/* * ispresizer.c * * TI OMAP3 ISP - Resizer module * * Copyright (C) 2010 Nokia Corporation * Copyright (C) 2009 Texas Instruments, Inc * * Contacts: Laurent Pinchart * Sakari Ailus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include #include #include #include "isp.h" #include "ispreg.h" #include "ispresizer.h" /* * Resizer Constants */ #define MIN_RESIZE_VALUE 64 #define MID_RESIZE_VALUE 512 #define MAX_RESIZE_VALUE 1024 #define MIN_IN_WIDTH 32 #define MIN_IN_HEIGHT 32 #define MAX_IN_WIDTH_MEMORY_MODE 4095 #define MAX_IN_WIDTH_ONTHEFLY_MODE_ES1 1280 #define MAX_IN_WIDTH_ONTHEFLY_MODE_ES2 4095 #define MAX_IN_HEIGHT 4095 #define MIN_OUT_WIDTH 16 #define MIN_OUT_HEIGHT 2 #define MAX_OUT_HEIGHT 4095 /* * Resizer Use Constraints * "TRM ES3.1, table 12-46" */ #define MAX_4TAP_OUT_WIDTH_ES1 1280 #define MAX_7TAP_OUT_WIDTH_ES1 640 #define MAX_4TAP_OUT_WIDTH_ES2 3312 #define MAX_7TAP_OUT_WIDTH_ES2 1650 #define MAX_4TAP_OUT_WIDTH_3630 4096 #define MAX_7TAP_OUT_WIDTH_3630 2048 /* * Constants for ratio calculation */ #define RESIZE_DIVISOR 256 #define DEFAULT_PHASE 1 /* * Default (and only) configuration of filter coefficients. * 7-tap mode is for scale factors 0.25x to 0.5x. * 4-tap mode is for scale factors 0.5x to 4.0x. * There shouldn't be any reason to recalculate these, EVER. */ static const struct isprsz_coef filter_coefs = { /* For 8-phase 4-tap horizontal filter: */ { 0x0000, 0x0100, 0x0000, 0x0000, 0x03FA, 0x00F6, 0x0010, 0x0000, 0x03F9, 0x00DB, 0x002C, 0x0000, 0x03FB, 0x00B3, 0x0053, 0x03FF, 0x03FD, 0x0082, 0x0084, 0x03FD, 0x03FF, 0x0053, 0x00B3, 0x03FB, 0x0000, 0x002C, 0x00DB, 0x03F9, 0x0000, 0x0010, 0x00F6, 0x03FA }, /* For 8-phase 4-tap vertical filter: */ { 0x0000, 0x0100, 0x0000, 0x0000, 0x03FA, 0x00F6, 0x0010, 0x0000, 0x03F9, 0x00DB, 0x002C, 0x0000, 0x03FB, 0x00B3, 0x0053, 0x03FF, 0x03FD, 0x0082, 0x0084, 0x03FD, 0x03FF, 0x0053, 0x00B3, 0x03FB, 0x0000, 0x002C, 0x00DB, 0x03F9, 0x0000, 0x0010, 0x00F6, 0x03FA }, /* For 4-phase 7-tap horizontal filter: */ #define DUMMY 0 { 0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY, 0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY, 0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY, 0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY }, /* For 4-phase 7-tap vertical filter: */ { 0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY, 0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY, 0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY, 0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY } /* * The dummy padding is required in 7-tap mode because of how the * registers are arranged physically. */ #undef DUMMY }; /* * __resizer_get_format - helper function for getting resizer format * @res : pointer to resizer private structure * @pad : pad number * @fh : V4L2 subdev file handle * @which : wanted subdev format * return zero */ static struct v4l2_mbus_framefmt * __resizer_get_format(struct isp_res_device *res, struct v4l2_subdev_fh *fh, unsigned int pad, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_get_try_format(fh, pad); else return &res->formats[pad]; } /* * __resizer_get_crop - helper function for getting resizer crop rectangle * @res : pointer to resizer private structure * @fh : V4L2 subdev file handle * @which : wanted subdev crop rectangle */ static struct v4l2_rect * __resizer_get_crop(struct isp_res_device *res, struct v4l2_subdev_fh *fh, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_get_try_crop(fh, RESZ_PAD_SINK); else return &res->crop.request; } /* * resizer_set_filters - Set resizer filters * @res: Device context. * @h_coeff: horizontal coefficient * @v_coeff: vertical coefficient * Return none */ static void resizer_set_filters(struct isp_res_device *res, const u16 *h_coeff, const u16 *v_coeff) { struct isp_device *isp = to_isp_device(res); u32 startaddr_h, startaddr_v, tmp_h, tmp_v; int i; startaddr_h = ISPRSZ_HFILT10; startaddr_v = ISPRSZ_VFILT10; for (i = 0; i < COEFF_CNT; i += 2) { tmp_h = h_coeff[i] | (h_coeff[i + 1] << ISPRSZ_HFILT_COEF1_SHIFT); tmp_v = v_coeff[i] | (v_coeff[i + 1] << ISPRSZ_VFILT_COEF1_SHIFT); isp_reg_writel(isp, tmp_h, OMAP3_ISP_IOMEM_RESZ, startaddr_h); isp_reg_writel(isp, tmp_v, OMAP3_ISP_IOMEM_RESZ, startaddr_v); startaddr_h += 4; startaddr_v += 4; } } /* * resizer_set_bilinear - Chrominance horizontal algorithm select * @res: Device context. * @type: Filtering interpolation type. * * Filtering that is same as luminance processing is * intended only for downsampling, and bilinear interpolation * is intended only for upsampling. */ static void resizer_set_bilinear(struct isp_res_device *res, enum resizer_chroma_algo type) { struct isp_device *isp = to_isp_device(res); if (type == RSZ_BILINEAR) isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_CBILIN); else isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_CBILIN); } /* * resizer_set_ycpos - Luminance and chrominance order * @res: Device context. * @order: order type. */ static void resizer_set_ycpos(struct isp_res_device *res, enum v4l2_mbus_pixelcode pixelcode) { struct isp_device *isp = to_isp_device(res); switch (pixelcode) { case V4L2_MBUS_FMT_YUYV8_1X16: isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_YCPOS); break; case V4L2_MBUS_FMT_UYVY8_1X16: isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_YCPOS); break; default: return; } } /* * resizer_set_phase - Setup horizontal and vertical starting phase * @res: Device context. * @h_phase: horizontal phase parameters. * @v_phase: vertical phase parameters. * * Horizontal and vertical phase range is 0 to 7 */ static void resizer_set_phase(struct isp_res_device *res, u32 h_phase, u32 v_phase) { struct isp_device *isp = to_isp_device(res); u32 rgval = 0; rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) & ~(ISPRSZ_CNT_HSTPH_MASK | ISPRSZ_CNT_VSTPH_MASK); rgval |= (h_phase << ISPRSZ_CNT_HSTPH_SHIFT) & ISPRSZ_CNT_HSTPH_MASK; rgval |= (v_phase << ISPRSZ_CNT_VSTPH_SHIFT) & ISPRSZ_CNT_VSTPH_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT); } /* * resizer_set_luma - Setup luminance enhancer parameters * @res: Device context. * @luma: Structure for luminance enhancer parameters. * * Algorithm select: * 0x0: Disable * 0x1: [-1 2 -1]/2 high-pass filter * 0x2: [-1 -2 6 -2 -1]/4 high-pass filter * * Maximum gain: * The data is coded in U4Q4 representation. * * Slope: * The data is coded in U4Q4 representation. * * Coring offset: * The data is coded in U8Q0 representation. * * The