/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include #include "radeon.h" #include "avivod.h" #include "atom.h" #include #include #include #define RADEON_IDLE_LOOP_MS 100 #define RADEON_RECLOCK_DELAY_MS 200 #define RADEON_WAIT_VBLANK_TIMEOUT 200 static const char *radeon_pm_state_type_name[5] = { "", "Powersave", "Battery", "Balanced", "Performance", }; static void radeon_dynpm_idle_work_handler(struct work_struct *work); static int radeon_debugfs_pm_init(struct radeon_device *rdev); static bool radeon_pm_in_vbl(struct radeon_device *rdev); static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish); static void radeon_pm_update_profile(struct radeon_device *rdev); static void radeon_pm_set_clocks(struct radeon_device *rdev); int radeon_pm_get_type_index(struct radeon_device *rdev, enum radeon_pm_state_type ps_type, int instance) { int i; int found_instance = -1; for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == ps_type) { found_instance++; if (found_instance == instance) return i; } } /* return default if no match */ return rdev->pm.default_power_state_index; } void radeon_pm_acpi_event_handler(struct radeon_device *rdev) { if (rdev->pm.pm_method == PM_METHOD_PROFILE) { if (rdev->pm.profile == PM_PROFILE_AUTO) { mutex_lock(&rdev->pm.mutex); radeon_pm_update_profile(rdev); radeon_pm_set_clocks(rdev); mutex_unlock(&rdev->pm.mutex); } } } static void radeon_pm_update_profile(struct radeon_device *rdev) { switch (rdev->pm.profile) { case PM_PROFILE_DEFAULT: rdev->pm.profile_index = PM_PROFILE_DEFAULT_IDX; break; case PM_PROFILE_AUTO: if (power_supply_is_system_supplied() > 0) { if (rdev->pm.active_crtc_count > 1) rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX; else rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX; } else { if (rdev->pm.active_crtc_count > 1) rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX; else rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX; } break; case PM_PROFILE_LOW: if (rdev->pm.active_crtc_count > 1) rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX; else rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX; break; case PM_PROFILE_MID: if (rdev->pm.active_crtc_count > 1) rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX; else rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX; break; case PM_PROFILE_HIGH: if (rdev->pm.active_crtc_count > 1) rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX; else rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX; break; } if (rdev->pm.active_crtc_count == 0) { rdev->pm.requested_power_state_index = rdev->pm.profiles[rdev->pm.profile_index].dpms_off_ps_idx; rdev->pm.requested_clock_mode_index = rdev->pm.profiles[rdev->pm.profile_index].dpms_off_cm_idx; } else { rdev->pm.requested_power_state_index = rdev->pm.profiles[rdev->pm.profile_index].dpms_on_ps_idx; rdev->pm.requested_clock_mode_index = rdev->pm.profiles[rdev->pm.profile_index].dpms_on_cm_idx; } } static void radeon_unmap_vram_bos(struct radeon_device *rdev) { struct radeon_bo *bo, *n; if (list_empty(&rdev->gem.objects)) return; list_for_each_entry_safe(bo, n, &rdev->gem.objects, list) { if (bo->tbo.mem.mem_type == TTM_PL_VRAM) ttm_bo_unmap_virtual(&bo->tbo); } } static void radeon_sync_with_vblank(struct radeon_device *rdev) { if (rdev->pm.active_crtcs) { rdev->pm.vblank_sync = false; wait_event_timeout( rdev->irq.vblank_queue, rdev->pm.vblank_sync, msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT)); } } static void radeon_set_power_state(struct radeon_device *rdev) { u32 sclk, mclk; bool misc_after = false; if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) && (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index)) return; if (radeon_gui_idle(rdev)) { sclk = rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].sclk; if (sclk > rdev->pm.default_sclk) sclk = rdev->pm.default_sclk; /* starting with BTC, there is one state that is used for both * MH and SH. Difference is that we always use the high clock index for * mclk and vddci. */ if ((rdev->pm.pm_method == PM_METHOD_PROFILE) && (rdev->family >= CHIP_BARTS) && rdev->pm.active_crtc_count && ((rdev->pm.profile_index == PM_PROFILE_MID_MH_IDX) || (rdev->pm.profile_index == PM_PROFILE_LOW_MH_IDX))) mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx].mclk; else mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].mclk; if (mclk > rdev->pm.default_mclk) mclk = rdev->pm.default_mclk; /* upvolt before raising clocks, downvolt after lowering clocks */ if (sclk < rdev->pm.current_sclk) misc_after = true; radeon_sync_with_vblank(rdev); if (rdev->pm.pm_method == PM_METHOD_DYNPM) { if (!radeon_pm_in_vbl(rdev)) return; } radeon_pm_prepare(rdev); if (!misc_after) /* voltage, pcie lanes, etc.