/* QLogic qede NIC Driver * Copyright (c) 2015 QLogic Corporation * * This software is available under the terms of the GNU General Public License * (GPL) Version 2, available from the file COPYING in the main directory of * this source tree. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_QEDE_VXLAN #include #endif #ifdef CONFIG_QEDE_GENEVE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include "qede.h" static char version[] = "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); static uint debug; module_param(debug, uint, 0); MODULE_PARM_DESC(debug, " Default debug msglevel"); static const struct qed_eth_ops *qed_ops; #define CHIP_NUM_57980S_40 0x1634 #define CHIP_NUM_57980S_10 0x1666 #define CHIP_NUM_57980S_MF 0x1636 #define CHIP_NUM_57980S_100 0x1644 #define CHIP_NUM_57980S_50 0x1654 #define CHIP_NUM_57980S_25 0x1656 #ifndef PCI_DEVICE_ID_NX2_57980E #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 #endif static const struct pci_device_id qede_pci_tbl[] = { { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 }, { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 }, { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 }, { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 }, { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 }, { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 }, { 0 } }; MODULE_DEVICE_TABLE(pci, qede_pci_tbl); static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); #define TX_TIMEOUT (5 * HZ) static void qede_remove(struct pci_dev *pdev); static int qede_alloc_rx_buffer(struct qede_dev *edev, struct qede_rx_queue *rxq); static void qede_link_update(void *dev, struct qed_link_output *link); static struct pci_driver qede_pci_driver = { .name = "qede", .id_table = qede_pci_tbl, .probe = qede_probe, .remove = qede_remove, }; static struct qed_eth_cb_ops qede_ll_ops = { { .link_update = qede_link_update, }, }; static int qede_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct ethtool_drvinfo drvinfo; struct qede_dev *edev; /* Currently only support name change */ if (event != NETDEV_CHANGENAME) goto done; /* Check whether this is a qede device */ if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) goto done; memset(&drvinfo, 0, sizeof(drvinfo)); ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); if (strcmp(drvinfo.driver, "qede")) goto done; edev = netdev_priv(ndev); /* Notify qed of the name change */ if (!edev->ops || !edev->ops->common) goto done; edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede"); done: return NOTIFY_DONE; } static struct notifier_block qede_netdev_notifier = { .notifier_call = qede_netdev_event, }; static int __init qede_init(void) { int ret; pr_notice("qede_init: %s\n", version); qed_ops = qed_get_eth_ops(); if (!qed_ops) { pr_notice("Failed to get qed ethtool operations\n"); return -EINVAL; } /* Must register notifier before pci ops, since we might miss * interface rename after pci probe and netdev registeration. */ ret = register_netdevice_notifier(&qede_netdev_notifier); if (ret) { pr_notice("Failed to register netdevice_notifier\n"); qed_put_eth_ops(); return -EINVAL; } ret = pci_register_driver(&qede_pci_driver); if (ret) { pr_notice("Failed to register driver\n"); unregister_netdevice_notifier(&qede_netdev_notifier); qed_put_eth_ops(); return -EINVAL; } return 0; } static void __exit qede_cleanup(void) { pr_notice("qede_cleanup called\n"); unregister_netdevice_notifier(&qede_netdev_notifier); pci_unregister_driver(&qede_pci_driver); qed_put_eth_ops(); } module_init(qede_init); module_exit(qede_cleanup); /* ------------------------------------------------------------------------- * START OF FAST-PATH * ------------------------------------------------------------------------- */ /* Unmap the data and free skb */ static int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) { u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; struct sk_buff *skb = txq->sw_tx_ring[idx].skb; struct eth_tx_1st_bd *first_bd; struct eth_tx_bd *tx_data_bd; int bds_consumed = 0; int nbds; bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; int i, split_bd_len = 0; if (unlikely(!skb)) { DP_ERR(edev, "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", idx, txq->sw_tx_cons, txq->sw_tx_prod); return -1; } *len = skb->len; first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); bds_consumed++; nbds = first_bd->data.nbds; if (data_split) { struct eth_tx_bd *split = (struct eth_tx_bd *) qed_chain_consume(&txq->tx_pbl); split_bd_len = BD_UNMAP_LEN(split); bds_consumed++; } dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); /* Unmap the data of the skb frags */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_consume(&txq->tx_pbl); dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); } while (bds_consumed++ < nbds) qed_chain_consume(&txq->tx_pbl); /* Free skb */ dev_kfree_skb_any(skb); txq->sw_tx_ring[idx].skb = NULL; txq->sw_tx_ring[idx].flags = 0; return 0; } /* Unmap the data and free skb when mapping failed during start_xmit */ static void qede_free_failed_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, struct eth_tx_1st_bd *first_bd, int nbd, bool data_split) { u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; struct sk_buff *skb = txq->sw_tx_ring[idx].skb; struct eth_tx_bd *tx_data_bd; int i, split_bd_len = 0; /* Return prod to its position before this skb was handled */ qed_chain_set_prod(&txq->tx_pbl, le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); if (data_split) { struct eth_tx_bd *split = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); split_bd_len = BD_UNMAP_LEN(split); nbd--; } dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); /* Unmap the data of the skb frags */ for (i = 0; i < nbd; i++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); if (tx_data_bd->nbytes) dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); } /* Return again prod to its position before this skb was handled */ qed_chain_set_prod(&txq->tx_pbl, le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); /* Free skb */ dev_kfree_skb_any(skb); txq->sw_tx_ring[idx].skb = NULL; txq->sw_tx_ring[idx].flags = 0; } static u32 qede_xmit_type(struct qede_dev *edev, struct sk_buff *skb, int *ipv6_ext) { u32 rc = XMIT_L4_CSUM; __be16 l3_proto; if (skb->ip_summed != CHECKSUM_PARTIAL) return XMIT_PLAIN; l3_proto = vlan_get_protocol(skb); if (l3_proto == htons(ETH_P_IPV6) && (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) *ipv6_ext = 1; if (skb->encapsulation) rc |= XMIT_ENC; if (skb_is_gso(skb)) rc |= XMIT_LSO; return rc; } static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, struct eth_tx_2nd_bd *second_bd, struct eth_tx_3rd_bd *third_bd) { u8 l4_proto; u16 bd2_bits1 = 0, bd2_bits2 = 0; bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) l4_proto = ipv6_hdr(skb)->nexthdr; else l4_proto = ip_hdr(skb)->protocol; if (l4_proto == IPPROTO_UDP) bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; if (third_bd) third_bd->data.bitfields |= cpu_to_le16(((tcp_hdrlen(skb) / 4) & ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); } static int map_frag_to_bd(struct qede_dev *edev, skb_frag_t *frag, struct eth_tx_bd *bd) { dma_addr_t mapping; /* Map skb non-linear frag data for DMA */ mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); return -ENOMEM; } /* Setup the data pointer of the frag data */ BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); return 0; } static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) { if (is_encap_pkt) return (skb_inner_transport_header(skb) + inner_tcp_hdrlen(skb) - skb->data); else return (skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data); } /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb, u8 xmit_type) { int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; if (xmit_type & XMIT_LSO) { int hlen; hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); /* linear payload would require its own BD */ if (skb_headlen(skb) > hlen) allowed_frags--; } return (skb_shinfo(skb)->nr_frags > allowed_frags); } #endif /* Main transmit function */ static netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); struct netdev_queue *netdev_txq; struct qede_tx_queue *txq; struct eth_tx_1st_bd *first_bd; struct eth_tx_2nd_bd *second_bd = NULL; struct eth_tx_3rd_bd *third_bd = NULL; struct eth_tx_bd *tx_data_bd = NULL; u16 txq_index; u8 nbd = 0; dma_addr_t mapping; int rc, frag_idx = 0, ipv6_ext = 0; u8 xmit_type; u16 idx; u16 hlen; bool data_split; /* Get tx-queue context and netdev index */ txq_index = skb_get_queue_mapping(skb); WARN_ON(txq_index >= QEDE_TSS_CNT(edev)); txq = QEDE_TX_QUEUE(edev, txq_index); netdev_txq = netdev_get_tx_queue(ndev, txq_index); WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) if (qede_pkt_req_lin(edev, skb, xmit_type)) { if (skb_linearize(skb)) { DP_NOTICE(edev, "SKB linearization failed - silently dropping this SKB\n"); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } #endif /* Fill the entry in the SW ring and the BDs in the FW ring */ idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; txq->sw_tx_ring[idx].skb = skb; first_bd = (struct eth_tx_1st_bd *) qed_chain_produce(&txq->tx_pbl); memset(first_bd, 0, sizeof(*first_bd)); first_bd->data.bd_flags.bitfields = 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; /* Map skb linear data for DMA and set in the first BD */ mapping = dma_map_single(&edev->pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { DP_NOTICE(edev, "SKB mapping failed\n"); qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); return NETDEV_TX_OK; } nbd++; BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); /* In case there is IPv6 with extension headers or LSO we need 2nd and * 3rd BDs. */ if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { second_bd = (struct eth_tx_2nd_bd *) qed_chain_produce(&txq->tx_pbl); memset(second_bd, 0, sizeof(*second_bd)); nbd++; third_bd = (struct eth_tx_3rd_bd *) qed_chain_produce(&txq->tx_pbl); memset(third_bd, 0, sizeof(*third_bd)); nbd++; /* We need to fill in additional data in second_bd... */ tx_data_bd = (struct eth_tx_bd *)second_bd; } if (skb_vlan_tag_present(skb)) { first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; } /* Fill