new luminance value is computed as: * Y += HPF(Y) x max(GAIN, (HPF(Y) - CORE) x SLOP + 8) >> 4. */ static void resizer_set_luma(struct isp_res_device *res, struct resizer_luma_yenh *luma) { struct isp_device *isp = to_isp_device(res); u32 rgval = 0; rgval = (luma->algo << ISPRSZ_YENH_ALGO_SHIFT) & ISPRSZ_YENH_ALGO_MASK; rgval |= (luma->gain << ISPRSZ_YENH_GAIN_SHIFT) & ISPRSZ_YENH_GAIN_MASK; rgval |= (luma->slope << ISPRSZ_YENH_SLOP_SHIFT) & ISPRSZ_YENH_SLOP_MASK; rgval |= (luma->core << ISPRSZ_YENH_CORE_SHIFT) & ISPRSZ_YENH_CORE_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_YENH); } /* * resizer_set_source - Input source select * @res: Device context. * @source: Input source type * * If this field is set to RESIZER_INPUT_VP, the resizer input is fed from * Preview/CCDC engine, otherwise from memory. */ static void resizer_set_source(struct isp_res_device *res, enum resizer_input_entity source) { struct isp_device *isp = to_isp_device(res); if (source == RESIZER_INPUT_MEMORY) isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_INPSRC); else isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_INPSRC); } /* * resizer_set_ratio - Setup horizontal and vertical resizing value * @res: Device context. * @ratio: Structure for ratio parameters. * * Resizing range from 64 to 1024 */ static void resizer_set_ratio(struct isp_res_device *res, const struct resizer_ratio *ratio) { struct isp_device *isp = to_isp_device(res); const u16 *h_filter, *v_filter; u32 rgval = 0; rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) & ~(ISPRSZ_CNT_HRSZ_MASK | ISPRSZ_CNT_VRSZ_MASK); rgval |= ((ratio->horz - 1) << ISPRSZ_CNT_HRSZ_SHIFT) & ISPRSZ_CNT_HRSZ_MASK; rgval |= ((ratio->vert - 1) << ISPRSZ_CNT_VRSZ_SHIFT) & ISPRSZ_CNT_VRSZ_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT); /* prepare horizontal filter coefficients */ if (ratio->horz > MID_RESIZE_VALUE) h_filter = &filter_coefs.h_filter_coef_7tap[0]; else h_filter = &filter_coefs.h_filter_coef_4tap[0]; /* prepare vertical filter coefficients */ if (ratio->vert > MID_RESIZE_VALUE) v_filter = &filter_coefs.v_filter_coef_7tap[0]; else v_filter = &filter_coefs.v_filter_coef_4tap[0]; resizer_set_filters(res, h_filter, v_filter); } /* * resizer_set_dst_size - Setup the output height and width * @res: Device context. * @width: Output width. * @height: Output height. * * Width : * The value must be EVEN. * * Height: * The number of bytes written to SDRAM must be * a multiple of 16-bytes if the vertical resizing factor * is greater than 1x (upsizing) */ static void resizer_set_output_size(struct isp_res_device *res, u32 width, u32 height) { struct isp_device *isp = to_isp_device(res); u32 rgval = 0; dev_dbg(isp->dev, "Output size[w/h]: %dx%d\n", width, height); rgval = (width << ISPRSZ_OUT_SIZE_HORZ_SHIFT) & ISPRSZ_OUT_SIZE_HORZ_MASK; rgval |= (height << ISPRSZ_OUT_SIZE_VERT_SHIFT) & ISPRSZ_OUT_SIZE_VERT_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_OUT_SIZE); } /* * resizer_set_output_offset - Setup memory offset for the output lines. * @res: Device context. * @offset: Memory offset. * * The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte * boundary; the 5 LSBs are read-only. For optimal use of SDRAM bandwidth, * the SDRAM line offset must be set on a 256-byte boundary */ static void resizer_set_output_offset(struct isp_res_device *res, u32 offset) { struct isp_device *isp = to_isp_device(res); isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTOFF); } /* * resizer_set_start - Setup vertical and horizontal start position * @res: Device context. * @left: Horizontal start position. * @top: Vertical start position. * * Vertical start line: * This field makes sense only when the resizer obtains its input * from the preview engine/CCDC * * Horizontal start pixel: * Pixels are coded on 16 bits for YUV and 8 bits for color separate data. * When the resizer gets its input from SDRAM, this field must be set * to <= 15 for YUV 16-bit data and <= 31 for 8-bit color separate data */ static void resizer_set_start(struct isp_res_device *res, u32 left, u32 top) { struct isp_device *isp = to_isp_device(res); u32 rgval = 0; rgval = (left << ISPRSZ_IN_START_HORZ_ST_SHIFT) & ISPRSZ_IN_START_HORZ_ST_MASK; rgval |= (top << ISPRSZ_IN_START_VERT_ST_SHIFT) & ISPRSZ_IN_START_VERT_ST_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_START); } /* * resizer_set_input_size - Setup the input size * @res: Device context. * @width: The range is 0 to 4095 pixels * @height: The range is 0 to 4095 lines */ static void resizer_set_input_size(struct isp_res_device *res, u32 width, u32 height) { struct isp_device *isp = to_isp_device(res); u32 rgval = 0; dev_dbg(isp->dev, "Input size[w/h]: %dx%d\n", width, height); rgval = (width << ISPRSZ_IN_SIZE_HORZ_SHIFT) & ISPRSZ_IN_SIZE_HORZ_MASK; rgval |= (height << ISPRSZ_IN_SIZE_VERT_SHIFT) & ISPRSZ_IN_SIZE_VERT_MASK; isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_SIZE); } /* * resizer_set_src_offs - Setup the memory offset for the input lines * @res: Device context. * @offset: Memory offset. * * The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte * boundary; the 5 LSBs are read-only. This field must be programmed to be * 0x0 if the resizer input is from preview engine/CCDC. */ static void resizer_set_input_offset(struct isp_res_device *res, u32 offset) { struct isp_device *isp = to_isp_device(res); isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INOFF); } /* * resizer_set_intype - Input type select * @res: Device context. * @type: Pixel format type. */ static void resizer_set_intype(struct isp_res_device *res, enum resizer_colors_type type) { struct isp_device *isp = to_isp_device(res); if (type == RSZ_COLOR8) isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_INPTYP); else isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT, ISPRSZ_CNT_INPTYP); } /* * __resizer_set_inaddr - Helper function for set input address * @res : pointer to resizer private data structure * @addr: input address * return none */ static void __resizer_set_inaddr(struct isp_res_device *res, u32 addr) { struct isp_device *isp = to_isp_device(res); isp_reg_writel(isp, addr, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INADD); } /* * The data rate at the horizontal resizer output must not exceed half the * functional clock or 100 MP/s, whichever is lower. According to the TRM * there's no similar requirement for the vertical resizer output. However * experience