/* * Copyright (C) STMicroelectronics SA 2017 * Author: Fabien Dessenne * License terms: GNU General Public License (GPL), version 2 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "stm32-cryp" /* Bit [0] encrypt / decrypt */ #define FLG_ENCRYPT BIT(0) /* Bit [8..1] algo & operation mode */ #define FLG_AES BIT(1) #define FLG_DES BIT(2) #define FLG_TDES BIT(3) #define FLG_ECB BIT(4) #define FLG_CBC BIT(5) #define FLG_CTR BIT(6) #define FLG_GCM BIT(7) #define FLG_CCM BIT(8) /* Mode mask = bits [15..0] */ #define FLG_MODE_MASK GENMASK(15, 0) /* Bit [31..16] status */ #define FLG_CCM_PADDED_WA BIT(16) /* Registers */ #define CRYP_CR 0x00000000 #define CRYP_SR 0x00000004 #define CRYP_DIN 0x00000008 #define CRYP_DOUT 0x0000000C #define CRYP_DMACR 0x00000010 #define CRYP_IMSCR 0x00000014 #define CRYP_RISR 0x00000018 #define CRYP_MISR 0x0000001C #define CRYP_K0LR 0x00000020 #define CRYP_K0RR 0x00000024 #define CRYP_K1LR 0x00000028 #define CRYP_K1RR 0x0000002C #define CRYP_K2LR 0x00000030 #define CRYP_K2RR 0x00000034 #define CRYP_K3LR 0x00000038 #define CRYP_K3RR 0x0000003C #define CRYP_IV0LR 0x00000040 #define CRYP_IV0RR 0x00000044 #define CRYP_IV1LR 0x00000048 #define CRYP_IV1RR 0x0000004C #define CRYP_CSGCMCCM0R 0x00000050 #define CRYP_CSGCM0R 0x00000070 /* Registers values */ #define CR_DEC_NOT_ENC 0x00000004 #define CR_TDES_ECB 0x00000000 #define CR_TDES_CBC 0x00000008 #define CR_DES_ECB 0x00000010 #define CR_DES_CBC 0x00000018 #define CR_AES_ECB 0x00000020 #define CR_AES_CBC 0x00000028 #define CR_AES_CTR 0x00000030 #define CR_AES_KP 0x00000038 #define CR_AES_GCM 0x00080000 #define CR_AES_CCM 0x00080008 #define CR_AES_UNKNOWN 0xFFFFFFFF #define CR_ALGO_MASK 0x00080038 #define CR_DATA32 0x00000000 #define CR_DATA16 0x00000040 #define CR_DATA8 0x00000080 #define CR_DATA1 0x000000C0 #define CR_KEY128 0x00000000 #define CR_KEY192 0x00000100 #define CR_KEY256 0x00000200 #define CR_FFLUSH 0x00004000 #define CR_CRYPEN 0x00008000 #define CR_PH_INIT 0x00000000 #define CR_PH_HEADER 0x00010000 #define CR_PH_PAYLOAD 0x00020000 #define CR_PH_FINAL 0x00030000 #define CR_PH_MASK 0x00030000 #define CR_NBPBL_SHIFT 20 #define SR_BUSY 0x00000010 #define SR_OFNE 0x00000004 #define IMSCR_IN BIT(0) #define IMSCR_OUT BIT(1) #define MISR_IN BIT(0) #define MISR_OUT BIT(1) /* Misc */ #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32)) #define GCM_CTR_INIT 2 #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset) #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset) #define CRYP_AUTOSUSPEND_DELAY 50 struct stm32_cryp_caps { bool swap_final; bool padding_wa; }; struct stm32_cryp_ctx { struct crypto_engine_ctx enginectx; struct stm32_cryp *cryp; int keylen; u32 key[AES_KEYSIZE_256 / sizeof(u32)]; unsigned long flags; }; struct stm32_cryp_reqctx { unsigned long mode; }; struct stm32_cryp { struct list_head list; struct device *dev; void __iomem *regs; struct clk *clk; unsigned long flags; u32 irq_status; const struct stm32_cryp_caps *caps; struct stm32_cryp_ctx *ctx; struct crypto_engine *engine; struct mutex lock; /* protects req / areq */ struct ablkcipher_request *req; struct aead_request *areq; size_t authsize; size_t hw_blocksize; size_t total_in; size_t total_in_save; size_t total_out; size_t total_out_save; struct scatterlist *in_sg; struct scatterlist *out_sg; struct scatterlist *out_sg_save; struct scatterlist in_sgl; struct scatterlist out_sgl; bool sgs_copied; int in_sg_len; int out_sg_len; struct scatter_walk in_walk; struct scatter_walk out_walk; u32 last_ctr[4]; u32 gcm_ctr; }; struct stm32_cryp_list { struct list_head dev_list; spinlock_t lock; /* protect dev_list */ }; static struct stm32_cryp_list cryp_list = { .dev_list = LIST_HEAD_INIT(cryp_list.dev_list), .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock), }; static inline bool is_aes(struct stm32_cryp *cryp) { return cryp->flags & FLG_AES; } static inline bool is_des(struct stm32_cryp *cryp) { return cryp->flags & FLG_DES; } static inline bool is_tdes(struct stm32_cryp *cryp) { return cryp->flags & FLG_TDES; } static inline bool is_ecb(struct stm32_cryp *cryp) { return cryp->flags & FLG_ECB; } static inline bool is_cbc(struct stm32_cryp *cryp) { return cryp->flags & FLG_CBC; } static inline bool is_ctr(struct stm32_cryp *cryp) { return cryp->flags & FLG_CTR; } static inline bool is_gcm(struct stm32_cryp *cryp) { return cryp->flags & FLG_GCM; } static inline bool is_ccm(struct stm32_cryp *cryp) { return cryp->flags & FLG_CCM; } static inline bool is_encrypt(struct stm32_cryp *cryp) { return cryp->flags & FLG_ENCRYPT; } static inline bool is_decrypt(struct stm32_cryp *cryp) { return !is_encrypt(cryp); } static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst) { return readl_relaxed(cryp->regs + ofst); } static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val) { writel_relaxed(val, cryp->regs + ofst); } static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status, !(status & SR_BUSY), 10, 100000); } static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status, !