the parsing flags & params according to the requested offload */ if (xmit_type & XMIT_L4_CSUM) { u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT; /* We don't re-calculate IP checksum as it is already done by * the upper stack */ first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; if (xmit_type & XMIT_ENC) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; } else { /* In cases when OS doesn't indicate for inner offloads * when packet is tunnelled, we need to override the HW * tunnel configuration so that packets are treated as * regular non tunnelled packets and no inner offloads * are done by the hardware. */ first_bd->data.bitfields |= cpu_to_le16(temp); } /* If the packet is IPv6 with extension header, indicate that * to FW and pass few params, since the device cracker doesn't * support parsing IPv6 with extension header/s. */ if (unlikely(ipv6_ext)) qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); } if (xmit_type & XMIT_LSO) { first_bd->data.bd_flags.bitfields |= (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); third_bd->data.lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); if (unlikely(xmit_type & XMIT_ENC)) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; hlen = qede_get_skb_hlen(skb, true); } else { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; hlen = qede_get_skb_hlen(skb, false); } /* @@@TBD - if will not be removed need to check */ third_bd->data.bitfields |= cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT)); /* Make life easier for FW guys who can't deal with header and * data on same BD. If we need to split, use the second bd... */ if (unlikely(skb_headlen(skb) > hlen)) { DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", first_bd->nbytes, first_bd->addr.hi, first_bd->addr.lo); mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), le32_to_cpu(first_bd->addr.lo)) + hlen; BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, le16_to_cpu(first_bd->nbytes) - hlen); /* this marks the BD as one that has no * individual mapping */ txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; first_bd->nbytes = cpu_to_le16(hlen); tx_data_bd = (struct eth_tx_bd *)third_bd; data_split = true; } } /* Handle fragmented skb */ /* special handle for frags inside 2nd and 3rd bds.. */ while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { rc = map_frag_to_bd(edev, &skb_shinfo(skb)->frags[frag_idx], tx_data_bd); if (rc) { qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, data_split); return NETDEV_TX_OK; } if (tx_data_bd == (struct eth_tx_bd *)second_bd) tx_data_bd = (struct eth_tx_bd *)third_bd; else tx_data_bd = NULL; frag_idx++; } /* map last frags into 4th, 5th .... */ for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); memset(tx_data_bd, 0, sizeof(*tx_data_bd)); rc = map_frag_to_bd(edev, &skb_shinfo(skb)->frags[frag_idx], tx_data_bd); if (rc) { qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, data_split); return NETDEV_TX_OK; } } /* update the first BD with the actual num BDs */ first_bd->data.nbds = nbd; netdev_tx_sent_queue(netdev_txq, skb->len); skb_tx_timestamp(skb); /* Advance packet producer only before sending the packet since mapping * of pages may fail. */ txq->sw_tx_prod++; /* 'next page' entries are counted in the producer value */ txq->tx_db.data.bd_prod = cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); /* wmb makes sure that the BDs data is updated before updating the * producer, otherwise FW may read old data from the BDs. */ wmb(); barrier(); writel(txq->tx_db.raw, txq->doorbell_addr); /* mmiowb is needed to synchronize doorbell writes from more than one * processor. It guarantees that the write arrives to the device before * the queue lock is released and another start_xmit is called (possibly * on another CPU). Without this barrier, the next doorbell can bypass * this doorbell. This is applicable to IA64/Altix systems. */ mmiowb(); if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1))) { netif_tx_stop_queue(netdev_txq); DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "Stop queue was called\n"); /* paired memory barrier is in qede_tx_int(), we have to keep * ordering of set_bit() in netif_tx_stop_queue() and read of * fp->bd_tx_cons */ smp_mb(); if (qed_chain_get_elem_left(&txq->tx_pbl) >= (MAX_SKB_FRAGS + 1) && (edev->state == QEDE_STATE_OPEN)) { netif_tx_wake_queue(netdev_txq); DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "Wake queue was called\n"); } } return NETDEV_TX_OK; } static int qede_txq_has_work(struct qede_tx_queue *txq) { u16 hw_bd_cons; /* Tell compiler that consumer and producer can change */ barrier(); hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) return 0; return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); } static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) { struct netdev_queue *netdev_txq; u16 hw_bd_cons; unsigned int pkts_compl = 0, bytes_compl = 0; int rc; netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); barrier(); while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { int len = 0; rc = qede_free_tx_pkt(edev, txq, &len); if (rc) { DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", hw_bd_cons, qed_chain_get_cons_idx(&txq->tx_pbl)); break; } bytes_compl += len; pkts_compl++; txq->sw_tx_cons++; } netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); /* Need to make the tx_bd_cons update visible to start_xmit() * before checking for netif_tx_queue_stopped(). Without the * memory barrier, there is a small possibility that * start_xmit() will miss it and cause the queue to be stopped * forever. * On the other hand we need an rmb() here to ensure the proper * ordering of bit testing in the following * netif_tx_queue_stopped(txq) call. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(netdev_txq))) { /* Taking tx_lock is needed to prevent reenabling the queue * while it's empty. This could have happen if rx_action() gets * suspended in qede_tx_int() after the condition before * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): * * stops the queue->sees fresh tx_bd_cons->releases the queue-> * sends some packets consuming the whole queue again-> * stops the queue */ __netif_tx_lock(netdev_txq, smp_processor_id()); if ((netif_tx_queue_stopped(netdev_txq)) && (edev->state == QEDE_STATE_OPEN) && (qed_chain_get_elem_left(&txq->tx_pbl) >= (MAX_SKB_FRAGS + 1))) { netif_tx_wake_queue(netdev_txq); DP_VERBOSE(edev, NETIF_MSG_TX_DONE, "Wake queue was called\n"); } __netif_tx_unlock(netdev_txq); } return 0; } static bool qede_has_rx_work(struct qede_rx_queue *rxq) { u16 hw_comp_cons, sw_comp_cons; /* Tell compiler that status block fields can change */ barrier(); hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); return hw_comp_cons != sw_comp_cons; } static bool qede_has_tx_work(struct qede_fastpath *fp) { u8 tc; for (tc = 0; tc < fp->edev->num_tc; tc++) if (qede_txq_has_work(&fp->txqs[tc])) return true; return false; } static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) { qed_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; } /* This function reuses the buffer(from an offset) from * consumer index to producer index in the bd ring */ static inline void qede_reuse_page(struct qede_dev *edev, struct qede_rx_queue *rxq, struct sw_rx_data *curr_cons) { struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); struct sw_rx_data *curr_prod; dma_addr_t new_mapping; curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; *curr_prod = *curr_cons; new_mapping = curr_prod->mapping + curr_prod->page_offset; rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); rxq->sw_rx_prod++; curr_cons->data = NULL; } /* In case of allocation failures reuse buffers * from consumer index to produce buffers for firmware */ static void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, struct qede_dev *edev, u8 count) { struct sw_rx_data *curr_cons; for (; count > 0; count--) { curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; qede_reuse_page(edev, rxq, curr_cons); qede_rx_bd_ring_consume(rxq); } } static inline int qede_realloc_rx_buffer(struct qede_dev *edev, struct qede_rx_queue *rxq, struct sw_rx_data *curr_cons) { /* Move to the next segment in the page */ curr_cons->page_offset += rxq->rx_buf_seg_size; if (curr_cons->page_offset == PAGE_SIZE) { if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { /* Since we failed to allocate new buffer * current buffer can be used again. */ curr_cons->page_offset -= rxq->rx_buf_seg_size; return -ENOMEM; } dma_unmap_page(&edev->pdev->dev, curr_cons->mapping, PAGE_SIZE, DMA_FROM_DEVICE); } else { /* Increment refcount of the page as we don't want * network stack to take the ownership of the page * which can be recycled multiple times by the driver. */ atomic_inc(&curr_cons->data->_count); qede_reuse_page(edev, rxq, curr_cons); } return 0; } static inline void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) { u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); struct eth_rx_prod_data rx_prods = {0}; /* Update producers */ rx_prods.bd_prod = cpu_to_le16(bd_prod); rx_prods.cqe_prod = cpu_to_le16(cqe_prod); /* Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. */ wmb(); internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), (u32 *)&rx_prods); /* mmiowb is needed to synchronize doorbell writes from more than one * processor. It guarantees that the write arrives to the device before * the napi lock is released and another qede_poll is called (possibly * on another CPU). Without this barrier, the next doorbell can bypass * this doorbell. This is applicable to IA64/Altix systems. */ mmiowb(); } static u32 qede_get_rxhash(struct qede_dev *edev, u8 bitfields, __le32 rss_hash, enum pkt_hash_types *rxhash_type) { enum rss_hash_type htype; htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || (htype == RSS_HASH_TYPE_IPV6)) ? PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; return le32_to_cpu(rss_hash); } *rxhash_type = PKT_HASH_TYPE_NONE; return 0; } static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) { skb_checksum_none_assert(skb); if (csum_flag & QEDE_CSUM_UNNECESSARY) skb->ip_summed = CHECKSUM_UNNECESSARY; if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) skb->csum_level = 1; } static inline void qede_skb_receive(struct qede_dev *edev, struct qede_fastpath *fp, struct sk_buff *skb, u16 vlan_tag) { if (vlan_tag) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); napi_gro_receive(&fp->napi, skb); } static void qede_set_gro_params(struct qede_dev *edev, struct sk_buff *skb, struct eth_fast_path_rx_tpa_start_cqe *cqe) { u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; else skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - cqe->header_len; } static int qede_fill_frag_skb(struct qede_dev *edev, struct qede_rx_queue *rxq, u8 tpa_agg_index, u16 len_on_bd) { struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; struct sk_buff *skb = tpa_info->skb; if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) goto out; /* Add one frag and update the appropriate fields in the skb */ skb_fill_page_desc(skb, tpa_info->frag_id++, current_bd->data, current_bd->page_offset, len_on_bd); if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) { /* Incr page ref count to reuse on allocation failure * so that it doesn't get freed while freeing SKB. */ atomic_inc(¤t_bd->data->_count); goto out; } qed_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; skb->data_len += len_on_bd; skb->truesize += rxq->rx_buf_seg_size; skb->len += len_on_bd; return 0; out: tpa_info->agg_state = QEDE_AGG_STATE_ERROR; qede_recycle_rx_bd_ring(rxq, edev, 1); return -ENOMEM; } static void qede_tpa_start(struct qede_dev *edev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_start_cqe *cqe) { struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); struct sw_rx_data *replace_buf = &tpa_info->replace_buf; dma_addr_t mapping = tpa_info->replace_buf_mapping; struct sw_rx_data *sw_rx_data_cons; struct sw_rx_data *sw_rx_data_prod; enum pkt_hash_types rxhash_type; u32 rxhash; sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; /* Use pre-allocated replacement buffer - we can't release the agg. * start until its over and we don't want to risk allocation failing * here, so re-allocate when aggregation will be over. */ dma_unmap_addr_set(sw_rx_data_prod, mapping, dma_unmap_addr(replace_buf, mapping)); sw_rx_data_prod->data = replace_buf->data; rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); sw_rx_data_prod->page_offset = replace_buf->page_offset; rxq->sw_rx_prod++; /* move partial skb from cons to pool (don't unmap yet) * save mapping, incase we drop the packet later on. */ tpa_info->start_buf = *sw_rx_data_cons; mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), le32_to_cpu(rx_bd_cons->addr.lo)); tpa_info->start_buf_mapping = mapping; rxq->sw_rx_cons++; /* set tpa state to start only if we are able to allocate skb * for this aggregation, otherwise mark as error and aggregation will * be dropped */ tpa_info->skb = netdev_alloc_skb(edev->ndev, le16_to_cpu(cqe->len_on_first_bd)); if (unlikely(!tpa_info->skb)) { DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); tpa_info->agg_state = QEDE_AGG_STATE_ERROR; goto cons_buf; } skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe)); /* Start filling in the aggregation info */ tpa_info->frag_id = 0; tpa_info->agg_state = QEDE_AGG_STATE_START; rxhash = qede_get_rxhash(edev, cqe->bitfields, cqe->rss_hash, &rxhash_type); skb_set_hash(tpa_info->skb, rxhash, rxhash_type); if ((le16_to_cpu(cqe->pars_flags.flags) >> PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); else tpa_info->vlan_tag = 0; /* This is needed in order to enable forwarding support */ qede_set_gro_params(edev, tpa_info->skb, cqe); cons_buf: /* We still need to handle bd_len_list to consume buffers */ if (likely(cqe->ext_bd_len_list[0])) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->ext_bd_len_list[0])); if (unlikely(cqe->ext_bd_len_list[1])) { DP_ERR(edev, "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); tpa_info->agg_state = QEDE_AGG_STATE_ERROR; } } #ifdef CONFIG_INET static void qede_gro_ip_csum(struct sk_buff *skb) { const struct iphdr *iph = ip_hdr(skb); struct tcphdr *th; skb_set_transport_header(skb, sizeof(struct iphdr)); th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), iph->saddr, iph->daddr, 0); tcp_gro_complete(skb); } static void qede_gro_ipv6_csum(struct sk_buff *skb) { struct ipv6hdr *iph = ipv6_hdr(skb); struct tcphdr *th; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); th = tcp_hdr(skb); th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), &iph->saddr, &iph->daddr, 0); tcp_gro_complete(skb); } #endif static void qede_gro_receive(struct qede_dev *edev, struct qede_fastpath *fp, struct sk_buff *skb, u16 vlan_tag) { /* FW can send a single MTU sized packet from gro flow * due to aggregation timeout/last segment etc. which * is not expected to be a gro packet. If a skb has zero * frags then simply push it in the stack as non gso skb. */ if (unlikely(!skb->data_len)) { skb_shinfo(skb)->gso_type = 0; skb_shinfo(skb)->gso_size = 0; goto send_skb; } #ifdef CONFIG_INET if (skb_shinfo(skb)->gso_size) { skb_set_network_header(skb, 0); switch (skb->protocol) { case htons(ETH_P_IP): qede_gro_ip_csum(skb); break; case htons(ETH_P_IPV6): qede_gro_ipv6_csum(skb); break; default: DP_ERR(edev, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", ntohs(skb->protocol)); } } #endif send_skb: skb_record_rx_queue(skb, fp->rss_id); qede_skb_receive(edev, fp, skb, vlan_tag); } static inline void qede_tpa_cont(struct qede_dev *edev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_cont_cqe *cqe) { int i; for (i = 0; cqe->len_list[i]; i++) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->len_list[i])); if (unlikely(i > 1)) DP_ERR(edev, "Strange - TPA cont with more than a single len_list entry\n"); } static void qede_tpa_end(struct qede_dev *edev, struct qede_fastpath *fp, struct eth_fast_path_rx_tpa_end_cqe *cqe) { struct qede_rx_queue *rxq = fp->rxq; struct qede_agg_info *tpa_info; struct sk_buff *skb; int i; tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; skb = tpa_info->skb; for (i = 0; cqe->len_list[i]; i++) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->len_list[i])); if (unlikely(i > 1)) DP_ERR(edev, "Strange - TPA emd with more than a single len_list entry\n"); if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) goto err; /* Sanity */ if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) DP_ERR(edev, "Strange - TPA had %02x BDs, but SKB has only %d frags\n", cqe->num_of_bds, tpa_info->frag_id); if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) DP_ERR(edev, "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", le16_to_cpu(cqe->total_packet_len), skb->len); memcpy(skb->data, page_address(tpa_info->start_buf.data) + tpa_info->start_cqe.placement_offset + tpa_info->start_buf.page_offset, le16_to_cpu(tpa_info->start_cqe.len_on_first_bd)); /* Recycle [mapped] start buffer for the next replacement */ tpa_info->replace_buf = tpa_info->start_buf; tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; /* Finalize the SKB */ skb->protocol = eth_type_trans(skb, edev->ndev); skb->ip_summed = CHECKSUM_UNNECESSARY; /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count * to skb_shinfo(skb)->gso_segs */ NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); tpa_info->agg_state = QEDE_AGG_STATE_NONE; return; err: /* The BD starting the aggregation is still mapped; Re-use it for * future aggregations [as replacement buffer] */ memcpy(&tpa_info->replace_buf, &tpa_info->start_buf, sizeof(struct sw_rx_data)); tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; tpa_info->start_buf.data = NULL; tpa_info->agg_state = QEDE_AGG_STATE_NONE; dev_kfree_skb_any(tpa_info->skb); tpa_info->skb = NULL; } static bool qede_tunn_exist(u16 flag) { return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); } static u8 qede_check_tunn_csum(u16 flag) { u16 csum_flag = 0; u8 tcsum = 0; if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; tcsum = QEDE_TUNN_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return QEDE_CSUM_UNNECESSARY | tcsum; } static u8 qede_check_notunn_csum(u16 flag) { u16 csum_flag = 0; u8 csum = 0; if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; csum = QEDE_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return csum; } static u8 qede_check_csum(u16 flag) { if (!qede_tunn_exist(flag)) return qede_check_notunn_csum(flag); else return qede_check_tunn_csum(flag); } static int qede_rx_int(struct qede_fastpath *fp, int budget) { struct qede_dev *edev = fp->edev; struct qede_rx_queue *rxq = fp->rxq; u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; int rx_pkt = 0; u8 csum_flag; hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); /* Memory barrier to prevent the CPU from doing speculative reads of CQE * / BD in the while-loop before reading hw_comp_cons. If the CQE is * read before it is written by FW, then FW writes CQE and SB, and then * the CPU reads the hw_comp_cons, it will use an old CQE. */ rmb(); /* Loop to complete all indicated BDs */ while (sw_comp_cons != hw_comp_cons) { struct eth_fast_path_rx_reg_cqe *fp_cqe; enum pkt_hash_types rxhash_type; enum eth_rx_cqe_type cqe_type; struct sw_rx_data *sw_rx_data; union eth_rx_cqe *cqe; struct sk_buff *skb; struct page *data; __le16 flags; u16 len, pad; u32 rx_hash; /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *) qed_chain_consume(&rxq->rx_comp_ring); cqe_type = cqe->fast_path_regular.type; if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { edev->ops->eth_cqe_completion( edev->cdev, fp->rss_id, (struct eth_slow_path_rx_cqe *)cqe); goto next_cqe; } if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) { switch (cqe_type) { case ETH_RX_CQE_TYPE_TPA_START: qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); goto next_cqe; case ETH_RX_CQE_TYPE_TPA_CONT: qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); goto next_cqe; case ETH_RX_CQE_TYPE_TPA_END: qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); goto next_rx_only; default: break; } } /* Get the data from the SW ring */ sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; data = sw_rx_data->data; fp_cqe = &cqe->fast_path_regular; len = le16_to_cpu(fp_cqe->len_on_first_bd); pad = fp_cqe->placement_offset; flags = cqe->fast_path_regular.pars_flags.flags; /* If this is an error packet then drop it */ parse_flag = le16_to_cpu(flags); csum_flag = qede_check_csum(parse_flag); if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { DP_NOTICE(edev, "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", sw_comp_cons, parse_flag); rxq->rx_hw_errors++; qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); goto next_cqe; } skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); if (unlikely(!skb)) { DP_NOTICE(edev, "Build_skb failed, dropping incoming packet\n"); qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); rxq->rx_alloc_errors++; goto next_cqe; } /* Copy data into SKB */ if (len + pad <= QEDE_RX_HDR_SIZE) { memcpy(skb_put(skb, len), page_address(data) + pad + sw_rx_data->page_offset, len); qede_reuse_page(edev, rxq, sw_rx_data); } else { struct skb_frag_struct *frag; unsigned int pull_len; unsigned char *va; frag = &skb_shinfo(skb)->frags[0]; skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data, pad + sw_rx_data->page_offset, len, rxq->rx_buf_seg_size); va = skb_frag_address(frag); pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); /* Align the pull_len to optimize memcpy */ memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); skb_frag_size_sub(frag, pull_len); frag->page_offset += pull_len; skb->data_len -= pull_len; skb->tail += pull_len; if (unlikely(qede_realloc_rx_buffer(edev, rxq, sw_rx_data))) { DP_ERR(edev, "Failed to allocate rx buffer\n"); /* Incr page ref count to reuse on allocation * failure so that it doesn't get freed while * freeing SKB. */ atomic_inc(&sw_rx_data->data->_count); rxq->rx_alloc_errors++; qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); dev_kfree_skb_any(skb); goto next_cqe; } } qede_rx_bd_ring_consume(rxq); if (fp_cqe->bd_num != 1) { u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len); u8 num_frags; pkt_len -= len; for (num_frags = fp_cqe->bd_num - 1; num_frags > 0; num_frags--) { u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : pkt_len; if (unlikely(!cur_size)) { DP_ERR(edev, "Still got %d BDs for mapping jumbo, but length became 0\n", num_frags); qede_recycle_rx_bd_ring(rxq, edev, num_frags); dev_kfree_skb_any(skb); goto next_cqe; } if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { qede_recycle_rx_bd_ring(rxq, edev, num_frags); dev_kfree_skb_any(skb); goto next_cqe; } sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; qede_rx_bd_ring_consume(rxq); dma_unmap_page(&edev->pdev->dev, sw_rx_data->mapping, PAGE_SIZE, DMA_FROM_DEVICE); skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, sw_rx_data->data, 0, cur_size); skb->truesize += PAGE_SIZE; skb->data_len += cur_size; skb->len += cur_size; pkt_len -= cur_size; } if (unlikely(pkt_len)) DP_ERR(edev, "Mapped all BDs of jumbo, but still have %d bytes\n", pkt_len); } skb->protocol = eth_type_trans(skb, edev->ndev); rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, fp_cqe->rss_hash, &rxhash_type); skb_set_hash(skb, rx_hash, rxhash_type); qede_set_skb_csum(skb, csum_flag); skb_record_rx_queue(skb, fp->rss_id); qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); next_rx_only: rx_pkt++; next_cqe: /* don't consume bd rx buffer */ qed_chain_recycle_consumed(&rxq->rx_comp_ring); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); /* CR TPA - revisit how to handle budget in TPA perhaps * increase on "end" */ if (rx_pkt == budget) break; } /* repeat while sw_comp_cons != hw_comp_cons... */ /* Update producers */ qede_update_rx_prod(edev, rxq); return rx_pkt; } static int qede_poll(struct napi_struct *napi, int budget) { int work_done = 0; struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, napi); struct qede_dev *edev = fp->edev; while (1) { u8 tc; for (tc = 0; tc < edev->num_tc; tc++) if (qede_txq_has_work(&fp->txqs[tc])) qede_tx_int(edev, &fp->txqs[tc]); if (qede_has_rx_work(fp->rxq)) { work_done += qede_rx_int(fp, budget - work_done); /* must not complete if we consumed full budget */ if (work_done >= budget) break; } /* Fall out from the NAPI loop if needed */ if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) { qed_sb_update_sb_idx(fp->sb_info); /* *_has_*_work() reads the status block, * thus we need to ensure that status block indices * have been actually read (qed_sb_update_sb_idx) * prior to this check (*_has_*_work) so that * we won't write the "newer" value of the status block * to HW (if there was a DMA right after * qede_has_rx_work and if there is no rmb, the memory * reading (qed_sb_update_sb_idx) may be postponed * to right before *_ack_sb). In this case there * will never be another interrupt until there is * another update of the status block, while there * is still unhandled work. */ rmb(); if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) { napi_complete(napi); /* Update and reenable interrupts */ qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1 /*update*/); break; } } } return work_done; } static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) { struct qede_fastpath *fp = fp_cookie; qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); napi_schedule_irqoff(&fp->napi); return IRQ_HANDLED; } /* ------------------------------------------------------------------------- * END OF FAST-PATH * ------------------------------------------------------------------------- */ static int qede_open(struct net_device *ndev); static int qede_close(struct net_device *ndev); static int qede_set_mac_addr(struct net_device *ndev, void *p); static void qede_set_rx_mode(struct net_device *ndev); static void qede_config_rx_mode(struct net_device *ndev); static int qede_set_ucast_rx_mac(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, unsigned char mac[ETH_ALEN]) { struct qed_filter_params filter_cmd; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_UCAST; filter_cmd.filter.ucast.type = opcode; filter_cmd.filter.ucast.mac_valid = 1; ether_addr_copy(filter_cmd.filter.ucast.mac, mac); return edev->ops->filter_config(edev->cdev, &filter_cmd); } static int qede_set_ucast_rx_vlan(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, u16 vid) { struct qed_filter_params filter_cmd; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_UCAST; filter_cmd.filter.ucast.type = opcode; filter_cmd.filter.ucast.vlan_valid = 1; filter_cmd.filter.ucast.vlan = vid; return edev->ops->filter_config(edev->cdev, &filter_cmd); } void qede_fill_by_demand_stats(struct qede_dev *edev) { struct qed_eth_stats stats; edev->ops->get_vport_stats(edev->cdev, &stats); edev->stats.no_buff_discards = stats.no_buff_discards; edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; edev->stats.mftag_filter_discards = stats.mftag_filter_discards; edev->stats.mac_filter_discards = stats.mac_filter_discards; edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; edev->stats.coalesced_events = stats.tpa_coalesced_events; edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets; edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets; edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets; edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets; edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets; edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets; edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets; edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets; edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets; edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets; edev->stats.rx_crc_errors = stats.rx_crc_errors; edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; edev->stats.rx_pause_frames = stats.rx_pause_frames; edev->stats.rx_pfc_frames = stats.rx_pfc_frames; edev->stats.rx_align_errors = stats.rx_align_errors; edev->stats.rx_carrier_errors = stats.rx_carrier_errors; edev->stats.rx_oversize_packets = stats.rx_oversize_packets; edev->stats.rx_jabbers = stats.rx_jabbers; edev->stats.rx_undersize_packets = stats.rx_undersize_packets; edev->stats.rx_fragments = stats.rx_fragments; edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; edev->stats.tx_128_to_255_byte_packets = stats.tx_128_to_255_byte_packets; edev->stats.tx_256_to_511_byte_packets = stats.tx_256_to_511_byte_packets; edev->stats.tx_512_to_1023_byte_packets = stats.tx_512_to_1023_byte_packets; edev->stats.tx_1024_to_1518_byte_packets = stats.tx_1024_to_1518_byte_packets; edev->stats.tx_1519_to_2047_byte_packets = stats.tx_1519_to_2047_byte_packets; edev->stats.tx_2048_to_4095_byte_packets = stats.tx_2048_to_4095_byte_packets; edev->stats.tx_4096_to_9216_byte_packets = stats.tx_4096_to_9216_byte_packets; edev->stats.tx_9217_to_16383_byte_packets = stats.tx_9217_to_16383_byte_packets; edev->stats.tx_pause_frames = stats.tx_pause_frames; edev->stats.tx_pfc_frames = stats.tx_pfc_frames; edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; edev->stats.tx_total_collisions = stats.tx_total_collisions; edev->stats.brb_truncates = stats.brb_truncates; edev->stats.brb_discards = stats.brb_discards; edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; } static struct rtnl_link_stats64 *qede_get_stats64( struct net_device *dev, struct rtnl_link_stats64 *stats) { struct qede_dev *edev = netdev_priv(dev); qede_fill_by_demand_stats(edev); stats->rx_packets = edev->stats.rx_ucast_pkts + edev->stats.rx_mcast_pkts + edev->stats.rx_bcast_pkts; stats->tx_packets = edev->stats.tx_ucast_pkts + edev->stats.tx_mcast_pkts + edev->stats.tx_bcast_pkts; stats->rx_bytes = edev->stats.rx_ucast_bytes + edev->stats.rx_mcast_bytes + edev->stats.rx_bcast_bytes; stats->tx_bytes = edev->stats.tx_ucast_bytes + edev->stats.tx_mcast_bytes + edev->stats.tx_bcast_bytes; stats->tx_errors = edev->stats.tx_err_drop_pkts; stats->multicast = edev->stats.rx_mcast_pkts + edev->stats.rx_bcast_pkts; stats->rx_fifo_errors = edev->stats.no_buff_discards; stats->collisions = edev->stats.tx_total_collisions; stats->rx_crc_errors = edev->stats.rx_crc_errors; stats->rx_frame_errors = edev->stats.rx_align_errors; return stats; } static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action) { struct qed_update_vport_params params; int rc; /* Proceed only if action actually needs to be performed */ if (edev->accept_any_vlan == action) return; memset(¶ms, 