*/ radeon_pm_misc(rdev); /* set engine clock */ if (sclk != rdev->pm.current_sclk) { radeon_pm_debug_check_in_vbl(rdev, false); radeon_set_engine_clock(rdev, sclk); radeon_pm_debug_check_in_vbl(rdev, true); rdev->pm.current_sclk = sclk; DRM_DEBUG_DRIVER("Setting: e: %d\n", sclk); } /* set memory clock */ if (rdev->asic->pm.set_memory_clock && (mclk != rdev->pm.current_mclk)) { radeon_pm_debug_check_in_vbl(rdev, false); radeon_set_memory_clock(rdev, mclk); radeon_pm_debug_check_in_vbl(rdev, true); rdev->pm.current_mclk = mclk; DRM_DEBUG_DRIVER("Setting: m: %d\n", mclk); } if (misc_after) /* voltage, pcie lanes, etc.*/ radeon_pm_misc(rdev); radeon_pm_finish(rdev); rdev->pm.current_power_state_index = rdev->pm.requested_power_state_index; rdev->pm.current_clock_mode_index = rdev->pm.requested_clock_mode_index; } else DRM_DEBUG_DRIVER("pm: GUI not idle!!!\n"); } static void radeon_pm_set_clocks(struct radeon_device *rdev) { int i, r; /* no need to take locks, etc. if nothing's going to change */ if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) && (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index)) return; mutex_lock(&rdev->ddev->struct_mutex); down_write(&rdev->pm.mclk_lock); mutex_lock(&rdev->ring_lock); /* wait for the rings to drain */ for (i = 0; i < RADEON_NUM_RINGS; i++) { struct radeon_ring *ring = &rdev->ring[i]; if (!ring->ready) { continue; } r = radeon_fence_wait_empty_locked(rdev, i); if (r) { /* needs a GPU reset dont reset here */ mutex_unlock(&rdev->ring_lock); up_write(&rdev->pm.mclk_lock); mutex_unlock(&rdev->ddev->struct_mutex); return; } } radeon_unmap_vram_bos(rdev); if (rdev->irq.installed) { for (i = 0; i < rdev->num_crtc; i++) { if (rdev->pm.active_crtcs & (1 << i)) { rdev->pm.req_vblank |= (1 << i); drm_vblank_get(rdev->ddev, i); } } } radeon_set_power_state(rdev); if (rdev->irq.installed) { for (i = 0; i < rdev->num_crtc; i++) { if (rdev->pm.req_vblank & (1 << i)) { rdev->pm.req_vblank &= ~(1 << i); drm_vblank_put(rdev->ddev, i); } } } /* update display watermarks based on new power state */ radeon_update_bandwidth_info(rdev); if (rdev->pm.active_crtc_count) radeon_bandwidth_update(rdev); rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE; mutex_unlock(&rdev->ring_lock); up_write(&rdev->pm.mclk_lock); mutex_unlock(&rdev->ddev->struct_mutex); } static void radeon_pm_print_states(struct radeon_device *rdev) { int i, j; struct radeon_power_state *power_state; struct radeon_pm_clock_info *clock_info; DRM_DEBUG_DRIVER("%d Power State(s)\n", rdev->pm.num_power_states); for (i = 0; i < rdev->pm.num_power_states; i++) { power_state = &rdev->pm.power_state[i]; DRM_DEBUG_DRIVER("State %d: %s\n", i, radeon_pm_state_type_name[power_state->type]); if (i == rdev->pm.default_power_state_index) DRM_DEBUG_DRIVER("\tDefault"); if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP)) DRM_DEBUG_DRIVER("\t%d PCIE Lanes\n", power_state->pcie_lanes); if (power_state->flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) DRM_DEBUG_DRIVER("\tSingle display only\n"); DRM_DEBUG_DRIVER("\t%d Clock Mode(s)\n", power_state->num_clock_modes); for (j = 0; j < power_state->num_clock_modes; j++) { clock_info = &(power_state->clock_info[j]); if (rdev->flags & RADEON_IS_IGP) DRM_DEBUG_DRIVER("\t\t%d e: %d\n", j, clock_info->sclk * 10); else DRM_DEBUG_DRIVER("\t\t%d e: %d\tm: %d\tv: %d\n", j, clock_info->sclk * 10, clock_info->mclk * 10, clock_info->voltage.voltage); } } } static ssize_t radeon_get_pm_profile(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; int cp = rdev->pm.profile; return snprintf(buf, PAGE_SIZE, "%s\n", (cp == PM_PROFILE_AUTO) ? "auto" : (cp == PM_PROFILE_LOW) ? "low" : (cp == PM_PROFILE_MID) ? "mid" : (cp == PM_PROFILE_HIGH) ? "high" : "default"); } static ssize_t radeon_set_pm_profile(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; mutex_lock(&rdev->pm.mutex); if (rdev->pm.pm_method == PM_METHOD_PROFILE) { if (strncmp("default", buf, strlen("default")) == 0) rdev->pm.profile = PM_PROFILE_DEFAULT; else if (strncmp("auto", buf, strlen("auto")) == 0) rdev->pm.profile = PM_PROFILE_AUTO; else if (strncmp("low", buf, strlen("low")) == 0) rdev->pm.profile = PM_PROFILE_LOW; else if (strncmp("mid", buf, strlen("mid")) == 0) rdev->pm.profile = PM_PROFILE_MID; else if (strncmp("high", buf, strlen("high")) == 0) rdev->pm.profile = PM_PROFILE_HIGH; else { count = -EINVAL; goto fail; } radeon_pm_update_profile(rdev); radeon_pm_set_clocks(rdev); } else count = -EINVAL; fail: mutex_unlock(&rdev->pm.mutex); return count; } static ssize_t radeon_get_pm_method(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; int pm = rdev->pm.pm_method; return snprintf(buf, PAGE_SIZE, "%s\n", (pm == PM_METHOD_DYNPM) ? "dynpm" : (pm == PM_METHOD_PROFILE) ? "profile" : "dpm"); } static ssize_t radeon_set_pm_method(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; /* we don't support the legacy modes with dpm */ if (rdev->pm.pm_method == PM_METHOD_DPM) { count = -EINVAL; goto fail; } if (strncmp("dynpm", buf, strlen("dynpm")) == 0) { mutex_lock(&rdev->pm.mutex); rdev->pm.pm_method = PM_METHOD_DYNPM; rdev->pm.dynpm_state = DYNPM_STATE_PAUSED; rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT; mutex_unlock(&rdev->pm.mutex); } else if (strncmp("profile", buf, strlen("profile")) == 0) { mutex_lock(&rdev->pm.mutex); /* disable dynpm */ rdev->pm.dynpm_state = DYNPM_STATE_DISABLED; rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE; rdev->pm.pm_method = PM_METHOD_PROFILE; mutex_unlock(&rdev->pm.mutex); cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work); } else { count = -EINVAL; goto fail; } radeon_pm_compute_clocks(rdev); fail: return count; } static ssize_t radeon_get_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; enum radeon_pm_state_type pm = rdev->pm.dpm.user_state; return snprintf(buf, PAGE_SIZE, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t radeon_set_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; mutex_lock(&rdev->pm.mutex); if (strncmp("battery", buf, strlen("battery")) == 0) rdev->pm.dpm.user_state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) rdev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) rdev->pm.dpm.user_state = POWER_STATE_TYPE_PERFORMANCE; else { mutex_unlock(&rdev->pm.mutex); count = -EINVAL; goto fail; } mutex_unlock(&rdev->pm.mutex); radeon_pm_compute_clocks(rdev); fail: return count; } static DEVICE_ATTR(power_profile, S_IRUGO | S_IWUSR, radeon_get_pm_profile, radeon_set_pm_profile); static DEVICE_ATTR(power_method, S_IRUGO | S_IWUSR, radeon_get_pm_method, radeon_set_pm_method); static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, radeon_get_dpm_state, radeon_set_dpm_state); static ssize_t radeon_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; int temp; if (rdev->asic->pm.get_temperature) temp = radeon_get_temperature(rdev); else temp = 0; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t radeon_hwmon_show_name(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "radeon\n"); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, radeon_hwmon_show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(name, S_IRUGO, radeon_hwmon_show_name, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_name.dev_attr.attr, NULL }; static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, }; static int radeon_hwmon_init(struct radeon_device *rdev) { int err = 0; rdev->pm.int_hwmon_dev = NULL; switch (rdev->pm.int_thermal_type) { case THERMAL_TYPE_RV6XX: case THERMAL_TYPE_RV770: case THERMAL_TYPE_EVERGREEN: case THERMAL_TYPE_NI: case THERMAL_TYPE_SUMO: case THERMAL_TYPE_SI: if (rdev->asic->pm.get_temperature == NULL) return err; rdev->pm.int_hwmon_dev = hwmon_device_register(rdev->dev); if (IS_ERR(rdev->pm.int_hwmon_dev)) { err = PTR_ERR(rdev->pm.int_hwmon_dev); dev_err(rdev->dev, "Unable to register hwmon device: %d\n", err); break; } dev_set_drvdata(rdev->pm.int_hwmon_dev, rdev->ddev); err = sysfs_create_group(&rdev->pm.int_hwmon_dev->kobj, &hwmon_attrgroup); if (err) { dev_err(rdev->dev, "Unable to create hwmon sysfs file: %d\n", err); hwmon_device_unregister(rdev->dev); } break; default: break; } return err; } static void radeon_hwmon_fini(struct radeon_device *rdev) { if (rdev->pm.int_hwmon_dev) { sysfs_remove_group(&rdev->pm.int_hwmon_dev->kobj, &hwmon_attrgroup); hwmon_device_unregister(rdev->pm.int_hwmon_dev); } } static void radeon_dpm_thermal_work_handler(struct work_struct *work) { struct radeon_device *rdev = container_of(work, struct radeon_device, pm.dpm.thermal.work); /* switch to the thermal state */ enum radeon_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL; if (!rdev->pm.dpm_enabled) return; if (rdev->asic->pm.get_temperature) { int temp = radeon_get_temperature(rdev); if (temp < rdev->pm.dpm.thermal.min_temp) /* switch back the user state */ dpm_state = rdev->pm.dpm.user_state; } else { if (rdev->pm.dpm.thermal.high_to_low) /* switch back the user state */ dpm_state = rdev->pm.dpm.user_state; } radeon_dpm_enable_power_state(rdev, dpm_state); } static struct radeon_ps *radeon_dpm_pick_power_state(struct radeon_device *rdev, enum radeon_pm_state_type dpm_state) { int i; struct radeon_ps *ps; u32 ui_class; restart_search: /* balanced states don't exist at the moment */ if (dpm_state == POWER_STATE_TYPE_BALANCED) dpm_state = POWER_STATE_TYPE_PERFORMANCE; /* Pick the best power state based on current conditions */ for (i = 0; i < rdev->pm.dpm.num_ps; i++) { ps = &rdev->pm.dpm.ps[i]; ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK; switch (dpm_state) { /* user states */ case POWER_STATE_TYPE_BATTERY: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (rdev->pm.dpm.new_active_crtc_count < 2) return ps; } else return ps; } break; case POWER_STATE_TYPE_BALANCED: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (rdev->pm.dpm.new_active_crtc_count < 2) return ps; } else return ps; } break; case POWER_STATE_TYPE_PERFORMANCE: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (rdev->pm.dpm.new_active_crtc_count < 2) return ps; } else return ps; } break; /* internal states */ case POWER_STATE_TYPE_INTERNAL_UVD: return rdev->pm.dpm.uvd_ps; case POWER_STATE_TYPE_INTERNAL_UVD_SD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD2: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return ps; break; case POWER_STATE_TYPE_INTERNAL_BOOT: return rdev->pm.dpm.boot_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return ps; break; case POWER_STATE_TYPE_INTERNAL_ACPI: if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) return ps; break; case POWER_STATE_TYPE_INTERNAL_ULV: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) return ps; break; default: break; } } /* use a fallback state if we didn't match */ switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_UVD_SD: case POWER_STATE_TYPE_INTERNAL_UVD_HD: case POWER_STATE_TYPE_INTERNAL_UVD_HD2: case POWER_STATE_TYPE_INTERNAL_UVD_MVC: return rdev->pm.dpm.uvd_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI; goto restart_search; case POWER_STATE_TYPE_INTERNAL_ACPI: dpm_state = POWER_STATE_TYPE_BATTERY; goto restart_search; case POWER_STATE_TYPE_BATTERY: dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; default: break; } return NULL; } static void radeon_dpm_change_power_state_locked(struct radeon_device *rdev) { int i; struct radeon_ps *ps; enum radeon_pm_state_type dpm_state; /* if dpm init failed */ if (!rdev->pm.dpm_enabled) return; if (rdev->pm.dpm.user_state != rdev->pm.dpm.state) { /* add other state override checks here */ if (!rdev->pm.dpm.thermal_active) rdev->pm.dpm.state = rdev->pm.dpm.user_state; } dpm_state = rdev->pm.dpm.state; ps = radeon_dpm_pick_power_state(rdev, dpm_state); if (ps) rdev->pm.dpm.requested_ps = ps; else return; /* no need to reprogram if nothing changed */ if (rdev->pm.dpm.current_ps == rdev->pm.dpm.requested_ps) { /* update display watermarks based on new power state */ if (rdev->pm.dpm.new_active_crtcs != rdev->pm.dpm.current_active_crtcs) { radeon_bandwidth_update(rdev); /* update displays */ radeon_dpm_display_configuration_changed(rdev); rdev->pm.dpm.current_active_crtcs = rdev->pm.dpm.new_active_crtcs; rdev->pm.dpm.current_active_crtc_count = rdev->pm.dpm.new_active_crtc_count; } return; } printk("switching from power state:\n"); radeon_dpm_print_power_state(rdev, rdev->pm.dpm.current_ps); printk("switching to power state:\n"); radeon_dpm_print_power_state(rdev, rdev->pm.dpm.requested_ps); mutex_lock(&rdev->ddev->struct_mutex); down_write(&rdev->pm.mclk_lock); mutex_lock(&rdev->ring_lock); /* update