(status & CR_CRYPEN), 10, 100000); } static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status, status & SR_OFNE, 10, 100000); } static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp); static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx) { struct stm32_cryp *tmp, *cryp = NULL; spin_lock_bh(&cryp_list.lock); if (!ctx->cryp) { list_for_each_entry(tmp, &cryp_list.dev_list, list) { cryp = tmp; break; } ctx->cryp = cryp; } else { cryp = ctx->cryp; } spin_unlock_bh(&cryp_list.lock); return cryp; } static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total, size_t align) { int len = 0; if (!total) return 0; if (!IS_ALIGNED(total, align)) return -EINVAL; while (sg) { if (!IS_ALIGNED(sg->offset, sizeof(u32))) return -EINVAL; if (!IS_ALIGNED(sg->length, align)) return -EINVAL; len += sg->length; sg = sg_next(sg); } if (len != total) return -EINVAL; return 0; } static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp) { int ret; ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in, cryp->hw_blocksize); if (ret) return ret; ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out, cryp->hw_blocksize); return ret; } static void sg_copy_buf(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out) { struct scatter_walk walk; if (!nbytes) return; scatterwalk_start(&walk, sg); scatterwalk_advance(&walk, start); scatterwalk_copychunks(buf, &walk, nbytes, out); scatterwalk_done(&walk, out, 0); } static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp) { void *buf_in, *buf_out; int pages, total_in, total_out; if (!stm32_cryp_check_io_aligned(cryp)) { cryp->sgs_copied = 0; return 0; } total_in = ALIGN(cryp->total_in, cryp->hw_blocksize); pages = total_in ? get_order(total_in) : 1; buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages); total_out = ALIGN(cryp->total_out, cryp->hw_blocksize); pages = total_out ? get_order(total_out) : 1; buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages); if (!buf_in || !buf_out) { dev_err(cryp->dev, "Can't allocate pages when unaligned\n"); cryp->sgs_copied = 0; return -EFAULT; } sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0); sg_init_one(&cryp->in_sgl, buf_in, total_in); cryp->in_sg = &cryp->in_sgl; cryp->in_sg_len = 1; sg_init_one(&cryp->out_sgl, buf_out, total_out); cryp->out_sg_save = cryp->out_sg; cryp->out_sg = &cryp->out_sgl; cryp->out_sg_len = 1; cryp->sgs_copied = 1; return 0; } static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv) { if (!iv) return; stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++)); stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++)); if (is_aes(cryp)) { stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++)); stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++)); } } static void stm32_cryp_hw_write_key(struct stm32_cryp *c) { unsigned int i; int r_id; if (is_des(c)) { stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0])); stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1])); } else { r_id = CRYP_K3RR; for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4) stm32_cryp_write(c, r_id, cpu_to_be32(c->ctx->key[i - 1])); } } static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp) { if (is_aes(cryp) && is_ecb(cryp)) return CR_AES_ECB; if (is_aes(cryp) && is_cbc(cryp)) return CR_AES_CBC; if (is_aes(cryp) && is_ctr(cryp)) return CR_AES_CTR; if (is_aes(cryp) && is_gcm(cryp)) return CR_AES_GCM; if (is_aes(cryp) && is_ccm(cryp)) return CR_AES_CCM; if (is_des(cryp) && is_ecb(cryp)) return CR_DES_ECB; if (is_des(cryp) && is_cbc(cryp)) return CR_DES_CBC; if (is_tdes(cryp) && is_ecb(cryp)) return CR_TDES_ECB; if (is_tdes(cryp) && is_cbc(cryp)) return CR_TDES_CBC; dev_err(cryp->dev, "Unknown mode\n"); return CR_AES_UNKNOWN; } static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp) { return is_encrypt(cryp) ? cryp->areq->cryptlen : cryp->areq->cryptlen - cryp->authsize; } static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg) { int ret; u32 iv[4]; /* Phase 1 : init */ memcpy(iv, cryp->areq->iv, 12); iv[3] = cpu_to_be32(GCM_CTR_INIT); cryp->gcm_ctr = GCM_CTR_INIT; stm32_cryp_hw_write_iv(cryp, iv); stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN); /* Wait for end of processing */ ret = stm32_cryp_wait_enable(cryp); if (ret) dev_err(cryp->dev, "Timeout (gcm init)\n"); return ret; } static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg) { int ret; u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE]; u32 *d; unsigned int i, textlen; /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */ memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); iv[AES_BLOCK_SIZE - 1] = 1; stm32_cryp_hw_write_iv(cryp, (u32 *)iv); /* Build B0 */ memcpy(b0, iv, AES_BLOCK_SIZE); b0[0] |= (8 * ((cryp->authsize - 2) / 2)); if (cryp->areq->assoclen) b0[0] |= 0x40; textlen = stm32_cryp_get_input_text_len(cryp); b0[AES_BLOCK_SIZE - 2] = textlen >> 8; b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF; /* Enable HW */ stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN); /* Write B0 */ d = (u32 *)b0; for (i = 0; i < AES_BLOCK_32; i++) { if (!cryp->caps->padding_wa) *d = cpu_to_be32(*d); stm32_cryp_write(cryp, CRYP_DIN, *d++); } /* Wait for end of processing */ ret = stm32_cryp_wait_enable(cryp); if (ret) dev_err(cryp->dev, "Timeout (ccm init)\n"); return ret; } static int stm32_cryp_hw_init(struct stm32_cryp *cryp) { int ret; u32 