showed that vertical upscaling by 4 leads to SBL overflows (with * data rates at the resizer output exceeding 300 MP/s). Limiting the resizer * output data rate to the functional clock or 200 MP/s, whichever is lower, * seems to get rid of SBL overflows. * * The maximum data rate at the output of the horizontal resizer can thus be * computed with * * max intermediate rate <= L3 clock * input height / output height * max intermediate rate <= L3 clock / 2 * * The maximum data rate at the resizer input is then * * max input rate <= max intermediate rate * input width / output width * * where the input width and height are the resizer input crop rectangle size. * The TRM doesn't clearly explain if that's a maximum instant data rate or a * maximum average data rate. */ void omap3isp_resizer_max_rate(struct isp_res_device *res, unsigned int *max_rate) { struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity); const struct v4l2_mbus_framefmt *ofmt = &res->formats[RESZ_PAD_SOURCE]; unsigned long limit = min(pipe->l3_ick, 200000000UL); unsigned long clock; clock = div_u64((u64)limit * res->crop.active.height, ofmt->height); clock = min(clock, limit / 2); *max_rate = div_u64((u64)clock * res->crop.active.width, ofmt->width); } /* * When the resizer processes images from memory, the driver must slow down read * requests on the input to at least comply with the internal data rate * requirements. If the application real-time requirements can cope with slower * processing, the resizer can be slowed down even more to put less pressure on * the overall system. * * When the resizer processes images on the fly (either from the CCDC or the * preview module), the same data rate requirements apply but they can't be * enforced at the resizer level. The image input module (sensor, CCP2 or * preview module) must not provide image data faster than the resizer can * process. * * For live image pipelines, the data rate is set by the frame format, size and * rate. The sensor output frame rate must not exceed the maximum resizer data * rate. * * The resizer slows down read requests by inserting wait cycles in the SBL * requests. The maximum number of 256-byte requests per second can be computed * as (the data rate is multiplied by 2 to convert from pixels per second to * bytes per second) * * request per second = data rate * 2 / 256 * cycles per request = cycles per second / requests per second * * The number of cycles per second is controlled by the L3 clock, leading to * * cycles per request = L3 frequency / 2 * 256 / data rate */ static void resizer_adjust_bandwidth(struct isp_res_device *res) { struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity); struct isp_device *isp = to_isp_device(res); unsigned long l3_ick = pipe->l3_ick; struct v4l2_fract *timeperframe; unsigned int cycles_per_frame; unsigned int requests_per_frame; unsigned int cycles_per_request; unsigned int granularity; unsigned int minimum; unsigned int maximum; unsigned int value; if (res->input != RESIZER_INPUT_MEMORY) { isp_reg_clr(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP, ISPSBL_SDR_REQ_RSZ_EXP_MASK); return; } switch (isp->revision) { case ISP_REVISION_1_0: case ISP_REVISION_2_0: default: granularity = 1024; break; case ISP_REVISION_15_0: granularity = 32; break; } /* Compute the minimum number of cycles per request, based on the * pipeline maximum data rate. This is an absolute lower bound if we * don't want SBL overflows, so round the value up. */ cycles_per_request = div_u64((u64)l3_ick / 2 * 256 + pipe->max_rate - 1, pipe->max_rate); minimum = DIV_ROUND_UP(cycles_per_request, granularity); /* Compute the maximum number of cycles per request, based on the * requested frame rate. This is a soft upper bound to achieve a frame * rate equal or higher than the requested value, so round the value * down. */ timeperframe = &pipe->max_timeperframe; requests_per_frame = DIV_ROUND_UP(res->crop.active.width * 2, 256) * res->crop.active.height; cycles_per_frame = div_u64((u64)l3_ick * timeperframe->numerator, timeperframe->denominator); cycles_per_request = cycles_per_frame / requests_per_frame; maximum = cycles_per_request / granularity; value = max(minimum, maximum); dev_dbg(isp->dev, "%s: cycles per request = %u\n", __func__, value); isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP, ISPSBL_SDR_REQ_RSZ_EXP_MASK, value << ISPSBL_SDR_REQ_RSZ_EXP_SHIFT); } /* * omap3isp_resizer_busy - Checks if ISP resizer is busy. * * Returns busy field from ISPRSZ_PCR register. */ int omap3isp_resizer_busy(struct isp_res_device *res) { struct isp_device *isp = to_isp_device(res); return isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR) & ISPRSZ_PCR_BUSY; } /* * resizer_set_inaddr - Sets the memory address of the input frame. * @addr: 32bit memory address aligned on 32byte boundary. */ static void resizer_set_inaddr(struct isp_res_device *res, u32 addr) { res->addr_base = addr; /* This will handle crop settings in stream off state */ if (res->crop_offset) addr += res->crop_offset & ~0x1f; __resizer_set_inaddr(res, addr); } /* * Configures the memory address to which the output frame is written. * @addr: 32bit memory address aligned on 32byte boundary. * Note: For SBL efficiency reasons the address should be on a 256-byte * boundary. */ static void resizer_set_outaddr(struct isp_res_device *res, u32 addr) { struct isp_device *isp = to_isp_device(res); /* * Set output address. This needs to be in its own function * because it changes often. */ isp_reg_writel(isp, addr << ISPRSZ_SDR_OUTADD_ADDR_SHIFT, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTADD); } /* * resizer_print_status - Prints the values of the resizer module registers. */ #define RSZ_PRINT_REGISTER(isp, name)\ dev_dbg(isp->dev, "###RSZ " #name "=0x%08x\n", \ isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_##name)) static void resizer_print_status(struct isp_res_device *res) { struct isp_device *isp = to_isp_device(res); dev_dbg(isp->dev, "-------------Resizer Register dump----------\n"); RSZ_PRINT_REGISTER(isp, PCR); RSZ_PRINT_REGISTER(isp, CNT); RSZ_PRINT_REGISTER(isp, OUT_SIZE); RSZ_PRINT_REGISTER(isp, IN_START); RSZ_PRINT_REGISTER(isp, IN_SIZE); RSZ_PRINT_REGISTER(isp, SDR_INADD); RSZ_PRINT_REGISTER(isp, SDR_INOFF); RSZ_PRINT_REGISTER(isp, SDR_OUTADD); RSZ_PRINT_REGISTER(isp, SDR_OUTOFF); RSZ_PRINT_REGISTER(isp, YENH); dev_dbg(isp->dev, "--------------------------------------------\n"); } /* * resizer_calc_ratios - Helper function for calculating resizer ratios * @res: pointer to resizer private data structure * @input: input frame size * @output: output frame size * @ratio : return calculated ratios * return none * * The resizer uses a polyphase sample rate converter. The upsampling filter * has a fixed number of phases that depend on the resizing ratio. As the ratio * computation depends on the number of phases, we need to compute a first * approximation and then refine it. * * The input/output/ratio relationship is given by the OMAP34xx TRM: * * - 8-phase, 4-tap mode (RSZ = 64 ~ 512) * iw = (32 * sph + (ow - 1) * hrsz + 16) >> 8 + 7 * ih = (32 * spv + (oh - 1) * vrsz + 16) >> 8 + 4 * - 4-phase, 7-tap mode (RSZ = 513 ~ 1024) * iw = (64 * sph + (ow - 1) * hrsz + 32) >> 8 + 7 * ih = (64 * spv + (oh - 1) * vrsz + 32) >> 8 + 7 * * iw and ih are the input width and height after cropping. Those equations need * to be satisfied exactly for the resizer to work correctly. * * The equations can't be easily reverted, as the >> 8 operation is not linear. * In addition, not all input sizes can be achieved for a given output size. To * get the highest input size lower than or equal to the requested input size, * we need to compute the highest resizing ratio that satisfies the following * inequality (taking the 4-tap mode width equation as an example) * * iw >= (32 * sph + (ow - 1) * hrsz + 16) >> 8 - 7 * * (where iw is the requested input width) which can be rewritten as * * iw - 7 >= (32 * sph + (ow - 1) * hrsz + 16) >> 8 * (iw - 7) << 8 >= 32 * sph + (ow - 1) * hrsz + 16 - b * ((iw - 7) << 8) + b >= 32 * sph + (ow - 1) * hrsz + 16 * * where b is the value of the 8 least significant bits of the right hand side * expression of the last inequality. The highest resizing ratio value will be * achieved when b is equal to its maximum value of 255. That resizing ratio * value will still satisfy the original inequality, as b will disappear when * the expression will be shifted right by 8. * * The reverted equations thus become * * - 8-phase, 4-tap mode * hrsz = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / (ow - 1) * vrsz = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / (oh - 1) * - 4-phase, 7-tap mode * hrsz = ((iw - 7) * 256 + 255 - 32 - 64 * sph) / (ow - 1) * vrsz = ((ih - 7) * 256 + 255 - 32 - 64 * spv) / (oh - 1) * * The ratios are integer values, and are rounded down to ensure that the * cropped input size is not bigger than the uncropped input size. * * As the number of phases/taps, used to select the correct equations to compute * the ratio, depends on the ratio, we start with the 4-tap mode equations to * compute an approximation of the ratio, and switch to the 7-tap mode equations * if the approximation is higher than the ratio threshold. * * As the 7-tap mode equations will return a ratio smaller than or equal to the * 4-tap mode equations, the resulting ratio could become lower than or equal to * the ratio threshold. This 'equations loop' isn't an issue as long as the * correct equations are used to compute the final input size. Starting with the * 4-tap mode equations ensure that, in case of values resulting in a 'ratio * loop', the smallest of the ratio values will be used, never exceeding the * requested input size. * * We first clamp the output size according to the hardware capability to avoid * auto-cropping the input more than required to satisfy the TRM equations. The * minimum output size is achieved with a scaling factor of 1024. It is thus * computed using the 7-tap equations. * * min ow = ((iw - 7) * 256 - 32 - 64 * sph) / 1024 + 1 * min oh = ((ih - 7) * 256 - 32 - 64 * spv) / 1024 + 1 * * Similarly, the maximum output size is achieved with a scaling factor of 64 * and computed using the 4-tap equations. * * max ow = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / 64 + 1 * max oh = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1 * * The additional +255 term compensates for the round down operation performed * by the TRM equations when shifting the value right by 8 bits. * * We then compute and clamp the ratios (x1/4 ~ x4). Clamping the output size to * the maximum value guarantees that the ratio value will never be smaller than * the minimum, but it could still slightly exceed the maximum. Clamping the * ratio will thus result in a resizing factor slightly larger than the * requested value. * * To accommodate that, and make sure the TRM equations are satisfied exactly, we * compute the input crop rectangle as the last step. * * As if the situation wasn't complex enough, the maximum output width depends * on the vertical resizing ratio. Fortunately, the output height doesn't * depend on the horizontal resizing ratio. We can then start by computing the * output height and the vertical ratio, and then move to computing the output * width and the horizontal ratio. */ static void resizer_calc_ratios(struct isp_res_device *res, struct v4l2_rect *input, struct v4l2_mbus_framefmt *output, struct resizer_ratio *ratio) { struct isp_device *isp = to_isp_device(res); const unsigned int spv = DEFAULT_PHASE; const unsigned int sph = DEFAULT_PHASE; unsigned int upscaled_width; unsigned int upscaled_height; unsigned int min_width; unsigned int min_height; unsigned int max_width; unsigned int max_height; unsigned int width_alignment; unsigned int width; unsigned int height; /* * Clamp the output height based on the hardware capabilities and * compute the vertical resizing ratio. */ min_height = ((input->height - 7) * 256 - 32 - 64 * spv) / 1024 + 1; min_height = max_t(unsigned int, min_height, MIN_OUT_HEIGHT); max_height = ((input->height - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1; max_height = min_t(unsigned int, max_height, MAX_OUT_HEIGHT); output->height = clamp(output->height, min_height, max_height); ratio->vert = ((input->height - 4) * 256 + 255 - 16 - 32 * spv) / (output->height - 1); if (ratio->vert > MID_RESIZE_VALUE) ratio->vert = ((input->height - 7) * 256 + 255 - 32 - 64 * spv) / (output->height - 1); ratio->vert = clamp_t(unsigned int, ratio->vert, MIN_RESIZE_VALUE, MAX_RESIZE_VALUE); if (ratio->vert <= MID_RESIZE_VALUE) { upscaled_height = (output->height - 1) * ratio->vert + 32 * spv + 16; height = (upscaled_height >> 8) + 4; } else { upscaled_height = (output->height - 1) * ratio->vert + 64 * spv + 32; height = (upscaled_height >> 8) + 7; } /* * Compute the minimum and maximum output widths based on