display watermarks based on new power state */ radeon_bandwidth_update(rdev); /* update displays */ radeon_dpm_display_configuration_changed(rdev); rdev->pm.dpm.current_active_crtcs = rdev->pm.dpm.new_active_crtcs; rdev->pm.dpm.current_active_crtc_count = rdev->pm.dpm.new_active_crtc_count; /* wait for the rings to drain */ for (i = 0; i < RADEON_NUM_RINGS; i++) { struct radeon_ring *ring = &rdev->ring[i]; if (ring->ready) radeon_fence_wait_empty_locked(rdev, i); } /* program the new power state */ radeon_dpm_set_power_state(rdev); /* update current power state */ rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps; mutex_unlock(&rdev->ring_lock); up_write(&rdev->pm.mclk_lock); mutex_unlock(&rdev->ddev->struct_mutex); } void radeon_dpm_enable_power_state(struct radeon_device *rdev, enum radeon_pm_state_type dpm_state) { if (!rdev->pm.dpm_enabled) return; mutex_lock(&rdev->pm.mutex); switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_THERMAL: rdev->pm.dpm.thermal_active = true; break; default: rdev->pm.dpm.thermal_active = false; break; } rdev->pm.dpm.state = dpm_state; mutex_unlock(&rdev->pm.mutex); radeon_pm_compute_clocks(rdev); } static void radeon_pm_suspend_old(struct radeon_device *rdev) { mutex_lock(&rdev->pm.mutex); if (rdev->pm.pm_method == PM_METHOD_DYNPM) { if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) rdev->pm.dynpm_state = DYNPM_STATE_SUSPENDED; } mutex_unlock(&rdev->pm.mutex); cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work); } static void radeon_pm_suspend_dpm(struct radeon_device *rdev) { mutex_lock(&rdev->pm.mutex); /* disable dpm */ radeon_dpm_disable(rdev); /* reset the power state */ rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps; rdev->pm.dpm_enabled = false; mutex_unlock(&rdev->pm.mutex); } void radeon_pm_suspend(struct radeon_device *rdev) { if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_suspend_dpm(rdev); else radeon_pm_suspend_old(rdev); } static void radeon_pm_resume_old(struct radeon_device *rdev) { /* set up the default clocks if the MC ucode is loaded */ if ((rdev->family >= CHIP_BARTS) && (rdev->family <= CHIP_CAYMAN) && rdev->mc_fw) { if (rdev->pm.default_vddc) radeon_atom_set_voltage(rdev, rdev->pm.default_vddc, SET_VOLTAGE_TYPE_ASIC_VDDC); if (rdev->pm.default_vddci) radeon_atom_set_voltage(rdev, rdev->pm.default_vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI); if (rdev->pm.default_sclk) radeon_set_engine_clock(rdev, rdev->pm.default_sclk); if (rdev->pm.default_mclk) radeon_set_memory_clock(rdev, rdev->pm.default_mclk); } /* asic init will reset the default power state */ mutex_lock(&rdev->pm.mutex); rdev->pm.current_power_state_index = rdev->pm.default_power_state_index; rdev->pm.current_clock_mode_index = 0; rdev->pm.current_sclk = rdev->pm.default_sclk; rdev->pm.current_mclk = rdev->pm.default_mclk; rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage; rdev->pm.current_vddci = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.vddci; if (rdev->pm.pm_method == PM_METHOD_DYNPM && rdev->pm.dynpm_state == DYNPM_STATE_SUSPENDED) { rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE; schedule_delayed_work(&rdev->pm.dynpm_idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } mutex_unlock(&rdev->pm.mutex); radeon_pm_compute_clocks(rdev); } static void radeon_pm_resume_dpm(struct radeon_device *rdev) { int ret; /* asic init will reset to the boot state */ mutex_lock(&rdev->pm.mutex); rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps; radeon_dpm_setup_asic(rdev); ret = radeon_dpm_enable(rdev); mutex_unlock(&rdev->pm.mutex); if (ret) { DRM_ERROR("radeon: dpm resume failed\n"); if ((rdev->family >= CHIP_BARTS) && (rdev->family <= CHIP_CAYMAN) && rdev->mc_fw) { if (rdev->pm.default_vddc) radeon_atom_set_voltage(rdev, rdev->pm.default_vddc, SET_VOLTAGE_TYPE_ASIC_VDDC); if (rdev->pm.default_vddci) radeon_atom_set_voltage(rdev, rdev->pm.default_vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI); if (rdev->pm.default_sclk) radeon_set_engine_clock(rdev, rdev->pm.default_sclk); if (rdev->pm.default_mclk) radeon_set_memory_clock(rdev, rdev->pm.default_mclk); } } else { rdev->pm.dpm_enabled = true; radeon_pm_compute_clocks(rdev); } } void radeon_pm_resume(struct radeon_device *rdev) { if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_resume_dpm(rdev); else radeon_pm_resume_old(rdev); } static int radeon_pm_init_old(struct radeon_device *rdev) { int ret; rdev->pm.profile = PM_PROFILE_DEFAULT; rdev->pm.dynpm_state = DYNPM_STATE_DISABLED; rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE; rdev->pm.dynpm_can_upclock = true; rdev->pm.dynpm_can_downclock = true; rdev->pm.default_sclk = rdev->clock.default_sclk; rdev->pm.default_mclk = rdev->clock.default_mclk; rdev->pm.current_sclk = rdev->clock.default_sclk; rdev->pm.current_mclk = rdev->clock.default_mclk; rdev->pm.int_thermal_type = THERMAL_TYPE_NONE; if (rdev->bios) { if (rdev->is_atom_bios) radeon_atombios_get_power_modes(rdev); else radeon_combios_get_power_modes(rdev); radeon_pm_print_states(rdev); radeon_pm_init_profile(rdev); /* set up the default clocks if the MC ucode is loaded */ if ((rdev->family >= CHIP_BARTS) && (rdev->family <= CHIP_CAYMAN) && rdev->mc_fw) { if (rdev->pm.default_vddc) radeon_atom_set_voltage(rdev, rdev->pm.default_vddc, SET_VOLTAGE_TYPE_ASIC_VDDC); if (rdev->pm.default_vddci) radeon_atom_set_voltage(rdev, rdev->pm.default_vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI); if (rdev->pm.default_sclk) radeon_set_engine_clock(rdev, rdev->pm.default_sclk); if (rdev->pm.default_mclk) radeon_set_memory_clock(rdev, rdev->pm.default_mclk); } } /* set up the internal thermal sensor if applicable */ ret = radeon_hwmon_init(rdev); if (ret) return ret; INIT_DELAYED_WORK(&rdev->pm.dynpm_idle_work, radeon_dynpm_idle_work_handler); if (rdev->pm.num_power_states > 1) { /* where's the best place to put these? */ ret = device_create_file(rdev->dev, &dev_attr_power_profile); if (ret) DRM_ERROR("failed to create device file for power profile\n"); ret = device_create_file(rdev->dev, &dev_attr_power_method); if (ret) DRM_ERROR("failed to create device file for power method\n"); if (radeon_debugfs_pm_init(rdev)) { DRM_ERROR("Failed to register debugfs file for PM!\n"); } DRM_INFO("radeon: power management initialized\n"); } return 0; } static void radeon_dpm_print_power_states(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { printk("== power state %d ==\n", i); radeon_dpm_print_power_state(rdev, &rdev->pm.dpm.ps[i]); } } static int radeon_pm_init_dpm(struct radeon_device *rdev) { int ret; /* default to performance state */ rdev->pm.dpm.state = POWER_STATE_TYPE_PERFORMANCE; rdev->pm.dpm.user_state = POWER_STATE_TYPE_PERFORMANCE; rdev->pm.default_sclk = rdev->clock.default_sclk; rdev->pm.default_mclk = rdev->clock.default_mclk; rdev->pm.current_sclk = rdev->clock.default_sclk; rdev->pm.current_mclk = rdev->clock.default_mclk; rdev->pm.int_thermal_type = THERMAL_TYPE_NONE; if (rdev->bios && rdev->is_atom_bios) radeon_atombios_get_power_modes(rdev); else return -EINVAL; /* set up the internal thermal sensor if applicable */ ret = radeon_hwmon_init(rdev); if (ret) return ret; INIT_WORK(&rdev->pm.dpm.thermal.work, radeon_dpm_thermal_work_handler); mutex_lock(&rdev->pm.mutex); radeon_dpm_init(rdev); rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps; radeon_dpm_print_power_states(rdev); radeon_dpm_setup_asic(rdev); ret = radeon_dpm_enable(rdev); mutex_unlock(&rdev->pm.mutex); if (ret) { rdev->pm.dpm_enabled = false; if ((rdev->family >= CHIP_BARTS) && (rdev->family <= CHIP_CAYMAN) && rdev->mc_fw) { if (rdev->pm.default_vddc) radeon_atom_set_voltage(rdev, rdev->pm.default_vddc, SET_VOLTAGE_TYPE_ASIC_VDDC); if (rdev->pm.default_vddci) radeon_atom_set_voltage(rdev, rdev->pm.default_vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI); if (rdev->pm.default_sclk) radeon_set_engine_clock(rdev, rdev->pm.default_sclk); if (rdev->pm.default_mclk) radeon_set_memory_clock(rdev, rdev->pm.default_mclk); } DRM_ERROR("radeon: dpm initialization failed\n"); return ret; } rdev->pm.dpm_enabled = true; radeon_pm_compute_clocks(rdev); if (rdev->pm.num_power_states > 1) { ret = device_create_file(rdev->dev, &dev_attr_power_dpm_state); if (ret) DRM_ERROR("failed to create device file for dpm state\n"); /* XXX: these are noops for dpm but are here for backwards compat */ ret = device_create_file(rdev->dev, &dev_attr_power_profile); if (ret) DRM_ERROR("failed to create device file for power profile\n"); ret = device_create_file(rdev->dev, &dev_attr_power_method); if (ret) DRM_ERROR("failed