cfg, hw_mode; pm_runtime_get_sync(cryp->dev); /* Disable interrupt */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); /* Set key */ stm32_cryp_hw_write_key(cryp); /* Set configuration */ cfg = CR_DATA8 | CR_FFLUSH; switch (cryp->ctx->keylen) { case AES_KEYSIZE_128: cfg |= CR_KEY128; break; case AES_KEYSIZE_192: cfg |= CR_KEY192; break; default: case AES_KEYSIZE_256: cfg |= CR_KEY256; break; } hw_mode = stm32_cryp_get_hw_mode(cryp); if (hw_mode == CR_AES_UNKNOWN) return -EINVAL; /* AES ECB/CBC decrypt: run key preparation first */ if (is_decrypt(cryp) && ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) { stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN); /* Wait for end of processing */ ret = stm32_cryp_wait_busy(cryp); if (ret) { dev_err(cryp->dev, "Timeout (key preparation)\n"); return ret; } } cfg |= hw_mode; if (is_decrypt(cryp)) cfg |= CR_DEC_NOT_ENC; /* Apply config and flush (valid when CRYPEN = 0) */ stm32_cryp_write(cryp, CRYP_CR, cfg); switch (hw_mode) { case CR_AES_GCM: case CR_AES_CCM: /* Phase 1 : init */ if (hw_mode == CR_AES_CCM) ret = stm32_cryp_ccm_init(cryp, cfg); else ret = stm32_cryp_gcm_init(cryp, cfg); if (ret) return ret; /* Phase 2 : header (authenticated data) */ if (cryp->areq->assoclen) { cfg |= CR_PH_HEADER; } else if (stm32_cryp_get_input_text_len(cryp)) { cfg |= CR_PH_PAYLOAD; stm32_cryp_write(cryp, CRYP_CR, cfg); } else { cfg |= CR_PH_INIT; } break; case CR_DES_CBC: case CR_TDES_CBC: case CR_AES_CBC: case CR_AES_CTR: stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info); break; default: break; } /* Enable now */ cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); cryp->flags &= ~FLG_CCM_PADDED_WA; return 0; } static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err) { if (!err && (is_gcm(cryp) || is_ccm(cryp))) /* Phase 4 : output tag */ err = stm32_cryp_read_auth_tag(cryp); if (cryp->sgs_copied) { void *buf_in, *buf_out; int pages, len; buf_in = sg_virt(&cryp->in_sgl); buf_out = sg_virt(&cryp->out_sgl); sg_copy_buf(buf_out, cryp->out_sg_save, 0, cryp->total_out_save, 1); len = ALIGN(cryp->total_in_save, cryp->hw_blocksize); pages = len ? get_order(len) : 1; free_pages((unsigned long)buf_in, pages); len = ALIGN(cryp->total_out_save, cryp->hw_blocksize); pages = len ? get_order(len) : 1; free_pages((unsigned long)buf_out, pages); } pm_runtime_mark_last_busy(cryp->dev); pm_runtime_put_autosuspend(cryp->dev); if (is_gcm(cryp) || is_ccm(cryp)) { crypto_finalize_aead_request(cryp->engine, cryp->areq, err); cryp->areq = NULL; } else { crypto_finalize_ablkcipher_request(cryp->engine, cryp->req, err); cryp->req = NULL; } memset(cryp->ctx->key, 0, cryp->ctx->keylen); mutex_unlock(&cryp->lock); } static int stm32_cryp_cpu_start(struct stm32_cryp *cryp) { /* Enable interrupt and let the IRQ handler do everything */ stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT); return 0; } static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_cra_init(struct crypto_tfm *tfm) { struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm); tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx); ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req; ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req; ctx->enginectx.op.unprepare_request = NULL; return 0; } static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm) { struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm); tfm->reqsize = sizeof(struct stm32_cryp_reqctx); ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req; ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req; ctx->enginectx.op.unprepare_request = NULL; return 0; } static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode) { struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req); struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); if (!cryp) return -ENODEV; rctx->mode = mode; return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req); } static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode) { struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct stm32_cryp_reqctx *rctx = aead_request_ctx(req); struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); if (!cryp) return -ENODEV; rctx->mode = mode; return crypto_transfer_aead_request_to_engine(cryp->engine, req); } static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm); memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; else return stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { u32 tmp[DES_EXPKEY_WORDS]; if (keylen != DES_KEY_SIZE) return -EINVAL; if ((crypto_ablkcipher_get_flags(tfm) & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) && unlikely(!des_ekey(tmp, key))) { crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); return -EINVAL; } return stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { u32 flags; int err; flags = crypto_ablkcipher_get_flags(tfm); err = __des3_verify_key(&flags, key); if (unlikely(err)) { crypto_ablkcipher_set_flags(tfm, flags); return err; } return stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL; } static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return 