the hardware * capabilities. The maximum depends on the vertical resizing ratio. */ min_width = ((input->width - 7) * 256 - 32 - 64 * sph) / 1024 + 1; min_width = max_t(unsigned int, min_width, MIN_OUT_WIDTH); if (ratio->vert <= MID_RESIZE_VALUE) { switch (isp->revision) { case ISP_REVISION_1_0: max_width = MAX_4TAP_OUT_WIDTH_ES1; break; case ISP_REVISION_2_0: default: max_width = MAX_4TAP_OUT_WIDTH_ES2; break; case ISP_REVISION_15_0: max_width = MAX_4TAP_OUT_WIDTH_3630; break; } } else { switch (isp->revision) { case ISP_REVISION_1_0: max_width = MAX_7TAP_OUT_WIDTH_ES1; break; case ISP_REVISION_2_0: default: max_width = MAX_7TAP_OUT_WIDTH_ES2; break; case ISP_REVISION_15_0: max_width = MAX_7TAP_OUT_WIDTH_3630; break; } } max_width = min(((input->width - 7) * 256 + 255 - 16 - 32 * sph) / 64 + 1, max_width); /* * The output width must be even, and must be a multiple of 16 bytes * when upscaling vertically. Clamp the output width to the valid range. * Take the alignment into account (the maximum width in 7-tap mode on * ES2 isn't a multiple of 8) and align the result up to make sure it * won't be smaller than the minimum. */ width_alignment = ratio->vert < 256 ? 8 : 2; output->width = clamp(output->width, min_width, max_width & ~(width_alignment - 1)); output->width = ALIGN(output->width, width_alignment); ratio->horz = ((input->width - 7) * 256 + 255 - 16 - 32 * sph) / (output->width - 1); if (ratio->horz > MID_RESIZE_VALUE) ratio->horz = ((input->width - 7) * 256 + 255 - 32 - 64 * sph) / (output->width - 1); ratio->horz = clamp_t(unsigned int, ratio->horz, MIN_RESIZE_VALUE, MAX_RESIZE_VALUE); if (ratio->horz <= MID_RESIZE_VALUE) { upscaled_width = (output->width - 1) * ratio->horz + 32 * sph + 16; width = (upscaled_width >> 8) + 7; } else { upscaled_width = (output->width - 1) * ratio->horz + 64 * sph + 32; width = (upscaled_width >> 8) + 7; } /* Center the new crop rectangle. */ input->left += (input->width - width) / 2; input->top += (input->height - height) / 2; input->width = width; input->height = height; } /* * resizer_set_crop_params - Setup hardware with cropping parameters * @res : resizer private structure * @crop_rect : current crop rectangle * @ratio : resizer ratios * return none */ static void resizer_set_crop_params(struct isp_res_device *res, const struct v4l2_mbus_framefmt *input, const struct v4l2_mbus_framefmt *output) { resizer_set_ratio(res, &res->ratio); /* Set chrominance horizontal algorithm */ if (res->ratio.horz >= RESIZE_DIVISOR) resizer_set_bilinear(res, RSZ_THE_SAME); else resizer_set_bilinear(res, RSZ_BILINEAR); resizer_adjust_bandwidth(res); if (res->input == RESIZER_INPUT_MEMORY) { /* Calculate additional offset for crop */ res->crop_offset = (res->crop.active.top * input->width + res->crop.active.left) * 2; /* * Write lowest 4 bits of horizontal pixel offset (in pixels), * vertical start must be 0. */ resizer_set_start(res, (res->crop_offset / 2) & 0xf, 0); /* * Set start (read) address for cropping, in bytes. * Lowest 5 bits must be zero. */ __resizer_set_inaddr(res, res->addr_base + (res->crop_offset & ~0x1f)); } else { /* * Set vertical start line and horizontal starting pixel. * If the input is from CCDC/PREV, horizontal start field is * in bytes (twice number of pixels). */ resizer_set_start(res, res->crop.active.left * 2, res->crop.active.top); /* Input address and offset must be 0 for preview/ccdc input */ __resizer_set_inaddr(res, 0); resizer_set_input_offset(res, 0); } /* Set the input size */ resizer_set_input_size(res, res->crop.active.width, res->crop.active.height); } static void resizer_configure(struct isp_res_device *res) { struct v4l2_mbus_framefmt *informat, *outformat; struct resizer_luma_yenh luma = {0, 0, 0, 0}; resizer_set_source(res, res->input); informat = &res->formats[RESZ_PAD_SINK]; outformat = &res->formats[RESZ_PAD_SOURCE]; /* RESZ_PAD_SINK */ if (res->input == RESIZER_INPUT_VP) resizer_set_input_offset(res, 0); else resizer_set_input_offset(res, ALIGN(informat->width, 0x10) * 2); /* YUV422 interleaved, default phase, no luma enhancement */ resizer_set_intype(res, RSZ_YUV422); resizer_set_ycpos(res, informat->code); resizer_set_phase(res, DEFAULT_PHASE, DEFAULT_PHASE); resizer_set_luma(res, &luma); /* RESZ_PAD_SOURCE */ resizer_set_output_offset(res, ALIGN(outformat->width * 2, 32)); resizer_set_output_size(res, outformat->width, outformat->height); resizer_set_crop_params(res, informat, outformat); } /* ----------------------------------------------------------------------------- * Interrupt handling */ static void resizer_enable_oneshot(struct isp_res_device *res) { struct isp_device *isp = to_isp_device(res); isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR, ISPRSZ_PCR_ENABLE | ISPRSZ_PCR_ONESHOT); } void omap3isp_resizer_isr_frame_sync(struct isp_res_device *res) { /* * If ISP_VIDEO_DMAQUEUE_QUEUED is set, DMA queue had an underrun * condition, the module was paused and now we have a buffer queued * on the output again. Restart the pipeline if running in continuous * mode. */ if (res->state == ISP_PIPELINE_STREAM_CONTINUOUS && res->video_out.dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) { resizer_enable_oneshot(res); isp_video_dmaqueue_flags_clr(&res->video_out); } } static void resizer_isr_buffer(struct isp_res_device *res) { struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity); struct isp_buffer *buffer; int restart = 0; if (res->state == ISP_PIPELINE_STREAM_STOPPED) return; /* Complete the output buffer and, if reading from memory, the input * buffer. */ buffer = omap3isp_video_buffer_next(&res->video_out); if (buffer != NULL) { resizer_set_outaddr(res, buffer->isp_addr); restart = 1; } pipe->state |= ISP_PIPELINE_IDLE_OUTPUT; if (res->input == RESIZER_INPUT_MEMORY) { buffer = omap3isp_video_buffer_next(&res->video_in); if (buffer != NULL) resizer_set_inaddr(res, buffer->isp_addr); pipe->state |= ISP_PIPELINE_IDLE_INPUT; } if (res->state == ISP_PIPELINE_STREAM_SINGLESHOT) { if (isp_pipeline_ready(pipe)) omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_SINGLESHOT); } else { /* If an underrun occurs, the video queue operation handler will * restart the resizer. Otherwise restart it immediately. */ if (restart) resizer_enable_oneshot(res); } } /* * omap3isp_resizer_isr - ISP resizer interrupt handler * * Manage the resizer video buffers and configure shadowed and busy-locked * registers. */ void omap3isp_resizer_isr(struct isp_res_device *res) { struct