (bo_va->valid) return 0; ngpu_pages = radeon_bo_ngpu_pages(bo); bo_va->flags &= ~RADEON_VM_PAGE_VALID; bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; if (mem) { if (mem->mem_type != TTM_PL_SYSTEM) { bo_va->flags |= RADEON_VM_PAGE_VALID; bo_va->valid = true; } if (mem->mem_type == TTM_PL_TT) { bo_va->flags |= RADEON_VM_PAGE_SYSTEM; } } pfn = bo_va->soffset / RADEON_GPU_PAGE_SIZE; flags = rdev->vm_manager.funcs->page_flags(rdev, bo_va->vm, bo_va->flags); for (i = 0, addr = 0; i < ngpu_pages; i++) { if (mem && bo_va->valid) { addr = radeon_vm_get_addr(rdev, mem, i); } rdev->vm_manager.funcs->set_page(rdev, bo_va->vm, i + pfn, addr, flags); } rdev->vm_manager.funcs->tlb_flush(rdev, bo_va->vm); return 0; } /* object have to be reserved */ int radeon_vm_bo_rmv(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; bo_va = radeon_bo_va(bo, vm); if (bo_va == NULL) return 0; mutex_lock(&rdev->vm_manager.lock); mutex_lock(&vm->mutex); radeon_vm_bo_update_pte(rdev, vm, bo, NULL); mutex_unlock(&rdev->vm_manager.lock); list_del(&bo_va->vm_list); mutex_unlock(&vm->mutex); list_del(&bo_va->bo_list); kfree(bo_va); return 0; } void radeon_vm_bo_invalidate(struct radeon_device *rdev, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; BUG_ON(!atomic_read(&bo->tbo.reserved)); list_for_each_entry(bo_va, &bo->va, bo_list) { bo_va->valid = false; } } int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) { int r; vm->id = -1; vm->fence = NULL; mutex_init(&vm->mutex); INIT_LIST_HEAD(&vm->list); INIT_LIST_HEAD(&vm->va); vm->last_pfn = 0; /* map the ib pool buffer at 0 in virtual address space, set * read only */ r = radeon_vm_bo_add(rdev, vm, rdev->ring_tmp_bo.bo, 0, RADEON_VM_PAGE_READABLE | RADEON_VM_PAGE_SNOOPED); return r; } void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va, *tmp; int r; mutex_lock(&rdev->vm_manager.lock); mutex_lock(&vm->mutex); radeon_vm_unbind_locked(rdev, vm); mutex_unlock(&rdev->vm_manager.lock); /* remove all bo */ r = radeon_bo_reserve(rdev->ring_tmp_bo.bo, false); if (!r) { bo_va = radeon_bo_va(rdev->ring_tmp_bo.bo, vm); list_del_init(&bo_va->bo_list); list_del_init(&bo_va->vm_list); radeon_bo_unreserve(rdev->ring_tmp_bo.bo); kfree(bo_va); } if (!list_empty(&vm->va)) { dev_err(rdev->dev, "still active bo inside vm\n"); } list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) { list_del_init(&bo_va->vm_list); r = radeon_bo_reserve(bo_va->bo, false); if (!r) { list_del_init(&bo_va->bo_list); radeon_bo_unreserve(bo_va->bo); kfree(bo_va); } } mutex_unlock(&vm->mutex); }