0; } static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_ECB); } static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_CBC); } static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT); } static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_AES | FLG_CTR); } static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT); } static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM); } static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT); } static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM); } static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_DES | FLG_ECB); } static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_DES | FLG_CBC); } static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB); } static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req) { return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC); } static int stm32_cryp_prepare_req(struct ablkcipher_request *req, struct aead_request *areq) { struct stm32_cryp_ctx *ctx; struct stm32_cryp *cryp; struct stm32_cryp_reqctx *rctx; int ret; if (!req && !areq) return -EINVAL; ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) : crypto_aead_ctx(crypto_aead_reqtfm(areq)); cryp = ctx->cryp; if (!cryp) return -ENODEV; mutex_lock(&cryp->lock); rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq); rctx->mode &= FLG_MODE_MASK; ctx->cryp = cryp; cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode; cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE; cryp->ctx = ctx; if (req) { cryp->req = req; cryp->total_in = req->nbytes; cryp->total_out = cryp->total_in; } else { /* * Length of input and output data: * Encryption case: * INPUT = AssocData || PlainText * <- assoclen -> <- cryptlen -> * <------- total_in -----------> * * OUTPUT = AssocData || CipherText || AuthTag * <- assoclen -> <- cryptlen -> <- authsize -> * <---------------- total_out -----------------> * * Decryption case: * INPUT = AssocData || CipherText || AuthTag * <- assoclen -> <--------- cryptlen ---------> * <- authsize -> * <---------------- total_in ------------------> * * OUTPUT = AssocData || PlainText * <- assoclen -> <- crypten - authsize -> * <---------- total_out -----------------> */ cryp->areq = areq; cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq)); cryp->total_in = areq->assoclen + areq->cryptlen; if (is_encrypt(cryp)) /* Append auth tag to output */ cryp->total_out = cryp->total_in + cryp->authsize; else /* No auth tag in output */ cryp->total_out = cryp->total_in - cryp->authsize; } cryp->total_in_save = cryp->total_in; cryp->total_out_save = cryp->total_out; cryp->in_sg = req ? req->src : areq->src; cryp->out_sg = req ? req->dst : areq->dst; cryp->out_sg_save = cryp->out_sg; cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in); if (cryp->in_sg_len < 0) { dev_err(cryp->dev, "Cannot get in_sg_len\n"); ret = cryp->in_sg_len; goto out; } cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out); if (cryp->out_sg_len < 0) { dev_err(cryp->dev, "Cannot get out_sg_len\n"); ret = cryp->out_sg_len; goto out; } ret = stm32_cryp_copy_sgs(cryp); if (ret) goto out; scatterwalk_start(&cryp->in_walk, cryp->in_sg); scatterwalk_start(&cryp->out_walk, cryp->out_sg); if (is_gcm(cryp) || is_ccm(cryp)) { /* In output, jump after assoc data */ scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen); cryp->total_out -= cryp->areq->assoclen; } ret = stm32_cryp_hw_init(cryp); out: if (ret) mutex_unlock(&cryp->lock); return ret; } static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine, void *areq) { struct ablkcipher_request *req = container_of(areq, struct ablkcipher_request, base); return stm32_cryp_prepare_req(req, NULL); } static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq) { struct ablkcipher_request *req = container_of(areq, struct ablkcipher_request, base); struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct stm32_cryp *cryp = ctx->cryp; if (!cryp) return -ENODEV; return stm32_cryp_cpu_start(cryp); } static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); return stm32_cryp_prepare_req(NULL, req); } static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct stm32_cryp *cryp = ctx->cryp; if (!cryp) return -ENODEV; if (unlikely(!cryp->areq->assoclen && !stm32_cryp_get_input_text_len(cryp))) { /* No input data to process: get tag and finish */ stm32_cryp_finish_req(cryp, 0); return 0; } return stm32_cryp_cpu_start(cryp); } static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst, unsigned int n) { scatterwalk_advance(&cryp->out_walk, n); if (unlikely(cryp->out_sg->length == _walked_out)) { cryp->out_sg = sg_next(cryp->out_sg); if (cryp->out_sg) { scatterwalk_start(&cryp->out_walk, cryp->out_sg); return (sg_virt(cryp->out_sg) + _walked_out); } } return (u32 *)((u8 *)dst + n); } static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src, unsigned int n) { scatterwalk_advance(&cryp->in_walk, n); if (unlikely(cryp->in_sg->length == _walked_in)) { cryp->in_sg = sg_next(cryp->in_sg); if (cryp->in_sg) { scatterwalk_start(&cryp->in_walk, cryp->in_sg); return (sg_virt(cryp->in_sg) + _walked_in); } } return (u32 *)((u8 *)src + n); } static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp) { u32 cfg, size_bit, *dst, d32; u8 *d8; unsigned int i, j; int ret = 0; /* Update Config */ cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_PH_MASK; cfg |= CR_PH_FINAL; cfg &= ~CR_DEC_NOT_ENC; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); if (is_gcm(cryp)) { /* GCM: write aad and payload size (in bits) */ size_bit = cryp->areq->assoclen * 8; if (cryp->caps->swap_final) size_bit = cpu_to_be32(size_bit); stm32_cryp_write(cryp, CRYP_DIN, 0); stm32_cryp_write(cryp, CRYP_DIN, size_bit); size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen : cryp->areq->cryptlen - AES_BLOCK_SIZE; size_bit *= 8; if (cryp->caps->swap_final) size_bit = cpu_to_be32(size_bit); stm32_cryp_write(cryp, CRYP_DIN, 0); stm32_cryp_write(cryp, CRYP_DIN, size_bit); } else { /* CCM: write CTR0 */ u8 iv[AES_BLOCK_SIZE]; u32 *iv32 = (u32 *)iv; memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); for (i = 0; i < AES_BLOCK_32; i++) { if (!cryp->caps->padding_wa) *iv32 = cpu_to_be32(*iv32); stm32_cryp_write(cryp, CRYP_DIN, *iv32++); } } /* Wait for output data */ ret = stm32_cryp_wait_output(cryp); if (ret) { dev_err(cryp->dev, "Timeout (read tag)\n"); return ret; } if (is_encrypt(cryp)) { /* Get and write tag */ dst = sg_virt(cryp->out_sg) + _walked_out; for (i = 0; i < AES_BLOCK_32; i++) { if (cryp->total_out >= sizeof(u32)) { /* Read a full u32 */ *dst = stm32_cryp_read(cryp, CRYP_DOUT); dst = stm32_cryp_next_out(cryp, dst, sizeof(u32)); cryp->total_out -= sizeof(u32); } else if (!cryp->total_out) { /* Empty fifo out (data from input padding) */ stm32_cryp_read(cryp, CRYP_DOUT); } else { /* Read less than an u32 */ d32 = stm32_cryp_read(cryp, CRYP_DOUT); d8 = (u8 *)&d32; for (j = 0; j < cryp->total_out; j++) { *((u8 *)dst) = *(d8++); dst = stm32_cryp_next_out(cryp, dst, 1); } cryp->total_out = 0; } } } else { /* Get and check tag */ u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32]; scatterwalk_map_and_copy(in_tag, cryp->in_sg, cryp->total_in_save - cryp->authsize, cryp->authsize, 0); for (i = 0; i < AES_BLOCK_32; i++) out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT); if (crypto_memneq(in_tag, out_tag, cryp->authsize)) ret = -EBADMSG; } /* Disable cryp */ cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); return ret; } static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp) { u32 cr; if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) { cryp->last_ctr[3] = 0; cryp->last_ctr[2]++; if (!cryp->last_ctr[2]) { cryp->last_ctr[1]++; if (!cryp->last_ctr[1]) cryp->last_ctr[0]++; } cr = stm32_cryp_read(cryp, CRYP_CR); stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN); stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr); stm32_cryp_write(cryp, CRYP_CR, cr); } cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR); cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR); cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR); cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR); } static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp) { unsigned int i, j; u32 d32, *dst; u8 *d8; size_t tag_size; /* Do no read tag now (if any) */ if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp))) tag_size = cryp->authsize; else tag_size = 0; dst = sg_virt(cryp->out_sg) + _walked_out; for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) { if (likely(cryp->total_out - tag_size >= sizeof(u32))) { /* Read a full u32 */ *dst = stm32_cryp_read(cryp, CRYP_DOUT); dst = stm32_cryp_next_out(cryp, dst, sizeof(u32)); cryp->total_out -= sizeof(u32); } else if (cryp->total_out == tag_size) { /* Empty fifo out (data from input padding) */ d32 = stm32_cryp_read(cryp, CRYP_DOUT); } else { /* Read less than an u32 */ d32 = stm32_cryp_read(cryp, CRYP_DOUT); d8 = (u8 *)&d32; for (j = 0; j < cryp->total_out - tag_size; j++) { *((u8 *)dst) = *(d8++); dst = stm32_cryp_next_out(cryp, dst, 1); } cryp->total_out = tag_size; } } return !(cryp->total_out - tag_size) || !cryp->total_in; } static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp) { unsigned int i, j; u32 *src; u8 d8[4]; size_t tag_size; /* Do no write tag (if any) */ if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp))) tag_size = cryp->authsize; else tag_size = 0; src = sg_virt(cryp->in_sg) + _walked_in; for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) { if (likely(cryp->total_in - tag_size >= sizeof(u32))) { /* Write a full u32 */ stm32_cryp_write(cryp, CRYP_DIN, *src); src = stm32_cryp_next_in(cryp, src, sizeof(u32)); cryp->total_in -= sizeof(u32); } else if (cryp->total_in == tag_size) { /* Write padding data */ stm32_cryp_write(cryp, CRYP_DIN, 0); } else { /* Write less than an u32 */ memset(d8, 0, sizeof(u32)); for (j = 0; j < cryp->total_in - tag_size; j++) { d8[j] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); } stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); cryp->total_in = tag_size; } } } static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp) { int err; u32 cfg, tmp[AES_BLOCK_32]; size_t total_in_ori = cryp->total_in; struct scatterlist *out_sg_ori = cryp->out_sg; unsigned int i; /* 'Special workaround' procedure described in the datasheet */ /* a) disable ip */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); /* b) Update IV1R */ stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2); /* c) change mode to CTR */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CTR; stm32_cryp_write(cryp, CRYP_CR, cfg); /* a) enable IP */ cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); /* b) pad and write the last block */ stm32_cryp_irq_write_block(cryp); cryp->total_in = total_in_ori; err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (write gcm header)\n"); return stm32_cryp_finish_req(cryp, err); } /* c) get and store encrypted data */ stm32_cryp_irq_read_data(cryp); scatterwalk_map_and_copy(tmp, out_sg_ori, cryp->total_in_save - total_in_ori, total_in_ori, 0); /* d) change mode back to AES GCM */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_GCM; stm32_cryp_write(cryp, CRYP_CR, cfg); /* e) change phase to Final */ cfg &= ~CR_PH_MASK; cfg |= CR_PH_FINAL; stm32_cryp_write(cryp, CRYP_CR, cfg); /* f) write padded data */ for (i = 0; i < AES_BLOCK_32; i++) { if (cryp->total_in) stm32_cryp_write(cryp, CRYP_DIN, tmp[i]); else stm32_cryp_write(cryp, CRYP_DIN, 0); cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in); } /* g) Empty fifo out */ err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (write gcm header)\n"); return stm32_cryp_finish_req(cryp, err); } for (i = 0; i < AES_BLOCK_32; i++) stm32_cryp_read(cryp, CRYP_DOUT); /* h) run the he normal Final phase */ stm32_cryp_finish_req(cryp, 0); } static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp) { u32 cfg, payload_bytes; /* disable ip, set NPBLB and reneable ip */ cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize : cryp->total_in; cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); } static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp) { int err = 0; u32 cfg, iv1tmp; u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32]; size_t last_total_out, total_in_ori = cryp->total_in; struct scatterlist *out_sg_ori = cryp->out_sg; unsigned int i; /* 'Special workaround' procedure described in the datasheet */ cryp->flags |= FLG_CCM_PADDED_WA; /* a) disable ip */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); /* b) get IV1 from CRYP_CSGCMCCM7 */ iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4); /* c) Load CRYP_CSGCMCCMxR */ for (i = 0; i < ARRAY_SIZE(cstmp1); i++) cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); /* d) Write IV1R */ stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp); /* e) change mode to CTR */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CTR; stm32_cryp_write(cryp, CRYP_CR, cfg); /* a) enable IP */ cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); /* b) pad and write the last block */ stm32_cryp_irq_write_block(cryp); cryp->total_in = total_in_ori; err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (wite ccm padded data)\n"); return stm32_cryp_finish_req(cryp, err); } /* c) get and store decrypted data */ last_total_out = cryp->total_out; stm32_cryp_irq_read_data(cryp); memset(tmp, 0, sizeof(tmp)); scatterwalk_map_and_copy(tmp, out_sg_ori, cryp->total_out_save - last_total_out, last_total_out, 0); /* d) Load again CRYP_CSGCMCCMxR */ for (i = 0; i < ARRAY_SIZE(cstmp2); i++) cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); /* e) change mode back to AES CCM */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CCM; stm32_cryp_write(cryp, CRYP_CR, cfg); /* f) change phase to header */ cfg &= ~CR_PH_MASK; cfg |= CR_PH_HEADER; stm32_cryp_write(cryp, CRYP_CR, cfg); /* g) XOR and write padded data */ for (i = 0; i < ARRAY_SIZE(tmp); i++) { tmp[i] ^= cstmp1[i]; tmp[i] ^= cstmp2[i]; stm32_cryp_write(cryp, CRYP_DIN, tmp[i]); } /* h) wait for completion */ err = stm32_cryp_wait_busy(cryp); if (err) dev_err(cryp->dev, "Timeout (wite ccm padded data)\n"); /* i) run the he normal Final phase */ stm32_cryp_finish_req(cryp, err); } static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp) { if (unlikely(!cryp->total_in)) { dev_warn(cryp->dev, "No more data to process\n"); return; } if (unlikely(cryp->total_in < AES_BLOCK_SIZE && (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) && is_encrypt(cryp))) { /* Padding for AES GCM encryption */ if (cryp->caps->padding_wa) /* Special case 1 */ return stm32_cryp_irq_write_gcm_padded_data(cryp); /* Setting padding bytes (NBBLB) */ stm32_cryp_irq_set_npblb(cryp); } if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) && (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) && is_decrypt(cryp))) { /* Padding for AES CCM decryption */ if (cryp->caps->padding_wa) /* Special case 2 */ return stm32_cryp_irq_write_ccm_padded_data(cryp); /* Setting padding bytes (NBBLB) */ stm32_cryp_irq_set_npblb(cryp); } if (is_aes(cryp) && is_ctr(cryp)) stm32_cryp_check_ctr_counter(cryp); stm32_cryp_irq_write_block(cryp); } static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp) { int err; unsigned int i, j; u32 cfg, *src; src = sg_virt(cryp->in_sg) + _walked_in; for (i = 0; i < AES_BLOCK_32; i++) { stm32_cryp_write(cryp, CRYP_DIN, *src); src = stm32_cryp_next_in(cryp, src, sizeof(u32)); cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in); /* Check if whole header written */ if ((cryp->total_in_save - cryp->total_in) == cryp->areq->assoclen) { /* Write padding if needed */ for (j = i + 1; j < AES_BLOCK_32; j++) stm32_cryp_write(cryp, CRYP_DIN, 0); /* Wait for completion */ err = stm32_cryp_wait_busy(cryp); if (err) { dev_err(cryp->dev, "Timeout (gcm header)\n"); return stm32_cryp_finish_req(cryp, err); } if (stm32_cryp_get_input_text_len(cryp)) { /* Phase 3 : payload */ cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); cfg &= ~CR_PH_MASK; cfg |= CR_PH_PAYLOAD; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); } else { /* Phase 4 : tag */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); stm32_cryp_finish_req(cryp, 0); } break; } if (!cryp->total_in) break; } } static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp) { int err; unsigned int i = 0, j, k; u32 alen, cfg, *src; u8 d8[4]; src = sg_virt(cryp->in_sg) + _walked_in; alen = cryp->areq->assoclen; if (!