// SPDX-License-Identifier: GPL-2.0 /* * Clocksource driver for the synthetic counter and timers * provided by the Hyper-V hypervisor to guest VMs, as described * in the Hyper-V Top Level Functional Spec (TLFS). This driver * is instruction set architecture independent. * * Copyright (C) 2019, Microsoft, Inc. * * Author: Michael Kelley */ #include #include #include #include #include #include #include #include #include #include static struct clock_event_device __percpu *hv_clock_event; static u64 hv_sched_clock_offset __ro_after_init; /* * If false, we're using the old mechanism for stimer0 interrupts * where it sends a VMbus message when it expires. The old * mechanism is used when running on older versions of Hyper-V * that don't support Direct Mode. While Hyper-V provides * four stimer's per CPU, Linux uses only stimer0. * * Because Direct Mode does not require processing a VMbus * message, stimer interrupts can be enabled earlier in the * process of booting a CPU, and consistent with when timer * interrupts are enabled for other clocksource drivers. * However, for legacy versions of Hyper-V when Direct Mode * is not enabled, setting up stimer interrupts must be * delayed until VMbus is initialized and can process the * interrupt message. */ static bool direct_mode_enabled; static int stimer0_irq; static int stimer0_vector; static int stimer0_message_sint; /* * ISR for when stimer0 is operating in Direct Mode. Direct Mode * does not use VMbus or any VMbus messages, so process here and not * in the VMbus driver code. */ void hv_stimer0_isr(void) { struct clock_event_device *ce; ce = this_cpu_ptr(hv_clock_event); ce->event_handler(ce); } EXPORT_SYMBOL_GPL(hv_stimer0_isr); static int hv_ce_set_next_event(unsigned long delta, struct clock_event_device *evt) { u64 current_tick; current_tick = hv_read_reference_counter(); current_tick += delta; hv_init_timer(0, current_tick); return 0; } static int hv_ce_shutdown(struct clock_event_device *evt) { hv_init_timer(0, 0); hv_init_timer_config(0, 0); if (direct_mode_enabled) hv_disable_stimer0_percpu_irq(stimer0_irq); return 0; } static int hv_ce_set_oneshot(struct clock_event_device *evt) { union hv_stimer_config timer_cfg; timer_cfg.as_uint64 = 0; timer_cfg.enable = 1; timer_cfg.auto_enable = 1; if (direct_mode_enabled) { /* * When it expires, the timer will directly interrupt * on the specified hardware vector/IRQ. */ timer_cfg.direct_mode = 1; timer_cfg.apic_vector = stimer0_vector; hv_enable_stimer0_percpu_irq(stimer0_irq); } else { /* * When it expires, the timer will generate a VMbus message, * to be handled by the normal VMbus interrupt handler. */ timer_cfg.direct_mode = 0; timer_cfg.sintx = stimer0_message_sint; } hv_init_timer_config(0, timer_cfg.as_uint64); return 0; } /* * hv_stimer_init - Per-cpu initialization of the clockevent */ static int hv_stimer_init(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; ce = per_cpu_ptr(hv_clock_event, cpu); ce->name = "Hyper-V clockevent"; ce->features = CLOCK_EVT_FEAT_ONESHOT; ce->cpumask = cpumask_of(cpu); ce->rating = 1000; ce->set_state_shutdown = hv_ce_shutdown; ce->set_state_oneshot = hv_ce_set_oneshot; ce->set_next_event = hv_ce_set_next_event; clockevents_config_and_register(ce, HV_CLOCK_HZ, HV_MIN_DELTA_TICKS, HV_MAX_MAX_DELTA_TICKS); return 0; } /* * hv_stimer_cleanup - Per-cpu cleanup of the clockevent */ int hv_stimer_cleanup(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; /* * In the legacy case where Direct Mode is not enabled * (which can only be on x86/64), stimer cleanup happens * relatively early in the CPU offlining process. We * must unbind the stimer-based clockevent device so * that the LAPIC timer can take over until clockevents * are no longer needed in the offlining process. Note * that clockevents_unbind_device() eventually calls * hv_ce_shutdown(). * * The unbind should not be done when Direct Mode is * enabled because we may be on an architecture where * there are