// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include "xsk_queue.h" /* Masks for xdp_umem_page flags. * The low 12-bits of the addr will be 0 since this is the page address, so we * can use them for flags. */ #define XSK_NEXT_PG_CONTIG_SHIFT 0 #define XSK_NEXT_PG_CONTIG_MASK BIT_ULL(XSK_NEXT_PG_CONTIG_SHIFT) struct xsk_buff_pool { struct xsk_queue *fq; struct list_head free_list; dma_addr_t *dma_pages; struct xdp_buff_xsk *heads; u64 chunk_mask; u64 addrs_cnt; u32 free_list_cnt; u32 dma_pages_cnt; u32 heads_cnt; u32 free_heads_cnt; u32 headroom; u32 chunk_size; u32 frame_len; bool cheap_dma; bool unaligned; void *addrs; struct device *dev; struct xdp_buff_xsk *free_heads[]; }; static void xp_addr_unmap(struct xsk_buff_pool *pool) { vunmap(pool->addrs); } static int xp_addr_map(struct xsk_buff_pool *pool, struct page **pages, u32 nr_pages) { pool->addrs = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); if (!pool->addrs) return -ENOMEM; return 0; } void xp_destroy(struct xsk_buff_pool *pool) { if (!pool) return; xp_addr_unmap(pool); kvfree(pool->heads); kvfree(pool); } struct xsk_buff_pool *xp_create(struct page **pages, u32 nr_pages, u32 chunks, u32 chunk_size, u32 headroom, u64 size, bool unaligned) { struct xsk_buff_pool *pool; struct xdp_buff_xsk *xskb; int err; u32 i; pool = kvzalloc(struct_size(pool, free_heads, chunks), GFP_KERNEL); if (!pool) goto out; pool->heads = kvcalloc(chunks, sizeof(*pool->heads), GFP_KERNEL); if (!pool->heads) goto out; pool->chunk_mask = ~((u64)chunk_size - 1); pool->addrs_cnt = size; pool->heads_cnt = chunks; pool->free_heads_cnt = chunks; pool->headroom = headroom; pool->chunk_size = chunk_size; pool->cheap_dma = true; pool->unaligned = unaligned; pool->frame_len = chunk_size - headroom - XDP_PACKET_HEADROOM; INIT_LIST_HEAD(&pool->free_list); for (i = 0; i < pool->free_heads_cnt; i++) { xskb = &pool->heads[i]; xskb->pool = pool; xskb->xdp.frame_sz = chunk_size - headroom; pool->free_heads[i] = xskb; } err = xp_addr_map(pool, pages, nr_pages); if (!err) return pool; out: xp_destroy(pool); return NULL; } void xp_set_fq(struct xsk_buff_pool *pool, struct xsk_queue *fq) { pool->fq = fq; } void xp_set_rxq_info(struct xsk_buff_pool *pool, struct xdp_rxq_info *rxq) { u32 i; for (i = 0; i < pool->heads_cnt; i++) pool->heads[i].xdp.rxq = rxq; } EXPORT_SYMBOL(xp_set_rxq_info); void xp_dma_unmap(struct xsk_buff_pool *pool, unsigned long attrs) { dma_addr_t *dma; u32 i; if (pool->dma_pages_cnt == 0) return; for (i = 0; i < pool->dma_pages_cnt; i++) { dma = &pool->dma_pages[i]; if (*dma) { dma_unmap_page_attrs(pool->dev, *dma, PAGE_SIZE, DMA_BIDIRECTIONAL, attrs); *dma = 0; } } kvfree(pool->dma_pages); pool->dma_pages_cnt = 0; pool->dev = NULL; } EXPORT_SYMBOL(xp_dma_unmap); static void xp_check_dma_contiguity(struct xsk_buff_pool *pool) { u32 i; for (i = 0; i < pool->dma_pages_cnt - 1; i++) { if (pool->dma_pages[i] + PAGE_SIZE == pool->dma_pages[i + 1]) pool->dma_pages[i] |= XSK_NEXT_PG_CONTIG_MASK; else pool->dma_pages[i] &= ~XSK_NEXT_PG_CONTIG_MASK; } } static bool __maybe_unused xp_check_swiotlb_dma(struct xsk_buff_pool *pool) { #if defined(CONFIG_SWIOTLB) phys_addr_t paddr; u32 i; for (i = 0; i < pool->dma_pages_cnt; i++) { paddr = dma_to_phys(pool->dev, pool->dma_pages[i]); if (is_swiotlb_buffer(paddr)) return false; } #endif return true; } static bool xp_check_cheap_dma(struct xsk_buff_pool *pool) { #if defined(CONFIG_HAS_DMA) const struct dma_map_ops *ops = get_dma_ops(pool->dev); if (ops) { return !ops->sync_single_for_cpu && !ops->sync_single_for_device; } if (!dma_is_direct(ops)) return false; if (!xp_check_swiotlb_dma(pool)) return false; if (!dev_is_dma_coherent(pool->dev)) { #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) return false; #endif } #endif return true; } int xp_dma_map(struct xsk_buff_pool *pool, struct device *dev, unsigned long attrs, struct page **pages, u32 nr_pages) { dma_addr_t dma; u32 i; pool->dma_pages = kvcalloc(nr_pages, sizeof(*pool->dma_pages), GFP_KERNEL); if (!pool->dma_pages) return -ENOMEM; pool->dev = dev; pool->dma_pages_cnt = nr_pages; for (i = 0; i < pool->dma_pages_cnt; i++) { dma = dma_map_page_attrs(dev, pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL, attrs); if (dma_mapping_error(dev, dma)) { xp_dma_unmap(pool, attrs); return -ENOMEM; } pool->dma_pages[i] = dma; } if (pool->unaligned) xp_check_dma_contiguity(pool); pool->dev = dev; pool->cheap_dma = xp_check_cheap_dma(pool); return 0; } EXPORT_SYMBOL(xp_dma_map); static bool xp_desc_crosses_non_contig_pg(struct xsk_buff_pool *pool, u64 addr, u32 len) { bool cross_pg = (addr & (PAGE_SIZE - 1)) + len > PAGE_SIZE; if (pool->dma_pages_cnt && cross_pg) { return !(pool->dma_pages[addr >> PAGE_SHIFT] & XSK_NEXT_PG_CONTIG_MASK); } return false; } static bool xp_addr_crosses_non_contig_pg(struct xsk_buff_pool *pool, u64 addr) { return xp_desc_crosses_non_contig_pg(pool, addr, pool->chunk_size); } void xp_release(struct xdp_buff_xsk *xskb) { xskb->pool->free_heads[xskb->pool->free_heads_cnt++] = xskb; } static u64 xp_aligned_extract_addr(struct xsk_buff_pool *pool, u64 addr) { return addr & pool->chunk_mask; } static u64 xp_unaligned_extract_addr(u64 addr) { return addr & XSK_UNALIGNED_BUF_ADDR_MASK; } static u64 xp_unaligned_extract_offset(u64 addr) { return addr >> XSK_UNALIGNED_BUF_OFFSET_SHIFT; } static u64 xp_unaligned_add_offset_to_addr(u64 addr) { return xp_unaligned_extract_addr(addr) + xp_unaligned_extract_offset(addr); } static bool xp_check_unaligned(struct xsk_buff_pool *pool, u64 *addr) { *addr = xp_unaligned_extract_addr(*addr); if (*addr >= pool->addrs_cnt || *addr + pool->chunk_size > pool->addrs_cnt || xp_addr_crosses_non_contig_pg(pool, *addr)) return false; return true; } static bool xp_check_aligned(struct xsk_buff_pool *pool, u64 *addr) { *addr = xp_aligned_extract_addr(pool, *addr); return *addr < pool->addrs_cnt; } static struct xdp_buff_xsk *__xp_alloc(struct xsk_buff_pool *pool) { struct xdp_buff_xsk *xskb; u64 addr; bool ok; if (pool->free_heads_cnt == 0) return NULL; xskb = pool->free_heads[--pool->free_heads_cnt]; for (;;) { if (!xskq_cons_peek_addr_unchecked(pool->fq, &addr)) { xp_release(xskb); return NULL; } ok = pool->unaligned ? xp_check_unaligned(pool, &addr) : xp_check_aligned(pool, &addr); if (!ok) { pool->fq->invalid_descs++; xskq_cons_release(pool->fq); continue; } break; } xskq_cons_release(pool->fq); xskb->orig_addr = addr; xskb->xdp.data_hard_start = pool->addrs + addr + pool->headroom; if (pool->dma_pages_cnt) { xskb->frame_dma = (pool->dma_pages[addr >> PAGE_SHIFT] & ~XSK_NEXT_PG_CONTIG_MASK) + (addr & ~PAGE_MASK); xskb->dma = xskb->frame_dma + pool->headroom + XDP_PACKET_HEADROOM; } return xskb; } struct xdp_buff *xp_alloc(struct xsk_buff_pool *pool) { struct xdp_buff_xsk *xskb; if (!pool->free_list_cnt) { xskb = __xp_alloc(pool); if (!xskb) return NULL; } else { pool->free_list_cnt--; xskb = list_first_entry(&pool->free_list, struct xdp_buff_xsk, free_list_node); list_del(&xskb->free_list_node); } xskb->xdp.data = xskb->xdp.data_hard_start + XDP_PACKET_HEADROOM; xskb->xdp.data_meta = xskb->xdp.data; if (!pool->cheap_dma) { dma_sync_single_range_for_device(pool->dev, xskb->dma, 0, pool->frame_len, DMA_BIDIRECTIONAL); } return &xskb->xdp; } EXPORT_SYMBOL(xp_alloc); bool xp_can_alloc(struct xsk_buff_pool *pool, u32 count) { if (pool->free_list_cnt >= count) return true; return xskq_cons_has_entries(pool->fq, count - pool->free_list_cnt); } EXPORT_SYMBOL(xp_can_alloc); void xp_free(struct xdp_buff_xsk *xskb) { xskb->pool->free_list_cnt++; list_add(&xskb->free_list_node, &xskb->pool->free_list); } EXPORT_SYMBOL(xp_free); static bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { u64 chunk, chunk_end; chunk = xp_aligned_extract_addr(pool, desc->addr); chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len); if (chunk != chunk_end) return false; if (chunk >= pool->addrs_cnt) return false; if (desc->options) return false; return true; } static bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { u64 addr, base_addr; base_addr = xp_unaligned_extract_addr(desc->addr); addr = xp_unaligned_add_offset_to_addr(desc->addr); if (desc->len > pool->chunk_size) return false; if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) return false; if (desc->options) return false; return true; } bool xp_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : xp_aligned_validate_desc(pool, desc); } u64 xp_get_handle(struct xdp_buff_xsk *xskb) { u64 offset = xskb->xdp.data - xskb->xdp.data_hard_start; offset += xskb->pool->headroom; if (!xskb->pool->unaligned) return xskb->orig_addr + offset; return xskb->orig_addr + (offset << XSK_UNALIGNED_BUF_OFFSET_SHIFT); } void *xp_raw_get_data(struct xsk_buff_pool *pool, u64 addr) { addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr; return pool->addrs + addr; } EXPORT_SYMBOL(xp_raw_get_data); dma_addr_t xp_raw_get_dma(struct xsk_buff_pool *pool, u64 addr) { addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr; return (pool->dma_pages[addr >> PAGE_SHIFT] & ~XSK_NEXT_PG_CONTIG_MASK) + (addr & ~PAGE_MASK); } EXPORT_SYMBOL(xp_raw_get_dma); dma_addr_t xp_get_dma(struct xdp_buff_xsk *xskb) { return xskb->dma; } EXPORT_SYMBOL(xp_get_dma); dma_addr_t xp_get_frame_dma(struct xdp_buff_xsk *xskb) { return xskb->frame_dma; } EXPORT_SYMBOL(xp_get_frame_dma); void xp_dma_sync_for_cpu(struct xdp_buff_xsk *xskb) { if (xskb->pool->cheap_dma) return; dma_sync_single_range_for_cpu(xskb->pool->dev, xskb->dma, 0, xskb->pool->frame_len, DMA_BIDIRECTIONAL); } EXPORT_SYMBOL(xp_dma_sync_for_cpu); void xp_dma_sync_for_device(struct xsk_buff_pool *pool, dma_addr_t dma, size_t size) { if (pool->cheap_dma) return; dma_sync_single_range_for_device(pool->dev, dma, 0, size, DMA_BIDIRECTIONAL); } EXPORT_SYMBOL(xp_dma_sync_for_device);