0, sizeof(params)); params.vport_id = 0; params.accept_any_vlan = action; params.update_accept_any_vlan_flg = 1; rc = edev->ops->vport_update(edev->cdev, ¶ms); if (rc) { DP_ERR(edev, "Failed to %s accept-any-vlan\n", action ? "enable" : "disable"); } else { DP_INFO(edev, "%s accept-any-vlan\n", action ? "enabled" : "disabled"); edev->accept_any_vlan = action; } } static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct qede_dev *edev = netdev_priv(dev); struct qede_vlan *vlan, *tmp; int rc; DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); if (!vlan) { DP_INFO(edev, "Failed to allocate struct for vlan\n"); return -ENOMEM; } INIT_LIST_HEAD(&vlan->list); vlan->vid = vid; vlan->configured = false; /* Verify vlan isn't already configured */ list_for_each_entry(tmp, &edev->vlan_list, list) { if (tmp->vid == vlan->vid) { DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), "vlan already configured\n"); kfree(vlan); return -EEXIST; } } /* If interface is down, cache this VLAN ID and return */ if (edev->state != QEDE_STATE_OPEN) { DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Interface is down, VLAN %d will be configured when interface is up\n", vid); if (vid != 0) edev->non_configured_vlans++; list_add(&vlan->list, &edev->vlan_list); return 0; } /* Check for the filter limit. * Note - vlan0 has a reserved filter and can be added without * worrying about quota */ if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || (vlan->vid == 0)) { rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, vlan->vid); if (rc) { DP_ERR(edev, "Failed to configure VLAN %d\n", vlan->vid); kfree(vlan); return -EINVAL; } vlan->configured = true; /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) edev->configured_vlans++; } else { /* Out of quota; Activate accept-any-VLAN mode */ if (!edev->non_configured_vlans) qede_config_accept_any_vlan(edev, true); edev->non_configured_vlans++; } list_add(&vlan->list, &edev->vlan_list); return 0; } static void qede_del_vlan_from_list(struct qede_dev *edev, struct qede_vlan *vlan) { /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) { if (vlan->configured) edev->configured_vlans--; else edev->non_configured_vlans--; } list_del(&vlan->list); kfree(vlan); } static int qede_configure_vlan_filters(struct qede_dev *edev) { int rc = 0, real_rc = 0, accept_any_vlan = 0; struct qed_dev_eth_info *dev_info; struct qede_vlan *vlan = NULL; if (list_empty(&edev->vlan_list)) return 0; dev_info = &edev->dev_info; /* Configure non-configured vlans */ list_for_each_entry(vlan, &edev->vlan_list, list) { if (vlan->configured) continue; /* We have used all our credits, now enable accept_any_vlan */ if ((vlan->vid != 0) && (edev->configured_vlans == dev_info->num_vlan_filters)) { accept_any_vlan = 1; continue; } DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, vlan->vid); if (rc) { DP_ERR(edev, "Failed to configure VLAN %u\n", vlan->vid); real_rc = rc; continue; } vlan->configured = true; /* vlan0 filter doesn't consume our VLAN filter's quota */ if (vlan->vid != 0) { edev->non_configured_vlans--; edev->configured_vlans++; } } /* enable accept_any_vlan mode if we have more VLANs than credits, * or remove accept_any_vlan mode if we've actually removed * a non-configured vlan, and all remaining vlans are truly configured. */ if (accept_any_vlan) qede_config_accept_any_vlan(edev, true); else if (!edev->non_configured_vlans) qede_config_accept_any_vlan(edev, false); return real_rc; } static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct qede_dev *edev = netdev_priv(dev); struct qede_vlan *vlan = NULL; int rc; DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); /* Find whether entry exists */ list_for_each_entry(vlan, &edev->vlan_list, list) if (vlan->vid == vid) break; if (!vlan || (vlan->vid != vid)) { DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), "Vlan isn't configured\n"); return 0; } if (edev->state != QEDE_STATE_OPEN) { /* As interface is already down, we don't have a VPORT * instance to remove vlan filter. So just update vlan list */ DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Interface is down, removing VLAN from list only\n"); qede_del_vlan_from_list(edev, vlan); return 0; } /* Remove vlan */ rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid); if (rc) { DP_ERR(edev, "Failed to remove VLAN %d\n", vid); return -EINVAL; } qede_del_vlan_from_list(edev, vlan); /* We have removed a VLAN - try to see if we can * configure non-configured VLAN from the list. */ rc = qede_configure_vlan_filters(edev); return rc; } static void qede_vlan_mark_nonconfigured(struct qede_dev *edev) { struct qede_vlan *vlan = NULL; if (list_empty(&edev->vlan_list)) return; list_for_each_entry(vlan, &edev->vlan_list, list) { if (!vlan->configured) continue; vlan->configured = false; /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) { edev->non_configured_vlans++; edev->configured_vlans--; } DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "marked vlan %d as non-configured\n", vlan->vid); } edev->accept_any_vlan = false; } #ifdef CONFIG_QEDE_VXLAN static void qede_add_vxlan_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct qede_dev *edev = netdev_priv(dev); u16 t_port = ntohs(port); if (edev->vxlan_dst_port) return; edev->vxlan_dst_port = t_port; DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port); set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } static void qede_del_vxlan_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct qede_dev *edev = netdev_priv(dev); u16 t_port = ntohs(port); if (t_port != edev->vxlan_dst_port) return; edev->vxlan_dst_port = 0; DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port); set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } #endif #ifdef CONFIG_QEDE_GENEVE static void qede_add_geneve_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct qede_dev *edev = netdev_priv(dev); u16 t_port = ntohs(port); if (edev->geneve_dst_port) return; edev->geneve_dst_port = t_port; DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port); set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } static void qede_del_geneve_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct qede_dev *edev = netdev_priv(dev); u16 t_port = ntohs(port); if (t_port != edev->geneve_dst_port) return; edev->geneve_dst_port = 0; DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port); set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } #endif static const struct net_device_ops qede_netdev_ops = { .ndo_open = qede_open, .ndo_stop = qede_close, .ndo_start_xmit = qede_start_xmit, .ndo_set_rx_mode = qede_set_rx_mode, .ndo_set_mac_address = qede_set_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = qede_change_mtu, .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, .ndo_get_stats64 = qede_get_stats64, #ifdef CONFIG_QEDE_VXLAN .ndo_add_vxlan_port = qede_add_vxlan_port, .ndo_del_vxlan_port = qede_del_vxlan_port, #endif #ifdef CONFIG_QEDE_GENEVE .ndo_add_geneve_port = qede_add_geneve_port, .ndo_del_geneve_port = qede_del_geneve_port, #endif }; /* ------------------------------------------------------------------------- * START OF PROBE / REMOVE * ------------------------------------------------------------------------- */ static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, struct pci_dev *pdev, struct qed_dev_eth_info *info, u32 dp_module, u8 dp_level) { struct net_device *ndev; struct qede_dev *edev; ndev = alloc_etherdev_mqs(sizeof(*edev), info->num_queues, info->num_queues); if (!ndev) { pr_err("etherdev allocation failed\n"); return NULL; } edev = netdev_priv(ndev); edev->ndev = ndev; edev->cdev = cdev; edev->pdev = pdev; edev->dp_module = dp_module; edev->dp_level = dp_level; edev->ops = qed_ops; edev->q_num_rx_buffers = NUM_RX_BDS_DEF; edev->q_num_tx_buffers = NUM_TX_BDS_DEF; DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n"); SET_NETDEV_DEV(ndev, &pdev->dev); memset(&edev->stats, 0, sizeof(edev->stats)); memcpy(&edev->dev_info, info, sizeof(*info)); edev->num_tc = edev->dev_info.num_tc; INIT_LIST_HEAD(&edev->vlan_list); return edev; } static void qede_init_ndev(struct qede_dev *edev) { struct net_device *ndev = edev->ndev; struct pci_dev *pdev = edev->pdev; u32 hw_features; pci_set_drvdata(pdev, ndev); ndev->mem_start = edev->dev_info.common.pci_mem_start; ndev->base_addr = ndev->mem_start; ndev->mem_end = edev->dev_info.common.pci_mem_end; ndev->irq = edev->dev_info.common.pci_irq; ndev->watchdog_timeo = TX_TIMEOUT; ndev->netdev_ops = &qede_netdev_ops; qede_set_ethtool_ops(ndev); /* user-changeble features */ hw_features = NETIF_F_GRO | NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6; /* Encap features*/ hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_TSO_ECN; ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM; ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | NETIF_F_HIGHDMA; ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; ndev->hw_features = hw_features; /* Set network device HW mac */ ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); } /* This function converts from 32b param to two params of level and module * Input 32b decoding: * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the * 'happy' flow, e.g. memory allocation failed. * b30 - enable all INFO prints. INFO prints are for major steps in the flow * and provide important parameters. * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that * module. VERBOSE prints are for tracking the specific flow in low level. * * Notice that the level should be that of the lowest required logs. */ void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) { *p_dp_level = QED_LEVEL_NOTICE; *p_dp_module = 0; if (debug & QED_LOG_VERBOSE_MASK) { *p_dp_level = QED_LEVEL_VERBOSE; *p_dp_module = (debug & 0x3FFFFFFF); } else if (debug & QED_LOG_INFO_MASK) { *p_dp_level = QED_LEVEL_INFO; } else if (debug & QED_LOG_NOTICE_MASK) { *p_dp_level = QED_LEVEL_NOTICE; } } static void qede_free_fp_array(struct qede_dev *edev) { if (edev->fp_array) { struct qede_fastpath *fp; int i; for_each_rss(i) { fp = &edev->fp_array[i]; kfree(fp->sb_info); kfree(fp->rxq); kfree(fp->txqs); } kfree(edev->fp_array); } edev->num_rss = 0; } static int