no other clockevent devices to fallback to. */ ce = per_cpu_ptr(hv_clock_event, cpu); if (direct_mode_enabled) hv_ce_shutdown(ce); else clockevents_unbind_device(ce, cpu); return 0; } EXPORT_SYMBOL_GPL(hv_stimer_cleanup); /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */ int hv_stimer_alloc(void) { int ret = 0; /* * Synthetic timers are always available except on old versions of * Hyper-V on x86. In that case, return as error as Linux will use a * clockevent based on emulated LAPIC timer hardware. */ if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)) return -EINVAL; hv_clock_event = alloc_percpu(struct clock_event_device); if (!hv_clock_event) return -ENOMEM; direct_mode_enabled = ms_hyperv.misc_features & HV_STIMER_DIRECT_MODE_AVAILABLE; if (direct_mode_enabled) { ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector, hv_stimer0_isr); if (ret) goto free_percpu; /* * Since we are in Direct Mode, stimer initialization * can be done now with a CPUHP value in the same range * as other clockevent devices. */ ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING, "clockevents/hyperv/stimer:starting", hv_stimer_init, hv_stimer_cleanup); if (ret < 0) goto free_stimer0_irq; } return ret; free_stimer0_irq: hv_remove_stimer0_irq(stimer0_irq); stimer0_irq = 0; free_percpu: free_percpu(hv_clock_event); hv_clock_event = NULL; return ret; } EXPORT_SYMBOL_GPL(hv_stimer_alloc); /* * hv_stimer_legacy_init -- Called from the VMbus driver to handle * the case when Direct Mode is not enabled, and the stimer * must be initialized late in the CPU onlining process. * */ void hv_stimer_legacy_init(unsigned int cpu, int sint) { if (direct_mode_enabled) return; /* * This function gets called by each vCPU, so setting the * global stimer_message_sint value each time is conceptually * not ideal, but the value passed in is always the same and * it avoids introducing yet another interface into this * clocksource driver just to set the sint in the legacy case. */ stimer0_message_sint = sint; (void)hv_stimer_init(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_init); /* * hv_stimer_legacy_cleanup -- Called from the VMbus driver to * handle the case when Direct Mode is not enabled, and the * stimer must be cleaned up early in the CPU offlining * process. */ void hv_stimer_legacy_cleanup(unsigned int cpu) { if (direct_mode_enabled) return; (void)hv_stimer_cleanup(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup); /* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */ void hv_stimer_free(void) { if (!hv_clock_event) return; if (direct_mode_enabled) { cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING); hv_remove_stimer0_irq(stimer0_irq); stimer0_irq = 0; } free_percpu(hv_clock_event); hv_clock_event = NULL; } EXPORT_SYMBOL_GPL(hv_stimer_free); /* * Do a global cleanup of clockevents for the cases of kexec and * vmbus exit */ void hv_stimer_global_cleanup(void) { int cpu; /* * hv_stime_legacy_cleanup() will stop the stimer if Direct * Mode is not enabled, and fallback to the LAPIC timer. */ for_each_present_cpu(cpu) { hv_stimer_legacy_cleanup(cpu); } /* * If Direct Mode is enabled, the cpuhp teardown callback * (hv_stimer_cleanup) will be run on all CPUs to stop the * stimers. */ hv_stimer_free(); } EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup); /* * Code and definitions for the Hyper-V clocksources. Two * clocksources are defined: one that reads the Hyper-V defined MSR, and * the other that uses the TSC reference page feature as defined in the * TLFS. The MSR version is for compatibility with old versions of * Hyper-V and 32-bit x86. The TSC reference page version is preferred. * * The Hyper-V clocksource ratings of 250 are chosen to be below the * TSC clocksource rating of 300. In configurations where Hyper-V offers * an InvariantTSC, the TSC is not marked "unstable", so the TSC clocksource * is available and preferred. With the higher rating, it will be the * default. On