_walked_in) { if (cryp->areq->assoclen <= 65280) { /* Write first u32 of B1 */ d8[0] = (alen >> 8) & 0xFF; d8[1] = alen & 0xFF; d8[2] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); d8[3] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); i++; cryp->total_in -= min_t(size_t, 2, cryp->total_in); } else { /* Build the two first u32 of B1 */ d8[0] = 0xFF; d8[1] = 0xFE; d8[2] = alen & 0xFF000000; d8[3] = alen & 0x00FF0000; stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); i++; d8[0] = alen & 0x0000FF00; d8[1] = alen & 0x000000FF; d8[2] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); d8[3] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); i++; cryp->total_in -= min_t(size_t, 2, cryp->total_in); } } /* Write next u32 */ for (; i < AES_BLOCK_32; i++) { /* Build an u32 */ memset(d8, 0, sizeof(u32)); for (k = 0; k < sizeof(u32); k++) { d8[k] = *((u8 *)src); src = stm32_cryp_next_in(cryp, src, 1); cryp->total_in -= min_t(size_t, 1, cryp->total_in); if ((cryp->total_in_save - cryp->total_in) == alen) break; } stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); if ((cryp->total_in_save - cryp->total_in) == alen) { /* Write padding if needed */ for (j = i + 1; j < AES_BLOCK_32; j++) stm32_cryp_write(cryp, CRYP_DIN, 0); /* Wait for completion */ err = stm32_cryp_wait_busy(cryp); if (err) { dev_err(cryp->dev, "Timeout (ccm header)\n"); return stm32_cryp_finish_req(cryp, err); } if (stm32_cryp_get_input_text_len(cryp)) { /* Phase 3 : payload */ cfg = stm32_cryp_read(cryp, CRYP_CR); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); cfg &= ~CR_PH_MASK; cfg |= CR_PH_PAYLOAD; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, CRYP_CR, cfg); } else { /* Phase 4 : tag */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); stm32_cryp_finish_req(cryp, 0); } break; } } } static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg) { struct stm32_cryp *cryp = arg; u32 ph; if (cryp->irq_status & MISR_OUT) /* Output FIFO IRQ: read data */ if (unlikely(stm32_cryp_irq_read_data(cryp))) { /* All bytes processed, finish */ stm32_cryp_write(cryp, CRYP_IMSCR, 0); stm32_cryp_finish_req(cryp, 0); return IRQ_HANDLED; } if (cryp->irq_status & MISR_IN) { if (is_gcm(cryp)) { ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK; if (unlikely(ph == CR_PH_HEADER)) /* Write Header */ stm32_cryp_irq_write_gcm_header(cryp); else /* Input FIFO IRQ: write data */ stm32_cryp_irq_write_data(cryp); cryp->gcm_ctr++; } else if (is_ccm(cryp)) { ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK; if (unlikely(ph == CR_PH_HEADER)) /* Write Header */ stm32_cryp_irq_write_ccm_header(cryp); else /* Input FIFO IRQ: write data */ stm32_cryp_irq_write_data(cryp); } else { /* Input FIFO IRQ: write data */ stm32_cryp_irq_write_data(cryp); } } return IRQ_HANDLED; } static irqreturn_t stm32_cryp_irq(int irq, void *arg) { struct stm32_cryp *cryp = arg; cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR); return IRQ_WAKE_THREAD; } static struct crypto_alg crypto_algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "stm32-ecb-aes", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_ecb_encrypt, .decrypt = stm32_cryp_aes_ecb_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "stm32-cbc-aes", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_cbc_encrypt, .decrypt = stm32_cryp_aes_cbc_decrypt, } }, { .cra_name = "ctr(aes)", .cra_driver_name = "stm32-ctr-aes", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_ctr_encrypt, .decrypt = stm32_cryp_aes_ctr_decrypt, } }, { .cra_name = "ecb(des)", .cra_driver_name = "stm32-ecb-des", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = DES_BLOCK_SIZE, .max_keysize = DES_BLOCK_SIZE, .setkey = stm32_cryp_des_setkey, .encrypt = stm32_cryp_des_ecb_encrypt, .decrypt = stm32_cryp_des_ecb_decrypt, } }, { .cra_name = "cbc(des)", .cra_driver_name = "stm32-cbc-des", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = DES_BLOCK_SIZE, .max_keysize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = stm32_cryp_des_setkey, .encrypt = stm32_cryp_des_cbc_encrypt, .decrypt = stm32_cryp_des_cbc_decrypt, } }, { .cra_name = "ecb(des3_ede)", .cra_driver_name = "stm32-ecb-des3", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = 3 * DES_BLOCK_SIZE, .max_keysize = 3 * DES_BLOCK_SIZE, .setkey = stm32_cryp_tdes_setkey, .encrypt = stm32_cryp_tdes_ecb_encrypt, .decrypt = stm32_cryp_tdes_ecb_decrypt, } }, { .cra_name = "cbc(des3_ede)", .cra_driver_name = "stm32-cbc-des3", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = stm32_cryp_cra_init, .cra_ablkcipher = { .min_keysize = 3 * DES_BLOCK_SIZE, .max_keysize = 3 * DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = stm32_cryp_tdes_setkey, .encrypt = stm32_cryp_tdes_cbc_encrypt, .decrypt = stm32_cryp_tdes_cbc_decrypt, } }, }; static struct aead_alg aead_algs[] = { { .setkey = stm32_cryp_aes_aead_setkey, .setauthsize = stm32_cryp_aes_gcm_setauthsize, .encrypt = stm32_cryp_aes_gcm_encrypt, .decrypt = stm32_cryp_aes_gcm_decrypt, .init = stm32_cryp_aes_aead_init, .ivsize = 12, .maxauthsize = AES_BLOCK_SIZE, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "stm32-gcm-aes", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, }, { .setkey = stm32_cryp_aes_aead_setkey, .setauthsize = stm32_cryp_aes_ccm_setauthsize, .encrypt = stm32_cryp_aes_ccm_encrypt, .decrypt = stm32_cryp_aes_ccm_decrypt, .init = stm32_cryp_aes_aead_init, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .base = { .cra_name = "ccm(aes)", .cra_driver_name = "stm32-ccm-aes", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, }, }; static const struct stm32_cryp_caps f7_data = { .swap_final = true, .padding_wa = true, }; static const struct stm32_cryp_caps mp1_data = { .swap_final = false, .padding_wa = false, }; static const struct of_device_id stm32_dt_ids[] = { { .compatible = "st,stm32f756-cryp", .data = &f7_data}, { .compatible = "st,stm32mp1-cryp", .data = &mp1_data}, {}, }; MODULE_DEVICE_TABLE(of, stm32_dt_ids); static int stm32_cryp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_cryp *cryp; struct resource *res; struct reset_control *rst; int irq, ret; cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL); if (!cryp) return -ENOMEM; cryp->caps = of_device_get_match_data(dev); if (!cryp->caps) return -ENODEV; cryp->dev = dev; mutex_init(&cryp->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); cryp->regs = devm_ioremap_resource(dev, res); if (IS_ERR(cryp->regs)) return PTR_ERR(cryp->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "Cannot get IRQ resource\n"); return irq; } ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq, stm32_cryp_irq_thread, IRQF_ONESHOT, dev_name(dev), cryp); if (ret) { dev_err(dev, "Cannot grab IRQ\n"); return ret; } cryp->clk = devm_clk_get(dev, NULL); if (IS_ERR(cryp->clk)) { dev_err(dev, "Could not get clock\n"); return PTR_ERR(cryp->clk); } ret = clk_prepare_enable(cryp->clk); if (ret) { dev_err(cryp->dev, "Failed to enable clock\n"); return ret; } pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); rst = devm_reset_control_get(dev, NULL); if (!IS_ERR(rst)) { reset_control_assert(rst); udelay(2); reset_control_deassert(rst); } platform_set_drvdata(pdev, cryp); spin_lock(&cryp_list.lock); list_add(&cryp->list, &cryp_list.dev_list); spin_unlock(&cryp_list.lock); /* Initialize crypto engine */ cryp->engine = crypto_engine_alloc_init(dev, 1); if (!cryp->engine) { dev_err(dev, "Could not init crypto engine\n"); ret = -ENOMEM; goto err_engine1; } ret = crypto_engine_start(cryp->engine); if (ret) { dev_err(dev, "Could not start crypto engine\n"); goto err_engine2; } ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs)); if (ret) { dev_err(dev, "Could not register algs\n"); goto err_algs; } ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs)); if (ret) goto err_aead_algs; dev_info(dev, "Initialized\n"); pm_runtime_put_sync(dev); return 0; err_aead_algs: crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs)); err_algs: err_engine2: crypto_engine_exit(cryp->engine); err_engine1: spin_lock(&cryp_list.lock); list_del(&cryp->list); spin_unlock(&cryp_list.lock); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); clk_disable_unprepare(cryp->clk); return ret; } static int stm32_cryp_remove(struct platform_device *pdev) { struct stm32_cryp *cryp = platform_get_drvdata(pdev); int ret; if (!cryp) return -ENODEV; ret = pm_runtime_get_sync(cryp->dev); if (ret < 0) return ret; crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs)); crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs)); crypto_engine_exit(cryp->engine); spin_lock(&cryp_list.lock); list_del(&cryp->list); spin_unlock(&cryp_list.lock); pm_runtime_disable(cryp->dev); pm_runtime_put_noidle(cryp->dev); clk_disable_unprepare(cryp->clk); return 0; } #ifdef CONFIG_PM static int stm32_cryp_runtime_suspend(struct device *dev) { struct stm32_cryp *cryp = dev_get_drvdata(dev); clk_disable_unprepare(cryp->clk); return 0; } static int stm32_cryp_runtime_resume(struct device *dev) { struct stm32_cryp *cryp = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(cryp->clk); if (ret) { dev_err(cryp->dev, "Failed to prepare_enable clock\n"); return ret; } return 0; } #endif static const struct dev_pm_ops stm32_cryp_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend, stm32_cryp_runtime_resume, NULL) }; static struct platform_driver stm32_cryp_driver = { .probe = stm32_cryp_probe, .remove = stm32_cryp_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_cryp_pm_ops, .of_match_table = stm32_dt_ids, }, }; module_platform_driver(stm32_cryp_driver); MODULE_AUTHOR("Fabien Dessenne "); MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver"); MODULE_LICENSE("GPL");