qede_alloc_fp_array(struct qede_dev *edev) { struct qede_fastpath *fp; int i; edev->fp_array = kcalloc(QEDE_RSS_CNT(edev), sizeof(*edev->fp_array), GFP_KERNEL); if (!edev->fp_array) { DP_NOTICE(edev, "fp array allocation failed\n"); goto err; } for_each_rss(i) { fp = &edev->fp_array[i]; fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); if (!fp->sb_info) { DP_NOTICE(edev, "sb info struct allocation failed\n"); goto err; } fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); if (!fp->rxq) { DP_NOTICE(edev, "RXQ struct allocation failed\n"); goto err; } fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL); if (!fp->txqs) { DP_NOTICE(edev, "TXQ array allocation failed\n"); goto err; } } return 0; err: qede_free_fp_array(edev); return -ENOMEM; } static void qede_sp_task(struct work_struct *work) { struct qede_dev *edev = container_of(work, struct qede_dev, sp_task.work); struct qed_dev *cdev = edev->cdev; mutex_lock(&edev->qede_lock); if (edev->state == QEDE_STATE_OPEN) { if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) qede_config_rx_mode(edev->ndev); } if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) { struct qed_tunn_params tunn_params; memset(&tunn_params, 0, sizeof(tunn_params)); tunn_params.update_vxlan_port = 1; tunn_params.vxlan_port = edev->vxlan_dst_port; qed_ops->tunn_config(cdev, &tunn_params); } if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) { struct qed_tunn_params tunn_params; memset(&tunn_params, 0, sizeof(tunn_params)); tunn_params.update_geneve_port = 1; tunn_params.geneve_port = edev->geneve_dst_port; qed_ops->tunn_config(cdev, &tunn_params); } mutex_unlock(&edev->qede_lock); } static void qede_update_pf_params(struct qed_dev *cdev) { struct qed_pf_params pf_params; /* 16 rx + 16 tx */ memset(&pf_params, 0, sizeof(struct qed_pf_params)); pf_params.eth_pf_params.num_cons = 32; qed_ops->common->update_pf_params(cdev, &pf_params); } enum qede_probe_mode { QEDE_PROBE_NORMAL, }; static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, enum qede_probe_mode mode) { struct qed_slowpath_params params; struct qed_dev_eth_info dev_info; struct qede_dev *edev; struct qed_dev *cdev; int rc; if (unlikely(dp_level & QED_LEVEL_INFO)) pr_notice("Starting qede probe\n"); cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH, dp_module, dp_level); if (!cdev) { rc = -ENODEV; goto err0; } qede_update_pf_params(cdev); /* Start the Slowpath-process */ memset(¶ms, 0, sizeof(struct qed_slowpath_params)); params.int_mode = QED_INT_MODE_MSIX; params.drv_major = QEDE_MAJOR_VERSION; params.drv_minor = QEDE_MINOR_VERSION; params.drv_rev = QEDE_REVISION_VERSION; params.drv_eng = QEDE_ENGINEERING_VERSION; strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE); rc = qed_ops->common->slowpath_start(cdev, ¶ms); if (rc) { pr_notice("Cannot start slowpath\n"); goto err1; } /* Learn information crucial for qede to progress */ rc = qed_ops->fill_dev_info(cdev, &dev_info); if (rc) goto err2; edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, dp_level); if (!edev) { rc = -ENOMEM; goto err2; } qede_init_ndev(edev); rc = register_netdev(edev->ndev); if (rc) { DP_NOTICE(edev, "Cannot register net-device\n"); goto err3; } edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); edev->ops->register_ops(cdev, &qede_ll_ops, edev); INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); mutex_init(&edev->qede_lock); DP_INFO(edev, "Ending successfully qede probe\n"); return 0; err3: free_netdev(edev->ndev); err2: qed_ops->common->slowpath_stop(cdev); err1: qed_ops->common->remove(cdev); err0: return rc; } static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) { u32 dp_module = 0; u8 dp_level = 0; qede_config_debug(debug, &dp_module, &dp_level); return __qede_probe(pdev, dp_module, dp_level, QEDE_PROBE_NORMAL); } enum qede_remove_mode { QEDE_REMOVE_NORMAL, }; static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) { struct net_device *ndev = pci_get_drvdata(pdev); struct qede_dev *edev = netdev_priv(ndev); struct qed_dev *cdev = edev->cdev; DP_INFO(edev, "Starting qede_remove\n"); cancel_delayed_work_sync(&edev->sp_task); unregister_netdev(ndev); edev->ops->common->set_power_state(cdev, PCI_D0); pci_set_drvdata(pdev, NULL); free_netdev(ndev); /* Use global ops since we've freed edev */ qed_ops->common->slowpath_stop(cdev); qed_ops->common->remove(cdev); pr_notice("Ending successfully qede_remove\n"); } static void qede_remove(struct pci_dev *pdev) { __qede_remove(pdev, QEDE_REMOVE_NORMAL); } /* ------------------------------------------------------------------------- * START OF LOAD / UNLOAD * ------------------------------------------------------------------------- */ static int qede_set_num_queues(struct qede_dev *edev) { int rc; u16 rss_num; /* Setup queues according to possible resources*/ if (edev->req_rss) rss_num = edev->req_rss; else rss_num = netif_get_num_default_rss_queues() * edev->dev_info.common.num_hwfns; rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); if (rc > 0) { /* Managed to request interrupts for our queues */ edev->num_rss = rc; DP_INFO(edev, "Managed %d [of %d] RSS queues\n", QEDE_RSS_CNT(edev), rss_num); rc = 0; } return rc; } static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info) { if (sb_info->sb_virt) dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), (void *)sb_info->sb_virt, sb_info->sb_phys); } /* This function allocates fast-path status block memory */ static int qede_alloc_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, u16 sb_id) { struct status_block *sb_virt; dma_addr_t sb_phys; int rc; sb_virt = dma_alloc_coherent(&edev->pdev->dev, sizeof(*sb_virt), &sb_phys, GFP_KERNEL); if (!sb_virt) { DP_ERR(edev, "Status block allocation failed\n"); return -ENOMEM; } rc = edev->ops->common->sb_init(edev->cdev, sb_info, sb_virt, sb_phys, sb_id, QED_SB_TYPE_L2_QUEUE); if (rc) { DP_ERR(edev, "Status block initialization failed\n"); dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), sb_virt, sb_phys); return rc; } return 0; } static void qede_free_rx_buffers(struct qede_dev *edev, struct qede_rx_queue *rxq) { u16 i; for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { struct sw_rx_data *rx_buf; struct page *data; rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; data = rx_buf->data; dma_unmap_page(&edev->pdev->dev, rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE); rx_buf->data = NULL; __free_page(data); } } static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) { int i; if (edev->gro_disable) return; for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; struct sw_rx_data *replace_buf = &tpa_info->replace_buf; if (replace_buf->data) { dma_unmap_page(&edev->pdev->dev, dma_unmap_addr(replace_buf, mapping), PAGE_SIZE, DMA_FROM_DEVICE); __free_page(replace_buf->data); } } } static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) { qede_free_sge_mem(edev, rxq); /* Free rx buffers */ qede_free_rx_buffers(edev, rxq); /* Free the parallel SW ring */ kfree(rxq->sw_rx_ring); /* Free the real RQ ring used by FW */ edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); } static int qede_alloc_rx_buffer(struct qede_dev *edev, struct qede_rx_queue *rxq) { struct sw_rx_data *sw_rx_data; struct eth_rx_bd *rx_bd; dma_addr_t mapping; struct page *data; u16 rx_buf_size; rx_buf_size = rxq->rx_buf_size; data = alloc_pages(GFP_ATOMIC, 0); if (unlikely(!data)) { DP_NOTICE(edev, "Failed to allocate Rx data [page]\n"); return -ENOMEM; } /* Map the entire page as it would be used * for multiple RX buffer segment size mapping. */ mapping = dma_map_page(&edev->pdev->dev, data, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { __free_page(data); DP_NOTICE(edev, "Failed to map Rx buffer\n"); return -ENOMEM; } sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; sw_rx_data->page_offset = 0; sw_rx_data->data = data; sw_rx_data->mapping = mapping; /* Advance PROD and get BD pointer */ rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); WARN_ON(!rx_bd); rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); rxq->sw_rx_prod++; return 0; } static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) { dma_addr_t mapping; int i; if (edev->gro_disable) return 0; if (edev->ndev->mtu > PAGE_SIZE) { edev->gro_disable = 1; return 0; } for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; struct sw_rx_data *replace_buf = &tpa_info->replace_buf; replace_buf->data = alloc_pages(GFP_ATOMIC, 0); if (unlikely(!replace_buf->data)) { DP_NOTICE(edev, "Failed to allocate TPA skb pool [replacement buffer]\n"); goto err; } mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, rxq->rx_buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { DP_NOTICE(edev, "Failed to map TPA replacement buffer\n"); goto err; } dma_unmap_addr_set(replace_buf, mapping, mapping); tpa_info->replace_buf.page_offset = 0; tpa_info->replace_buf_mapping = mapping; tpa_info->agg_state = QEDE_AGG_STATE_NONE; } return 0; err: qede_free_sge_mem(edev, rxq); edev->gro_disable = 1; return -ENOMEM; } /* This function allocates all memory needed per Rx queue */ static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) { int i, rc, size; rxq->num_rx_buffers = edev->q_num_rx_buffers; rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; if (rxq->rx_buf_size > PAGE_SIZE) rxq->rx_buf_size = PAGE_SIZE; /* Segment size to spilt a page in multiple equal parts */ rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); /* Allocate the parallel driver ring for Rx buffers */ size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); if (!rxq->sw_rx_ring) { DP_ERR(edev, "Rx buffers ring allocation failed\n"); rc = -ENOMEM; goto err; } /* Allocate FW Rx ring */ rc = edev->ops->common->chain_alloc(edev->cdev, QED_CHAIN_USE_TO_CONSUME_PRODUCE, QED_CHAIN_MODE_NEXT_PTR, RX_RING_SIZE, sizeof(struct eth_rx_bd), &rxq->rx_bd_ring); if (rc) goto err; /* Allocate FW completion ring */ rc = edev->ops->common->chain_alloc(edev->cdev, QED_CHAIN_USE_TO_CONSUME, QED_CHAIN_MODE_PBL, RX_RING_SIZE, sizeof(union eth_rx_cqe), &rxq->rx_comp_ring); if (rc) goto err; /* Allocate buffers for the Rx ring */ for (i = 0; i < rxq->num_rx_buffers; i++) { rc = qede_alloc_rx_buffer(edev, rxq); if (rc) { DP_ERR(edev, "Rx buffers