older hardware and Hyper-V versions, the TSC is marked * "unstable", so no TSC clocksource is created and the selected Hyper-V * clocksource will be the default. */ u64 (*hv_read_reference_counter)(void); EXPORT_SYMBOL_GPL(hv_read_reference_counter); static union { struct ms_hyperv_tsc_page page; u8 reserved[PAGE_SIZE]; } tsc_pg __aligned(PAGE_SIZE); struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return &tsc_pg.page; } EXPORT_SYMBOL_GPL(hv_get_tsc_page); static u64 notrace read_hv_clock_tsc(void) { u64 current_tick = hv_read_tsc_page(hv_get_tsc_page()); if (current_tick == U64_MAX) hv_get_time_ref_count(current_tick); return current_tick; } static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg) { return read_hv_clock_tsc(); } static u64 read_hv_sched_clock_tsc(void) { return read_hv_clock_tsc() - hv_sched_clock_offset; } static void suspend_hv_clock_tsc(struct clocksource *arg) { u64 tsc_msr; /* Disable the TSC page */ hv_get_reference_tsc(tsc_msr); tsc_msr &= ~BIT_ULL(0); hv_set_reference_tsc(tsc_msr); } static void resume_hv_clock_tsc(struct clocksource *arg) { phys_addr_t phys_addr = virt_to_phys(&tsc_pg); u64 tsc_msr; /* Re-enable the TSC page */ hv_get_reference_tsc(tsc_msr); tsc_msr &= GENMASK_ULL(11, 0); tsc_msr |= BIT_ULL(0) | (u64)phys_addr; hv_set_reference_tsc(tsc_msr); } static int hv_cs_enable(struct clocksource *cs) { hv_enable_vdso_clocksource(); return 0; } static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 250, .read = read_hv_clock_tsc_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .suspend= suspend_hv_clock_tsc, .resume = resume_hv_clock_tsc, .enable = hv_cs_enable, }; static u64 notrace read_hv_clock_msr(void) { u64 current_tick; /* * Read the partition counter to get the current tick count. This count * is set to 0 when the partition is created and is incremented in * 100 nanosecond units. */ hv_get_time_ref_count(current_tick); return current_tick; } static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg) { return read_hv_clock_msr(); } static u64 read_hv_sched_clock_msr(void) { return read_hv_clock_msr() - hv_sched_clock_offset; } static struct clocksource hyperv_cs_msr = { .name = "hyperv_clocksource_msr", .rating = 250, .read = read_hv_clock_msr_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static bool __init hv_init_tsc_clocksource(void) { u64 tsc_msr; phys_addr_t phys_addr; if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) return false; hv_read_reference_counter = read_hv_clock_tsc; phys_addr = virt_to_phys(hv_get_tsc_page()); /* * The Hyper-V TLFS specifies to preserve the value of reserved * bits in registers. So read the existing value, preserve the * low order 12 bits, and add in the guest physical address * (which already has at least the low 12 bits set to zero since * it is page aligned). Also set the "enable" bit, which is bit 0. */ hv_get_reference_tsc(tsc_msr); tsc_msr &= GENMASK_ULL(11, 0); tsc_msr = tsc_msr | 0x1 | (u64)phys_addr; hv_set_reference_tsc(tsc_msr); hv_set_clocksource_vdso(hyperv_cs_tsc); clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); hv_sched_clock_offset = hv_read_reference_counter(); hv_setup_sched_clock(read_hv_sched_clock_tsc); return true; } void __init hv_init_clocksource(void) { /* * Try to set up the TSC page clocksource. If it succeeds, we're * done. Otherwise, set up the MSR clocksoruce. At least one of * these will always be available except on very old versions of * Hyper-V on x86. In that case we won't have a Hyper-V * clocksource, but Linux will still run with a clocksource based * on the emulated PIT or LAPIC timer. */ if (hv_init_tsc_clocksource()) return; if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)) return; hv_read_reference_counter = read_hv_clock_msr; clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); hv_sched_clock_offset = hv_read_reference_counter(); hv_setup_sched_clock(read_hv_sched_clock_msr); } EXPORT_SYMBOL_GPL(hv_init_clocksource);