v4l2_mbus_framefmt *informat, *outformat; if (omap3isp_module_sync_is_stopping(&res->wait, &res->stopping)) return; if (res->applycrop) { outformat = __resizer_get_format(res, NULL, RESZ_PAD_SOURCE, V4L2_SUBDEV_FORMAT_ACTIVE); informat = __resizer_get_format(res, NULL, RESZ_PAD_SINK, V4L2_SUBDEV_FORMAT_ACTIVE); resizer_set_crop_params(res, informat, outformat); res->applycrop = 0; } resizer_isr_buffer(res); } /* ----------------------------------------------------------------------------- * ISP video operations */ static int resizer_video_queue(struct isp_video *video, struct isp_buffer *buffer) { struct isp_res_device *res = &video->isp->isp_res; if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) resizer_set_inaddr(res, buffer->isp_addr); /* * We now have a buffer queued on the output. Despite what the * TRM says, the resizer can't be restarted immediately. * Enabling it in one shot mode in the middle of a frame (or at * least asynchronously to the frame) results in the output * being shifted randomly left/right and up/down, as if the * hardware didn't synchronize itself to the beginning of the * frame correctly. * * Restart the resizer on the next sync interrupt if running in * continuous mode or when starting the stream. */ if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) resizer_set_outaddr(res, buffer->isp_addr); return 0; } static const struct isp_video_operations resizer_video_ops = { .queue = resizer_video_queue, }; /* ----------------------------------------------------------------------------- * V4L2 subdev operations */ /* * resizer_set_stream - Enable/Disable streaming on resizer subdev * @sd: ISP resizer V4L2 subdev * @enable: 1 == Enable, 0 == Disable * * The resizer hardware can't be enabled without a memory buffer to write to. * As the s_stream operation is called in response to a STREAMON call without * any buffer queued yet, just update the state field and return immediately. * The resizer will be enabled in resizer_video_queue(). */ static int resizer_set_stream(struct v4l2_subdev *sd, int enable) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct isp_video *video_out = &res->video_out; struct isp_device *isp = to_isp_device(res); struct device *dev = to_device(res); if (res->state == ISP_PIPELINE_STREAM_STOPPED) { if (enable == ISP_PIPELINE_STREAM_STOPPED) return 0; omap3isp_subclk_enable(isp, OMAP3_ISP_SUBCLK_RESIZER); resizer_configure(res); resizer_print_status(res); } switch (enable) { case ISP_PIPELINE_STREAM_CONTINUOUS: omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE); if (video_out->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) { resizer_enable_oneshot(res); isp_video_dmaqueue_flags_clr(video_out); } break; case ISP_PIPELINE_STREAM_SINGLESHOT: if (res->input == RESIZER_INPUT_MEMORY) omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_READ); omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE); resizer_enable_oneshot(res); break; case ISP_PIPELINE_STREAM_STOPPED: if (omap3isp_module_sync_idle(&sd->entity, &res->wait, &res->stopping)) dev_dbg(dev, "%s: module stop timeout.\n", sd->name); omap3isp_sbl_disable(isp, OMAP3_ISP_SBL_RESIZER_READ | OMAP3_ISP_SBL_RESIZER_WRITE); omap3isp_subclk_disable(isp, OMAP3_ISP_SUBCLK_RESIZER); isp_video_dmaqueue_flags_clr(video_out); break; } res->state = enable; return 0; } /* * resizer_try_crop - mangles crop parameters. */ static void resizer_try_crop(const struct v4l2_mbus_framefmt *sink, const struct v4l2_mbus_framefmt *source, struct v4l2_rect *crop) { const unsigned int spv = DEFAULT_PHASE; const unsigned int sph = DEFAULT_PHASE; /* Crop rectangle is constrained by the output size so that zoom ratio * cannot exceed +/-4.0. */ unsigned int min_width = ((32 * sph + (source->width - 1) * 64 + 16) >> 8) + 7; unsigned int min_height = ((32 * spv + (source->height - 1) * 64 + 16) >> 8) + 4; unsigned int max_width = ((64 * sph + (source->width - 1) * 1024 + 32) >> 8) + 7; unsigned int max_height = ((64 * spv + (source->height - 1) * 1024 + 32) >> 8) + 7; crop->width = clamp_t(u32, crop->width, min_width, max_width); crop->height = clamp_t(u32, crop->height, min_height, max_height); /* Crop can not go beyond of the input rectangle */ crop->left = clamp_t(u32, crop->left, 0, sink->width - MIN_IN_WIDTH); crop->width = clamp_t(u32, crop->width, MIN_IN_WIDTH, sink->width - crop->left); crop->top = clamp_t(u32, crop->top, 0, sink->height - MIN_IN_HEIGHT); crop->height = clamp_t(u32, crop->height, MIN_IN_HEIGHT, sink->height - crop->top); } /* * resizer_get_selection - Retrieve a selection rectangle on a pad * @sd: ISP resizer V4L2 subdevice * @fh: V4L2 subdev file handle * @sel: Selection rectangle * * The only supported rectangles are the crop rectangles on the sink pad. * * Return 0 on success or a negative error code otherwise. */ static int resizer_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_selection *sel) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *format_source; struct v4l2_mbus_framefmt *format_sink; struct resizer_ratio ratio; if (sel->pad != RESZ_PAD_SINK) return -EINVAL; format_sink = __resizer_get_format(res, fh, RESZ_PAD_SINK, sel->which); format_source = __resizer_get_format(res, fh, RESZ_PAD_SOURCE, sel->which); switch (sel->target) { case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.left = 0; sel->r.top = 0; sel->r.width = INT_MAX; sel->r.height = INT_MAX; resizer_try_crop(format_sink, format_source, &sel->r); resizer_calc_ratios(res, &sel->r, format_source, &ratio); break; case V4L2_SEL_TGT_CROP: sel->r = *__resizer_get_crop(res, fh, sel->which); resizer_calc_ratios(res, &sel->r, format_source, &ratio); break; default: return -EINVAL; } return 0; } /* * resizer_set_selection - Set a selection rectangle on a pad * @sd: ISP resizer V4L2 subdevice * @fh: V4L2 subdev file handle * @sel: Selection rectangle * * The only supported rectangle is the actual crop rectangle on the sink pad. * * FIXME: This function currently behaves as if the KEEP_CONFIG selection flag * was always set. * * Return 0 on success or a negative error code otherwise. */ static int resizer_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_selection *sel) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct isp_device *isp = to_isp_device(res); struct v4l2_mbus_framefmt *format_sink, *format_source; struct resizer_ratio ratio; if (sel->target != V4L2_SEL_TGT_CROP || sel->pad != RESZ_PAD_SINK) return -EINVAL; format_sink = __resizer_get_format(res, fh, RESZ_PAD_SINK, sel->which); format_source = __resizer_get_format(res, fh, RESZ_PAD_SOURCE, sel->which); dev_dbg(isp->dev, "%s: L=%d,T=%d,W=%d,H=%d,which=%d\n", __func__, sel->r.left, sel->r.top, sel->r.width, sel->r.height, sel->which); dev_dbg(isp->dev, "%s: input=%dx%d, output=%dx%d\n", __func__, format_sink->width, format_sink->height, format_source->width, format_source->height); /* Clamp the crop rectangle to the bounds, and then mangle it further to * fulfill the TRM equations. Store the clamped but otherwise unmangled * rectangle to avoid cropping the input multiple times: when an * application sets the output format, the current crop rectangle is * mangled during crop rectangle computation, which would lead to a new, * smaller input crop rectangle every time the output size is set if we * stored the mangled rectangle. */ resizer_try_crop(format_sink, format_source, &sel->r); *__resizer_get_crop(res, fh, sel->which) = sel->r; resizer_calc_ratios(res, &sel->r, format_source, &ratio); if (sel->which == V4L2_SUBDEV_FORMAT_TRY) return 0; res->ratio = ratio; res->crop.active = sel->r; /* * set_selection can be called while streaming is on. In this case the * crop values will be set in the next IRQ. */ if (res->state != ISP_PIPELINE_STREAM_STOPPED) res->applycrop = 1; return 0; } /* resizer pixel formats */ static const unsigned int resizer_formats[] = { V4L2_MBUS_FMT_UYVY8_1X16, V4L2_MBUS_FMT_YUYV8_1X16, }; static unsigned int resizer_max_in_width(struct isp_res_device *res) { struct isp_device *isp = to_isp_device(res); if (res->input == RESIZER_INPUT_MEMORY) { return MAX_IN_WIDTH_MEMORY_MODE; } else { if (isp->revision == ISP_REVISION_1_0) return MAX_IN_WIDTH_ONTHEFLY_MODE_ES1; else return MAX_IN_WIDTH_ONTHEFLY_MODE_ES2; } } /* * resizer_try_format - Handle try format by pad subdev method * @res : ISP resizer device * @fh : V4L2 subdev file handle * @pad : pad num * @fmt : pointer to v4l2 format structure * @which : wanted subdev format */ static void resizer_try_format(struct isp_res_device *res, struct v4l2_subdev_fh *fh, unsigned int pad, struct v4l2_mbus_framefmt *fmt, enum v4l2_subdev_format_whence which) { struct v4l2_mbus_framefmt *format; struct resizer_ratio ratio; struct v4l2_rect crop; switch (pad) { case RESZ_PAD_SINK: if (fmt->code != V4L2_MBUS_FMT_YUYV8_1X16 && fmt->code != V4L2_MBUS_FMT_UYVY8_1X16) fmt->code = V4L2_MBUS_FMT_YUYV8_1X16; fmt->width = clamp_t(u32, fmt->width, MIN_IN_WIDTH, resizer_max_in_width(res)); fmt->height = clamp_t(u32, fmt->height, MIN_IN_HEIGHT, MAX_IN_HEIGHT); break; case RESZ_PAD_SOURCE: format = __resizer_get_format(res, fh, RESZ_PAD_SINK, which); fmt->code = format->code; crop = *__resizer_get_crop(res, fh, which); resizer_calc_ratios(res, &crop, fmt, &ratio); break; } fmt->colorspace = V4L2_COLORSPACE_JPEG; fmt->field = V4L2_FIELD_NONE; } /* * resizer_enum_mbus_code - Handle pixel format enumeration * @sd : pointer to v4l2 subdev structure * @fh : V4L2 subdev file handle * @code : pointer to v4l2_subdev_mbus_code_enum structure * return -EINVAL or zero on success */ static int resizer_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_mbus_code_enum *code) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *format; if (code->pad == RESZ_PAD_SINK) { if (code->index >= ARRAY_SIZE(resizer_formats)) return -EINVAL; code->code = resizer_formats[code->index]; } else { if (code->index != 0) return -EINVAL; format = __resizer_get_format(res, fh, RESZ_PAD_SINK, V4L2_SUBDEV_FORMAT_TRY); code->code = format->code; } return 0; } static int resizer_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_frame_size_enum *fse) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt format; if (fse->index != 0) return -EINVAL; format.code = fse->code; format.width = 1; format.height = 1; resizer_try_format(res, fh, fse->pad, &format, V4L2_SUBDEV_FORMAT_TRY); fse->min_width = format.width; fse->min_height = format.height; if (format.code != fse->code) return -EINVAL; format.code = fse->code; format.width = -1; format.height = -1; resizer_try_format(res, fh, fse->pad, &format, V4L2_SUBDEV_FORMAT_TRY); fse->max_width = format.width; fse->max_height = format.height; return 0; } /* * resizer_get_format - Handle get format by pads subdev method * @sd : pointer to v4l2 subdev structure * @fh : V4L2 subdev file handle * @fmt : pointer to v4l2 subdev format structure * return -EINVAL or zero on success */ static int resizer_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *fmt) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *format; format = __resizer_get_format(res, fh, fmt->pad, fmt->which); if (format == NULL) return -EINVAL; fmt->format = *format; return 0; } /* * resizer_set_format - Handle set format by pads subdev method * @sd : pointer to v4l2 subdev structure * @fh : V4L2 subdev file handle * @fmt : pointer to v4l2 subdev format structure * return -EINVAL or zero on success */ static int resizer_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *fmt) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *format; struct v4l2_rect *crop; format = __resizer_get_format(res, fh, fmt->pad, fmt->which); if (format == NULL) return -EINVAL; resizer_try_format(res, fh, fmt->pad, &fmt->format, fmt->which); *format = fmt->format; if (fmt->pad == RESZ_PAD_SINK) { /* reset crop rectangle */ crop = __resizer_get_crop(res, fh, fmt->which); crop->left = 0; crop->top = 0; crop->width = fmt->format.width; crop->height = fmt->format.height; /* Propagate the format from sink to source */ format = __resizer_get_format(res, fh, RESZ_PAD_SOURCE, fmt->which); *format = fmt->format; resizer_try_format(res, fh, RESZ_PAD_SOURCE, format, fmt->which); } if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { /* Compute and store the active crop rectangle and resizer * ratios. format already points to the source pad active * format. */ res->crop.active = res->crop.request; resizer_calc_ratios(res, &res->crop.active, format, &res->ratio); } return 0; } static int resizer_link_validate(struct v4l2_subdev *sd, struct media_link *link, struct v4l2_subdev_format *source_fmt, struct v4l2_subdev_format *sink_fmt) { struct isp_res_device *res = v4l2_get_subdevdata(sd); struct isp_pipeline *pipe = to_isp_pipeline(&sd->entity); omap3isp_resizer_max_rate(res, &pipe->max_rate); return v4l2_subdev_link_validate_default(sd, link, source_fmt, sink_fmt); } /* * resizer_init_formats - Initialize formats on all pads * @sd: ISP