to create device file for power method\n"); DRM_INFO("radeon: dpm initialized\n"); } return 0; } int radeon_pm_init(struct radeon_device *rdev) { /* enable dpm on rv6xx+ */ switch (rdev->family) { case CHIP_RV610: case CHIP_RV630: case CHIP_RV620: case CHIP_RV635: case CHIP_RV670: case CHIP_RS780: case CHIP_RS880: case CHIP_RV770: case CHIP_RV730: case CHIP_RV710: case CHIP_RV740: case CHIP_CEDAR: case CHIP_REDWOOD: case CHIP_JUNIPER: case CHIP_CYPRESS: case CHIP_HEMLOCK: case CHIP_PALM: case CHIP_SUMO: case CHIP_SUMO2: case CHIP_BARTS: case CHIP_TURKS: case CHIP_CAICOS: if (radeon_dpm == 1) rdev->pm.pm_method = PM_METHOD_DPM; else rdev->pm.pm_method = PM_METHOD_PROFILE; break; default: /* default to profile method */ rdev->pm.pm_method = PM_METHOD_PROFILE; break; } if (rdev->pm.pm_method == PM_METHOD_DPM) return radeon_pm_init_dpm(rdev); else return radeon_pm_init_old(rdev); } static void radeon_pm_fini_old(struct radeon_device *rdev) { if (rdev->pm.num_power_states > 1) { mutex_lock(&rdev->pm.mutex); if (rdev->pm.pm_method == PM_METHOD_PROFILE) { rdev->pm.profile = PM_PROFILE_DEFAULT; radeon_pm_update_profile(rdev); radeon_pm_set_clocks(rdev); } else if (rdev->pm.pm_method == PM_METHOD_DYNPM) { /* reset default clocks */ rdev->pm.dynpm_state = DYNPM_STATE_DISABLED; rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT; radeon_pm_set_clocks(rdev); } mutex_unlock(&rdev->pm.mutex); cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work); device_remove_file(rdev->dev, &dev_attr_power_profile); device_remove_file(rdev->dev, &dev_attr_power_method); } if (rdev->pm.power_state) kfree(rdev->pm.power_state); radeon_hwmon_fini(rdev); } static void radeon_pm_fini_dpm(struct radeon_device *rdev) { if (rdev->pm.num_power_states > 1) { mutex_lock(&rdev->pm.mutex); radeon_dpm_disable(rdev); mutex_unlock(&rdev->pm.mutex); device_remove_file(rdev->dev, &dev_attr_power_dpm_state); /* XXX backwards compat */ device_remove_file(rdev->dev, &dev_attr_power_profile); device_remove_file(rdev->dev, &dev_attr_power_method); } radeon_dpm_fini(rdev); if (rdev->pm.power_state) kfree(rdev->pm.power_state); radeon_hwmon_fini(rdev); } void radeon_pm_fini(struct radeon_device *rdev) { if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_fini_dpm(rdev); else radeon_pm_fini_old(rdev); } static void radeon_pm_compute_clocks_old(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; if (rdev->pm.num_power_states < 2) return; INIT_WORK(&rdev->pm.dpm.thermal.work, radeon_dpm_thermal_work_handler); mutex_lock(&rdev->pm.mutex); rdev->pm.active_crtcs = 0; rdev->pm.active_crtc_count = 0; list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id); rdev->pm.active_crtc_count++; } } if (rdev->pm.pm_method == PM_METHOD_PROFILE) { radeon_pm_update_profile(rdev); radeon_pm_set_clocks(rdev); } else if (rdev->pm.pm_method == PM_METHOD_DYNPM) { if (rdev->pm.dynpm_state != DYNPM_STATE_DISABLED) { if (rdev->pm.active_crtc_count > 1) { if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) { cancel_delayed_work(&rdev->pm.dynpm_idle_work); rdev->pm.dynpm_state = DYNPM_STATE_PAUSED; rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT; radeon_pm_get_dynpm_state(rdev); radeon_pm_set_clocks(rdev); DRM_DEBUG_DRIVER("radeon: dynamic power management deactivated\n"); } } else if (rdev->pm.active_crtc_count == 1) { /* TODO: Increase clocks if needed for current mode */ if (rdev->pm.dynpm_state == DYNPM_STATE_MINIMUM) { rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE; rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK; radeon_pm_get_dynpm_state(rdev); radeon_pm_set_clocks(rdev); schedule_delayed_work(&rdev->pm.dynpm_idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } else if (rdev->pm.dynpm_state == DYNPM_STATE_PAUSED) { rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE; schedule_delayed_work(&rdev->pm.dynpm_idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); DRM_DEBUG_DRIVER("radeon: dynamic power management activated\n"); } } else { /* count == 0 */ if (rdev->pm.dynpm_state != DYNPM_STATE_MINIMUM) { cancel_delayed_work(&rdev->pm.dynpm_idle_work); rdev->pm.dynpm_state = DYNPM_STATE_MINIMUM; rdev->pm.dynpm_planned_action = DYNPM_ACTION_MINIMUM; radeon_pm_get_dynpm_state(rdev); radeon_pm_set_clocks(rdev); } } } } mutex_unlock(&rdev->pm.mutex); } static