allocation failed at index %d\n", i); goto err; } } rc = qede_alloc_sge_mem(edev, rxq); err: return rc; } static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) { /* Free the parallel SW ring */ kfree(txq->sw_tx_ring); /* Free the real RQ ring used by FW */ edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); } /* This function allocates all memory needed per Tx queue */ static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) { int size, rc; union eth_tx_bd_types *p_virt; txq->num_tx_buffers = edev->q_num_tx_buffers; /* Allocate the parallel driver ring for Tx buffers */ size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); if (!txq->sw_tx_ring) { DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); goto err; } rc = edev->ops->common->chain_alloc(edev->cdev, QED_CHAIN_USE_TO_CONSUME_PRODUCE, QED_CHAIN_MODE_PBL, NUM_TX_BDS_MAX, sizeof(*p_virt), &txq->tx_pbl); if (rc) goto err; return 0; err: qede_free_mem_txq(edev, txq); return -ENOMEM; } /* This function frees all memory of a single fp */ static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) { int tc; qede_free_mem_sb(edev, fp->sb_info); qede_free_mem_rxq(edev, fp->rxq); for (tc = 0; tc < edev->num_tc; tc++) qede_free_mem_txq(edev, &fp->txqs[tc]); } /* This function allocates all memory needed for a single fp (i.e. an entity * which contains status block, one rx queue and multiple per-TC tx queues. */ static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) { int rc, tc; rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id); if (rc) goto err; rc = qede_alloc_mem_rxq(edev, fp->rxq); if (rc) goto err; for (tc = 0; tc < edev->num_tc; tc++) { rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); if (rc) goto err; } return 0; err: return rc; } static void qede_free_mem_load(struct qede_dev *edev) { int i; for_each_rss(i) { struct qede_fastpath *fp = &edev->fp_array[i]; qede_free_mem_fp(edev, fp); } } /* This function allocates all qede memory at NIC load. */ static int qede_alloc_mem_load(struct qede_dev *edev) { int rc = 0, rss_id; for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) { struct qede_fastpath *fp = &edev->fp_array[rss_id]; rc = qede_alloc_mem_fp(edev, fp); if (rc) { DP_ERR(edev, "Failed to allocate memory for fastpath - rss id = %d\n", rss_id); qede_free_mem_load(edev); return rc; } } return 0; } /* This function inits fp content and resets the SB, RXQ and TXQ structures */ static void qede_init_fp(struct qede_dev *edev) { int rss_id, txq_index, tc; struct qede_fastpath *fp; for_each_rss(rss_id) { fp = &edev->fp_array[rss_id]; fp->edev = edev; fp->rss_id = rss_id; memset((void *)&fp->napi, 0, sizeof(fp->napi)); memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); fp->rxq->rxq_id = rss_id; memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs))); for (tc = 0; tc < edev->num_tc; tc++) { txq_index = tc * QEDE_RSS_CNT(edev) + rss_id; fp->txqs[tc].index = txq_index; } snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", edev->ndev->name, rss_id); } edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); } static int qede_set_real_num_queues(struct qede_dev *edev) { int rc = 0; rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev)); if (rc) { DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); return rc; } rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev)); if (rc) { DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); return rc; } return 0; } static void qede_napi_disable_remove(struct qede_dev *edev) { int i; for_each_rss(i) { napi_disable(&edev->fp_array[i].napi); netif_napi_del(&edev->fp_array[i].napi); } } static void qede_napi_add_enable(struct qede_dev *edev) { int i; /* Add NAPI objects */ for_each_rss(i) { netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll, NAPI_POLL_WEIGHT); napi_enable(&edev->fp_array[i].napi); } } static void qede_sync_free_irqs(struct qede_dev *edev) { int i; for (i = 0; i < edev->int_info.used_cnt; i++) { if (edev->int_info.msix_cnt) { synchronize_irq(edev->int_info.msix[i].vector); free_irq(edev->int_info.msix[i].vector, &edev->fp_array[i]); } else { edev->ops->common->simd_handler_clean(edev->cdev, i); } } edev->int_info.used_cnt = 0; } static int qede_req_msix_irqs(struct qede_dev *edev) { int i, rc; /* Sanitize number of interrupts == number of prepared RSS queues */ if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) { DP_ERR(edev, "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", QEDE_RSS_CNT(edev), edev->int_info.msix_cnt); return -EINVAL; } for (i = 0; i < QEDE_RSS_CNT(edev); i++) { rc = request_irq(edev->int_info.msix[i].vector, qede_msix_fp_int, 0, edev->fp_array[i].name, &edev->fp_array[i]); if (rc) { DP_ERR(edev, "Request fp %d irq failed\n", i); qede_sync_free_irqs(edev); return rc; } DP_VERBOSE(edev, NETIF_MSG_INTR, "Requested fp irq for %s [entry %d]. Cookie is at %p\n", edev->fp_array[i].name, i, &edev->fp_array[i]); edev->int_info.used_cnt++; } return 0; } static void qede_simd_fp_handler(void *cookie) { struct qede_fastpath *fp = (struct qede_fastpath *)cookie; napi_schedule_irqoff(&fp->napi); } static int qede_setup_irqs(struct qede_dev *edev) { int i, rc = 0; /* Learn Interrupt configuration */ rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); if (rc) return rc; if (edev->int_info.msix_cnt) { rc = qede_req_msix_irqs(edev); if (rc) return rc; edev->ndev->irq = edev->int_info.msix[0].vector; } else { const struct qed_common_ops *ops; /* qed should learn receive the RSS ids and callbacks */ ops = edev->ops->common; for (i = 0; i < QEDE_RSS_CNT(edev); i++) ops->simd_handler_config(edev->cdev, &edev->fp_array[i], i, qede_simd_fp_handler); edev->int_info.used_cnt = QEDE_RSS_CNT(edev); } return 0; } static int qede_drain_txq(struct qede_dev *edev, struct qede_tx_queue *txq, bool allow_drain) { int rc, cnt = 1000; while (txq->sw_tx_cons != txq->sw_tx_prod) { if (!cnt) { if (allow_drain) { DP_NOTICE(edev, "Tx queue[%d] is stuck, requesting MCP to drain\n", txq->index); rc = edev->ops->common->drain(edev->cdev); if (rc) return rc; return qede_drain_txq(edev, txq, false); } DP_NOTICE(edev, "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", txq->index, txq->sw_tx_prod, txq->sw_tx_cons); return -ENODEV; } cnt--; usleep_range(1000, 2000); barrier(); } /* FW finished processing, wait for HW to transmit all tx packets */ usleep_range(1000, 2000); return 0; } static int qede_stop_queues(struct qede_dev *edev) { struct qed_update_vport_params vport_update_params; struct qed_dev *cdev = edev->cdev; int rc, tc, i; /* Disable the vport */ memset(&vport_update_params, 0, sizeof(vport_update_params)); vport_update_params.vport_id = 0; vport_update_params.update_vport_active_flg = 1; vport_update_params.vport_active_flg = 0; vport_update_params.update_rss_flg = 0; rc = edev->ops->vport_update(cdev, &vport_update_params); if (rc) { DP_ERR(edev, "Failed to update vport\n"); return rc; } /* Flush Tx queues. If needed, request drain from MCP */ for_each_rss(i) { struct qede_fastpath *fp = &edev->fp_array[i]; for (tc = 0; tc < edev->num_tc; tc++) { struct qede_tx_queue *txq = &fp->txqs[tc]; rc = qede_drain_txq(edev, txq, true); if (rc) return rc; } } /* Stop all Queues in reverse order*/ for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) { struct qed_stop_rxq_params rx_params; /* Stop the Tx Queue(s)*/ for (tc = 0; tc < edev->num_tc; tc++) { struct qed_stop_txq_params tx_params; tx_params.rss_id = i; tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i; rc = edev->ops->q_tx_stop(cdev, &tx_params); if (rc) { DP_ERR(edev, "Failed to stop TXQ #%d\n", tx_params.tx_queue_id); return rc; } } /* Stop the Rx Queue*/ memset(&rx_params, 0, sizeof(rx_params)); rx_params.rss_id = i; rx_params.rx_queue_id = i; rc = edev->ops->q_rx_stop(cdev, &rx_params); if (rc) { DP_ERR(edev, "Failed to stop RXQ #%d\n", i); return rc; } } /* Stop the vport */ rc = edev->ops->vport_stop(cdev, 0); if (rc) DP_ERR(edev, "Failed to stop VPORT\n"); return rc; } static int qede_start_queues(struct qede_dev *edev) { int rc, tc, i; int vlan_removal_en = 1; struct qed_dev *cdev = edev->cdev; struct qed_update_vport_params vport_update_params; struct qed_queue_start_common_params q_params; struct qed_start_vport_params start = {0}; bool reset_rss_indir = false; if (!edev->num_rss) { DP_ERR(edev, "Cannot update V-VPORT as active as there are no Rx queues\n"); return -EINVAL; } start.gro_enable = !edev->gro_disable; start.mtu = edev->ndev->mtu; start.vport_id = 0; start.drop_ttl0 = true; start.remove_inner_vlan = vlan_removal_en; rc = edev->ops->vport_start(cdev, &start); if (rc) { DP_ERR(edev, "Start V-PORT failed %d\n", rc); return rc; } DP_VERBOSE(edev, NETIF_MSG_IFUP, "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); for_each_rss(i) { struct qede_fastpath *fp = &edev->fp_array[i]; dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table; memset(&q_params, 0, sizeof(q_params)); q_params.rss_id = i; q_params.queue_id = i; q_params.vport_id = 0; q_params.sb = fp->sb_info->igu_sb_id; q_params.sb_idx = RX_PI; rc = edev->ops->q_rx_start(cdev, &q_params, fp->rxq->rx_buf_size, fp->rxq->rx_bd_ring.p_phys_addr, phys_table, fp->rxq->rx_comp_ring.page_cnt, &fp->rxq->hw_rxq_prod_addr); if (rc) { DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); return rc; } fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; qede_update_rx_prod(edev, fp->rxq); for (tc = 0; tc < edev->num_tc; tc++) { struct qede_tx_queue *txq = &fp->txqs[tc]; int txq_index = tc * QEDE_RSS_CNT(edev) + i; memset(&q_params, 0, sizeof(q_params)); q_params.rss_id = i; q_params.queue_id = txq_index; q_params.vport_id = 0; q_params.sb = fp->sb_info->igu_sb_id; q_params.sb_idx = TX_PI(tc); rc = edev->ops->q_tx_start(cdev, &q_params, txq->tx_pbl.pbl.p_phys_table, txq->tx_pbl.page_cnt, &txq->doorbell_addr); if (rc) { DP_ERR(edev, "Start TXQ #%d failed %d\n", txq_index, rc); return rc; } txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, DQ_XCM_ETH_TX_BD_PROD_CMD); txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; } } /* Prepare and send the vport enable */ memset(&vport_update_params, 0, sizeof(vport_update_params)); vport_update_params.vport_id = start.vport_id; vport_update_params.update_vport_active_flg = 1; vport_update_params.vport_active_flg = 1; /* Fill struct with RSS params */ if (QEDE_RSS_CNT(edev) > 1) { vport_update_params.update_rss_flg = 1; /* Need to validate current RSS config uses valid entries */ for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { if (edev->rss_params.rss_ind_table[i] >= edev->num_rss) { reset_rss_indir = true; break; } } if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || reset_rss_indir) { u16 val; for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { u16 indir_val; val = QEDE_RSS_CNT(edev); indir_val = ethtool_rxfh_indir_default(i, val); edev->rss_params.rss_ind_table[i] = indir_val; } edev->rss_params_inited |= QEDE_RSS_INDIR_INITED; } if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) { netdev_rss_key_fill(edev->rss_params.rss_key, sizeof(edev->rss_params.rss_key)); edev->rss_params_inited |= QEDE_RSS_KEY_INITED; } if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) { edev->rss_params.rss_caps = QED_RSS_IPV4 | QED_RSS_IPV6 | QED_RSS_IPV4_TCP | QED_RSS_IPV6_TCP; edev->rss_params_inited |= QEDE_RSS_CAPS_INITED; } memcpy(&vport_update_params.rss_params, &edev->rss_params, sizeof(vport_update_params.rss_params)); } else { memset(&vport_update_params.rss_params, 0, sizeof(vport_update_params.rss_params)); } rc = edev->ops->vport_update(cdev, &vport_update_params); if (rc) { DP_ERR(edev, "Update V-PORT failed %d\n", rc); return rc; } return 0; } static int qede_set_mcast_rx_mac(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, unsigned char *mac, int num_macs) { struct qed_filter_params filter_cmd; int i; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_MCAST; filter_cmd.filter.mcast.type = opcode; filter_cmd.filter.mcast.num = num_macs; for (i = 0; i < num_macs; i++, mac += ETH_ALEN) ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); return edev->ops->filter_config(edev->cdev, &filter_cmd); } enum qede_unload_mode { QEDE_UNLOAD_NORMAL, }; static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) { struct qed_link_params link_params; int rc; DP_INFO(edev, "Starting qede unload\n"); mutex_lock(&edev->qede_lock); edev->state = QEDE_STATE_CLOSED; /* Close OS Tx */ netif_tx_disable(edev->ndev); netif_carrier_off(edev->ndev); /* Reset the link */ memset(&link_params, 0, sizeof(link_params)); link_params.link_up = false; edev->ops->common->set_link(edev->cdev, &link_params); rc = qede_stop_queues(edev); if (rc) { qede_sync_free_irqs(edev); goto out; } DP_INFO(edev, "Stopped Queues\n"); qede_vlan_mark_nonconfigured(edev); edev->ops->fastpath_stop(edev->cdev); /* Release the interrupts */ qede_sync_free_irqs(edev); edev->ops->common->set_fp_int(edev->cdev, 0); qede_napi_disable_remove(edev); qede_free_mem_load(edev); qede_free_fp_array(edev); out: mutex_unlock(&edev->qede_lock); DP_INFO(edev, "Ending qede unload\n"); } enum qede_load_mode { QEDE_LOAD_NORMAL, }; static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) { struct qed_link_params link_params; struct qed_link_output link_output; int rc; DP_INFO(edev, "Starting qede load\n"); rc = qede_set_num_queues(edev); if (rc) goto err0; rc = qede_alloc_fp_array(edev); if (rc) goto err0; qede_init_fp(edev); rc = qede_alloc_mem_load(edev); if (rc) goto err1; DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", QEDE_RSS_CNT(edev), edev->num_tc); rc = qede_set_real_num_queues(edev); if (rc) goto err2; qede_napi_add_enable(edev); DP_INFO(edev, "Napi added and enabled\n"); rc = qede_setup_irqs(edev); if (rc) goto err3; DP_INFO(edev, "Setup IRQs succeeded\n"); rc = qede_start_queues(edev); if (rc) goto err4; DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); /* Add primary mac and set Rx filters */ ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); mutex_lock(&edev->qede_lock); edev->state = QEDE_STATE_OPEN; mutex_unlock(&edev->qede_lock); /* Program un-configured VLANs */ qede_configure_vlan_filters(edev); /* Ask for link-up using current configuration */ memset(&link_params, 0, sizeof(link_params)); link_params.link_up = true; edev->ops->common->set_link(edev->cdev, &link_params); /* Query whether link is already-up */ memset(&link_output, 0, sizeof(link_output)); edev->ops->common->get_link(edev->cdev, &link_output); qede_link_update(edev, &link_output); DP_INFO(edev, "Ending successfully qede load\n"); return 0; err4: qede_sync_free_irqs(edev); memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); err3: qede_napi_disable_remove(edev); err2: qede_free_mem_load(edev); err1: edev->ops->common->set_fp_int(edev->cdev, 0); qede_free_fp_array(edev); edev->num_rss = 0; err0: return rc; } void qede_reload(struct qede_dev *edev, void (*func)(struct qede_dev *, union qede_reload_args *), union qede_reload_args *args) { qede_unload(edev, QEDE_UNLOAD_NORMAL); /* Call function handler to update parameters * needed for function load. */ if (func) func(edev, args); qede_load(edev, QEDE_LOAD_NORMAL); mutex_lock(&edev->qede_lock); qede_config_rx_mode(edev->ndev); mutex_unlock(&edev->qede_lock); } /* called with rtnl_lock */ static int qede_open(struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); int rc; netif_carrier_off(ndev); edev->ops->common->set_power_state(edev->cdev, PCI_D0); rc = qede_load(edev, QEDE_LOAD_NORMAL); if (rc) return rc; #ifdef CONFIG_QEDE_VXLAN vxlan_get_rx_port(ndev); #endif #ifdef CONFIG_QEDE_GENEVE geneve_get_rx_port(ndev); #endif return 0; } static int qede_close(struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); qede_unload(edev, QEDE_UNLOAD_NORMAL); return 0; } static void qede_link_update(void *dev, struct qed_link_output *link) { struct qede_dev *edev = dev; if (!netif_running(edev->ndev)) { DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); return; } if (link->link_up) { if (!netif_carrier_ok(edev->ndev)) { DP_NOTICE(edev, "Link is up\n"); netif_tx_start_all_queues(edev->ndev); netif_carrier_on(edev->ndev); } } else { if (netif_carrier_ok(edev->ndev)) { DP_NOTICE(edev, "Link is down\n"); netif_tx_disable(edev->ndev); netif_carrier_off(edev->ndev); } } } static int qede_set_mac_addr(struct net_device *ndev, void *p) { struct qede_dev *edev = netdev_priv(ndev); struct sockaddr *addr = p; int rc; ASSERT_RTNL(); /* @@@TBD To be removed */ DP_INFO(edev, "Set_mac_addr called\n"); if (!is_valid_ether_addr(addr->sa_data)) { DP_NOTICE(edev, "The MAC address is not valid\n"); return -EFAULT; } ether_addr_copy(ndev->dev_addr, addr->sa_data); if (!netif_running(ndev)) { DP_NOTICE(edev, "The device is currently down\n"); return 0; } /* Remove the previous primary mac */ rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, edev->primary_mac); if (rc) return rc; /* Add MAC filter according to the new unicast HW MAC address */ ether_addr_copy(edev->primary_mac, ndev->dev_addr); return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, edev->primary_mac); } static int qede_configure_mcast_filtering(struct net_device *ndev, enum qed_filter_rx_mode_type *accept_flags) { struct qede_dev *edev = netdev_priv(ndev); unsigned char *mc_macs, *temp; struct netdev_hw_addr *ha; int rc = 0, mc_count; size_t size; size = 64 * ETH_ALEN; mc_macs = kzalloc(size, GFP_KERNEL); if (!mc_macs) { DP_NOTICE(edev, "Failed to allocate memory for multicast MACs\n"); rc = -ENOMEM; goto exit; } temp = mc_macs; /* Remove all previously configured MAC filters */ rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, mc_macs, 1); if (rc) goto exit; netif_addr_lock_bh(ndev); mc_count = netdev_mc_count(ndev); if (mc_count < 64) { netdev_for_each_mc_addr(ha, ndev) { ether_addr_copy(temp, ha->addr); temp += ETH_ALEN; } } netif_addr_unlock_bh(ndev); /* Check for all multicast @@@TBD resource allocation */ if ((ndev->flags & IFF_ALLMULTI) || (mc_count > 64)) { if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; } else { /* Add all multicast MAC filters */ rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, mc_macs, mc_count); } exit: kfree(mc_macs); return rc; } static void qede_set_rx_mode(struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); DP_INFO(edev, "qede_set_rx_mode called\n"); if (edev->state != QEDE_STATE_OPEN) { DP_INFO(edev, "qede_set_rx_mode called while interface is down\n"); } else { set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } } /* Must be called with qede_lock held */ static void qede_config_rx_mode(struct net_device *ndev) { enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; struct qede_dev *edev = netdev_priv(ndev); struct qed_filter_params rx_mode; unsigned char *uc_macs, *temp; struct netdev_hw_addr *ha; int rc, uc_count; size_t size; netif_addr_lock_bh(ndev); uc_count = netdev_uc_count(ndev); size = uc_count * ETH_ALEN; uc_macs = kzalloc(size, GFP_ATOMIC); if (!uc_macs) { DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); netif_addr_unlock_bh(ndev); return; } temp = uc_macs; netdev_for_each_uc_addr(ha, ndev) { ether_addr_copy(temp, ha->addr); temp += ETH_ALEN; } netif_addr_unlock_bh(ndev); /* Configure the struct for the Rx mode */ memset(&rx_mode, 0, sizeof(struct qed_filter_params)); rx_mode.type = QED_FILTER_TYPE_RX_MODE; /* Remove all previous unicast secondary macs and multicast macs * (configrue / leave the primary mac) */ rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, edev->primary_mac); if (rc) goto out; /* Check for promiscuous */ if ((ndev->flags & IFF_PROMISC) || (uc_count > 15)) { /* @@@TBD resource allocation - 1 */ accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; } else { /* Add MAC filters according to the unicast secondary macs */ int i; temp = uc_macs; for (i = 0; i < uc_count; i++) { rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, temp); if (rc) goto out; temp += ETH_ALEN; } rc = qede_configure_mcast_filtering(ndev, &accept_flags); if (rc) goto out; } /* take care of VLAN mode */ if (ndev->flags & IFF_PROMISC) { qede_config_accept_any_vlan(edev, true); } else if (!edev->non_configured_vlans) { /* It's possible that accept_any_vlan mode is set due to a * previous setting of IFF_PROMISC. If vlan credits are * sufficient, disable accept_any_vlan. */ qede_config_accept_any_vlan(edev, false); } rx_mode.filter.accept_flags = accept_flags; edev->ops->filter_config(edev->cdev, &rx_mode); out: kfree(uc_macs); }