resizer V4L2 subdevice * @fh: V4L2 subdev file handle * * Initialize all pad formats with default values. If fh is not NULL, try * formats are initialized on the file handle. Otherwise active formats are * initialized on the device. */ static int resizer_init_formats(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct v4l2_subdev_format format; memset(&format, 0, sizeof(format)); format.pad = RESZ_PAD_SINK; format.which = fh ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE; format.format.code = V4L2_MBUS_FMT_YUYV8_1X16; format.format.width = 4096; format.format.height = 4096; resizer_set_format(sd, fh, &format); return 0; } /* subdev video operations */ static const struct v4l2_subdev_video_ops resizer_v4l2_video_ops = { .s_stream = resizer_set_stream, }; /* subdev pad operations */ static const struct v4l2_subdev_pad_ops resizer_v4l2_pad_ops = { .enum_mbus_code = resizer_enum_mbus_code, .enum_frame_size = resizer_enum_frame_size, .get_fmt = resizer_get_format, .set_fmt = resizer_set_format, .get_selection = resizer_get_selection, .set_selection = resizer_set_selection, .link_validate = resizer_link_validate, }; /* subdev operations */ static const struct v4l2_subdev_ops resizer_v4l2_ops = { .video = &resizer_v4l2_video_ops, .pad = &resizer_v4l2_pad_ops, }; /* subdev internal operations */ static const struct v4l2_subdev_internal_ops resizer_v4l2_internal_ops = { .open = resizer_init_formats, }; /* ----------------------------------------------------------------------------- * Media entity operations */ /* * resizer_link_setup - Setup resizer connections. * @entity : Pointer to media entity structure * @local : Pointer to local pad array * @remote : Pointer to remote pad array * @flags : Link flags * return -EINVAL or zero on success */ static int resizer_link_setup(struct media_entity *entity, const struct media_pad *local, const struct media_pad *remote, u32 flags) { struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity); struct isp_res_device *res = v4l2_get_subdevdata(sd); switch (local->index | media_entity_type(remote->entity)) { case RESZ_PAD_SINK | MEDIA_ENT_T_DEVNODE: /* read from memory */ if (flags & MEDIA_LNK_FL_ENABLED) { if (res->input == RESIZER_INPUT_VP) return -EBUSY; res->input = RESIZER_INPUT_MEMORY; } else { if (res->input == RESIZER_INPUT_MEMORY) res->input = RESIZER_INPUT_NONE; } break; case RESZ_PAD_SINK | MEDIA_ENT_T_V4L2_SUBDEV: /* read from ccdc or previewer */ if (flags & MEDIA_LNK_FL_ENABLED) { if (res->input == RESIZER_INPUT_MEMORY) return -EBUSY; res->input = RESIZER_INPUT_VP; } else { if (res->input == RESIZER_INPUT_VP) res->input = RESIZER_INPUT_NONE; } break; case RESZ_PAD_SOURCE | MEDIA_ENT_T_DEVNODE: /* resizer always write to memory */ break; default: return -EINVAL; } return 0; } /* media operations */ static const struct media_entity_operations resizer_media_ops = { .link_setup = resizer_link_setup, .link_validate = v4l2_subdev_link_validate, }; void omap3isp_resizer_unregister_entities(struct isp_res_device *res) { v4l2_device_unregister_subdev(&res->subdev); omap3isp_video_unregister(&res->video_in); omap3isp_video_unregister(&res->video_out); } int omap3isp_resizer_register_entities(struct isp_res_device *res, struct v4l2_device *vdev) { int ret; /* Register the subdev and video nodes. */ ret = v4l2_device_register_subdev(vdev, &res->subdev); if (ret < 0) goto error; ret = omap3isp_video_register(&res->video_in, vdev); if (ret < 0) goto error; ret = omap3isp_video_register(&res->video_out, vdev); if (ret < 0) goto error; return 0; error: omap3isp_resizer_unregister_entities(res); return ret; } /* ----------------------------------------------------------------------------- * ISP resizer initialization and cleanup */ /* * resizer_init_entities - Initialize resizer subdev and media entity. * @res : Pointer to resizer device structure * return -ENOMEM or zero on success */ static int resizer_init_entities(struct isp_res_device *res) { struct v4l2_subdev *sd = &res->subdev; struct media_pad *pads = res->pads; struct media_entity *me = &sd->entity; int ret; res->input = RESIZER_INPUT_NONE; v4l2_subdev_init(sd, &resizer_v4l2_ops); sd->internal_ops = &resizer_v4l2_internal_ops; strlcpy(sd->name, "OMAP3 ISP resizer", sizeof(sd->name)); sd->grp_id = 1 << 16; /* group ID for isp subdevs */ v4l2_set_subdevdata(sd, res); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; pads[RESZ_PAD_SINK].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; pads[RESZ_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE; me->ops = &resizer_media_ops; ret = media_entity_init(me, RESZ_PADS_NUM, pads, 0); if (ret < 0) return ret; resizer_init_formats(sd, NULL); res->video_in.type = V4L2_BUF_TYPE_VIDEO_OUTPUT; res->video_in.ops = &resizer_video_ops; res->video_in.isp = to_isp_device(res); res->video_in.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3; res->video_in.bpl_alignment = 32; res->video_out.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; res->video_out.ops = &resizer_video_ops; res->video_out.isp = to_isp_device(res); res->video_out.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3; res->video_out.bpl_alignment = 32; ret = omap3isp_video_init(&res->video_in, "resizer"); if (ret < 0) goto error_video_in; ret = omap3isp_video_init(&res->video_out, "resizer"); if (ret < 0) goto error_video_out; res->video_out.video.entity.flags |= MEDIA_ENT_FL_DEFAULT; /* Connect the video nodes to the resizer subdev. */ ret = media_entity_create_link(&res->video_in.video.entity, 0, &res->subdev.entity, RESZ_PAD_SINK, 0); if (ret < 0) goto error_link; ret = media_entity_create_link(&res->subdev.entity, RESZ_PAD_SOURCE, &res->video_out.video.entity, 0, 0); if (ret < 0) goto error_link; return 0; error_link: omap3isp_video_cleanup(&res->video_out); error_video_out: omap3isp_video_cleanup(&res->video_in); error_video_in: media_entity_cleanup(&res->subdev.entity); return ret; } /* * isp_resizer_init - Resizer initialization. * @isp : Pointer to ISP device * return -ENOMEM or zero on success */ int omap3isp_resizer_init(struct isp_device *isp) { struct isp_res_device *res = &isp->isp_res; init_waitqueue_head(&res->wait); atomic_set(&res->stopping, 0); return resizer_init_entities(res); } void omap3isp_resizer_cleanup(struct isp_device *isp) { struct isp_res_device *res = &isp->isp_res; omap3isp_video_cleanup(&res->video_in); omap3isp_video_cleanup(&res->video_out); media_entity_cleanup(&res->subdev.entity); }