void radeon_pm_compute_clocks_dpm(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; mutex_lock(&rdev->pm.mutex); rdev->pm.dpm.new_active_crtcs = 0; rdev->pm.dpm.new_active_crtc_count = 0; list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (crtc->enabled) { rdev->pm.dpm.new_active_crtcs |= (1 << radeon_crtc->crtc_id); rdev->pm.dpm.new_active_crtc_count++; } } radeon_dpm_change_power_state_locked(rdev); mutex_unlock(&rdev->pm.mutex); } void radeon_pm_compute_clocks(struct radeon_device *rdev) { if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_compute_clocks_dpm(rdev); else radeon_pm_compute_clocks_old(rdev); } static bool radeon_pm_in_vbl(struct radeon_device *rdev) { int crtc, vpos, hpos, vbl_status; bool in_vbl = true; /* Iterate over all active crtc's. All crtc's must be in vblank, * otherwise return in_vbl == false. */ for (crtc = 0; (crtc < rdev->num_crtc) && in_vbl; crtc++) { if (rdev->pm.active_crtcs & (1 << crtc)) { vbl_status = radeon_get_crtc_scanoutpos(rdev->ddev, crtc, &vpos, &hpos); if ((vbl_status & DRM_SCANOUTPOS_VALID) && !(vbl_status & DRM_SCANOUTPOS_INVBL)) in_vbl = false; } } return in_vbl; } static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish) { u32 stat_crtc = 0; bool in_vbl = radeon_pm_in_vbl(rdev); if (in_vbl == false) DRM_DEBUG_DRIVER("not in vbl for pm change %08x at %s\n", stat_crtc, finish ? "exit" : "entry"); return in_vbl; } static void radeon_dynpm_idle_work_handler(struct work_struct *work) { struct radeon_device *rdev; int resched; rdev = container_of(work, struct radeon_device, pm.dynpm_idle_work.work); resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); mutex_lock(&rdev->pm.mutex); if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) { int not_processed = 0; int i; for (i = 0; i < RADEON_NUM_RINGS; ++i) { struct radeon_ring *ring = &rdev->ring[i]; if (ring->ready) { not_processed += radeon_fence_count_emitted(rdev, i); if (not_processed >= 3) break; } } if (not_processed >= 3) { /* should upclock */ if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_DOWNCLOCK) { rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE; } else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE && rdev->pm.dynpm_can_upclock) { rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK; rdev->pm.dynpm_action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } else if (not_processed == 0) { /* should downclock */ if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_UPCLOCK) { rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE; } else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE && rdev->pm.dynpm_can_downclock) { rdev->pm.dynpm_planned_action = DYNPM_ACTION_DOWNCLOCK; rdev->pm.dynpm_action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } /* Note, radeon_pm_set_clocks is called with static_switch set * to false since we want to wait for vbl to avoid flicker. */ if (rdev->pm.dynpm_planned_action != DYNPM_ACTION_NONE && jiffies > rdev->pm.dynpm_action_timeout) { radeon_pm_get_dynpm_state(rdev); radeon_pm_set_clocks(rdev); } schedule_delayed_work(&rdev->pm.dynpm_idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } mutex_unlock(&rdev->pm.mutex); ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int radeon_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; seq_printf(m, "default engine clock: %u0 kHz\n", rdev->pm.default_sclk); /* radeon_get_engine_clock is not reliable on APUs so just print the current clock */ if ((rdev->family >= CHIP_PALM) && (rdev->flags & RADEON_IS_IGP)) seq_printf(m, "current engine clock: %u0 kHz\n", rdev->pm.current_sclk); else seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev)); seq_printf(m, "default memory clock: %u0 kHz\n", rdev->pm.default_mclk); if (rdev->asic->pm.get_memory_clock) seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev)); if (rdev->pm.current_vddc) seq_printf(m, "voltage: %u mV\n", rdev->pm.current_vddc); if (rdev->asic->pm.get_pcie_lanes) seq_printf(m, "PCIE lanes: %d\n", radeon_get_pcie_lanes(rdev)); return 0; } static struct drm_info_list radeon_pm_info_list[] = { {"radeon_pm_info", radeon_debugfs_pm_info, 0, NULL}, }; #endif static int radeon_debugfs_pm_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, radeon_pm_info_list, ARRAY_SIZE(radeon_pm_info_list)); #else return 0; #endif }