/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * Copyright (c) 2012 Red Hat, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_trans.h" #include "xfs_extfree_item.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_bmap_btree.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_trans_space.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_log.h" #include "xfs_rmap_btree.h" #include "xfs_iomap.h" #include "xfs_reflink.h" #include "xfs_refcount.h" /* Kernel only BMAP related definitions and functions */ /* * Convert the given file system block to a disk block. We have to treat it * differently based on whether the file is a real time file or not, because the * bmap code does. */ xfs_daddr_t xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) { return (XFS_IS_REALTIME_INODE(ip) ? \ (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); } /* * Routine to zero an extent on disk allocated to the specific inode. * * The VFS functions take a linearised filesystem block offset, so we have to * convert the sparse xfs fsb to the right format first. * VFS types are real funky, too. */ int xfs_zero_extent( struct xfs_inode *ip, xfs_fsblock_t start_fsb, xfs_off_t count_fsb) { struct xfs_mount *mp = ip->i_mount; xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); sector_t block = XFS_BB_TO_FSBT(mp, sector); return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), block << (mp->m_super->s_blocksize_bits - 9), count_fsb << (mp->m_super->s_blocksize_bits - 9), GFP_NOFS, 0); } int xfs_bmap_rtalloc( struct xfs_bmalloca *ap) /* bmap alloc argument struct */ { int error; /* error return value */ xfs_mount_t *mp; /* mount point structure */ xfs_extlen_t prod = 0; /* product factor for allocators */ xfs_extlen_t ralen = 0; /* realtime allocation length */ xfs_extlen_t align; /* minimum allocation alignment */ xfs_rtblock_t rtb; mp = ap->ip->i_mount; align = xfs_get_extsz_hint(ap->ip); prod = align / mp->m_sb.sb_rextsize; error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, align, 1, ap->eof, 0, ap->conv, &ap->offset, &ap->length); if (error) return error; ASSERT(ap->length); ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); /* * If the offset & length are not perfectly aligned * then kill prod, it will just get us in trouble. */ if (do_mod(ap->offset, align) || ap->length % align) prod = 1; /* * Set ralen to be the actual requested length in rtextents. */ ralen = ap->length / mp->m_sb.sb_rextsize; /* * If the old value was close enough to MAXEXTLEN that * we rounded up to it, cut it back so it's valid again. * Note that if it's a really large request (bigger than * MAXEXTLEN), we don't hear about that number, and can't * adjust the starting point to match it. */ if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; /* * Lock out modifications to both the RT bitmap and summary inodes */ xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); /* * If it's an allocation to an empty file at offset 0, * pick an extent that will space things out in the rt area. */ if (ap->eof && ap->offset == 0) { xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); if (error) return error; ap->blkno = rtx * mp->m_sb.sb_rextsize; } else { ap->blkno = 0; } xfs_bmap_adjacent(ap); /* * Realtime allocation, done through xfs_rtallocate_extent. */ do_div(ap->blkno, mp->m_sb.sb_rextsize); rtb = ap->blkno; ap->length = ralen; error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, &ralen, ap->wasdel, prod, &rtb); if (error) return error; ap->blkno = rtb; if (ap->blkno != NULLFSBLOCK) { ap->blkno *= mp->m_sb.sb_rextsize; ralen *= mp->m_sb.sb_rextsize; ap->length = ralen; ap->ip->i_d.di_nblocks += ralen; xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); if (ap->wasdel) ap->ip->i_delayed_blks -= ralen; /* * Adjust the disk quota also. This was reserved * earlier. */ xfs_trans_mod_dquot_byino(ap->tp, ap->ip, ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : XFS_TRANS_DQ_RTBCOUNT, (long) ralen); /* Zero the extent if we were asked to do so */ if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); if (error) return error; } } else { ap->length = 0; } return 0; } /* * Check if the endoff is outside the last extent. If so the caller will grow * the allocation to a stripe unit boundary. All offsets are considered outside * the end of file for an empty fork, so 1 is returned in *eof in that case. */ int xfs_bmap_eof( struct xfs_inode *ip, xfs_fileoff_t endoff, int whichfork, int *eof) { struct xfs_bmbt_irec rec; int error; error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); if (error || *eof) return error; *eof = endoff >= rec.br_startoff + rec.br_blockcount; return 0; } /* * Extent tree block counting routines. */ /* * Count leaf blocks given a range of extent records. Delayed allocation * extents are not counted towards the totals. */ STATIC void xfs_bmap_count_leaves( struct xfs_ifork *ifp, xfs_extnum_t *numrecs, xfs_filblks_t *count) { xfs_extnum_t i; xfs_extnum_t nr_exts = xfs_iext_count(ifp); for (i = 0; i < nr_exts; i++) { xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, i); if (!isnullstartblock(xfs_bmbt_get_startblock(frp))) { (*numrecs)++; *count += xfs_bmbt_get_blockcount(frp); } } } /* * Count leaf blocks given a range of extent records originally * in btree format. */ STATIC void xfs_bmap_disk_count_leaves( struct xfs_mount *mp, struct xfs_btree_block *block, int numrecs, xfs_filblks_t *count) { int b; xfs_bmbt_rec_t *frp; for (b = 1; b <= numrecs; b++) { frp = XFS_BMBT_REC_ADDR(mp, block, b); *count += xfs_bmbt_disk_get_blockcount(frp); } } /* * Recursively walks each level of a btree * to count total fsblocks in use. */ STATIC int xfs_bmap_count_tree( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_ifork *ifp, xfs_fsblock_t blockno, int levelin, xfs_extnum_t *nextents, xfs_filblks_t *count) { int error; struct xfs_buf *bp, *nbp; int level = levelin; __be64 *pp; xfs_fsblock_t bno = blockno; xfs_fsblock_t nextbno; struct xfs_btree_block *block, *nextblock; int numrecs; error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; block = XFS_BUF_TO_BLOCK(bp); if (--level) { /* Not at node above leaves, count this level of nodes */ nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); while (nextbno != NULLFSBLOCK) { error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; nextblock = XFS_BUF_TO_BLOCK(nbp); nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); xfs_trans_brelse(tp, nbp); } /* Dive to the next level */ pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); bno = be64_to_cpu(*pp); error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, count); if (error) { xfs_trans_brelse(tp, bp); XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", XFS_ERRLEVEL_LOW, mp); return -EFSCORRUPTED; } xfs_trans_brelse(tp, bp); } else { /* count all level 1 nodes and their leaves */ for (;;) { nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); numrecs = be16_to_cpu(block->bb_numrecs); (*nextents) += numrecs; xfs_bmap_disk_count_leaves(mp, block, numrecs, count); xfs_trans_brelse(tp, bp); if (nextbno == NULLFSBLOCK) break; bno = nextbno; error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; block = XFS_BUF_TO_BLOCK(bp); } } return 0; } /* * Count fsblocks of the given fork. Delayed allocation extents are * not counted towards the totals. */ int xfs_bmap_count_blocks( struct xfs_trans *tp, struct xfs_inode *ip, int whichfork, xfs_extnum_t *nextents, xfs_filblks_t *count) { struct xfs_mount *mp; /* file system mount structure */ __be64 *pp; /* pointer to block address */ struct xfs_btree_block *block; /* current btree block */ struct xfs_ifork *ifp; /* fork structure */ xfs_fsblock_t bno; /* block # of "block" */ int level; /* btree level, for checking */ int error; bno = NULLFSBLOCK; mp = ip->i_mount; *nextents = 0; *count = 0; ifp = XFS_IFORK_PTR(ip, whichfork); if (!ifp) return 0; switch (XFS_IFORK_FORMAT(ip, whichfork)) { case XFS_DINODE_FMT_EXTENTS: xfs_bmap_count_leaves(ifp, nextents, count); return 0; case XFS_DINODE_FMT_BTREE: if (!(ifp->if_flags & XFS_IFEXTENTS)) { error = xfs_iread_extents(tp, ip, whichfork); if (error) return error; } /* * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. */ block = ifp->if_broot; level = be16_to_cpu(block->bb_level); ASSERT(level > 0); pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); bno = be64_to_cpu(*pp); ASSERT(bno != NULLFSBLOCK); ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, count); if (error) { XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, mp); return -EFSCORRUPTED; } return 0; } return 0; } /* * returns 1 for success, 0 if we failed to map the extent. */ STATIC int xfs_getbmapx_fix_eof_hole( xfs_inode_t *ip, /* xfs incore inode pointer */ int whichfork, struct getbmapx *out, /* output structure */ int prealloced, /* this is a file with * preallocated data space */ int64_t end, /* last block requested */ xfs_fsblock_t startblock, bool moretocome) { int64_t fixlen; xfs_mount_t *mp; /* file system mount point */ xfs_ifork_t *ifp; /* inode fork pointer */ xfs_extnum_t lastx; /* last extent pointer */ xfs_fileoff_t fileblock; if (startblock == HOLESTARTBLOCK) { mp = ip->i_mount; out->bmv_block = -1; fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); fixlen -= out->bmv_offset; if (prealloced && out->bmv_offset + out->bmv_length == end) { /* Came to hole at EOF. Trim it. */ if (fixlen <= 0) return 0; out->bmv_length = fixlen; } } else { if (startblock == DELAYSTARTBLOCK) out->bmv_block = -2; else out->bmv_block = xfs_fsb_to_db(ip, startblock); fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); ifp = XFS_IFORK_PTR(ip, whichfork); if (!moretocome && xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && (lastx == xfs_iext_count(ifp) - 1)) out->bmv_oflags |= BMV_OF_LAST; } return 1; } /* Adjust the reported bmap around shared/unshared extent transitions. */ STATIC int xfs_getbmap_adjust_shared( struct xfs_inode *ip, int whichfork, struct xfs_bmbt_irec *map, struct getbmapx *out, struct xfs_bmbt_irec *next_map) { struct xfs_mount *mp = ip->i_mount; xfs_agnumber_t agno; xfs_agblock_t agbno; xfs_agblock_t ebno; xfs_extlen_t elen; xfs_extlen_t nlen; int error; next_map->br_startblock = NULLFSBLOCK; next_map->br_startoff = NULLFILEOFF; next_map->br_blockcount = 0; /* Only written data blocks can be shared. */ if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK || !xfs_bmap_is_real_extent(map)) return 0; agno = XFS_FSB_TO_AGNO(mp, map->br_startblock); agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock); error = xfs_reflink_find_shared(mp, NULL, agno, agbno, map->br_blockcount, &ebno, &elen, true); if (error) return error; if (ebno == NULLAGBLOCK) { /* No shared blocks at all. */ return 0; } else if (agbno == ebno) { /* * Shared extent at (agbno, elen). Shrink the reported * extent length and prepare to move the start of map[i] * to agbno+elen, with the aim of (re)formatting the new * map[i] the next time through the inner loop. */ out->bmv_length = XFS_FSB_TO_BB(mp, elen); out->bmv_oflags |= BMV_OF_SHARED; if (elen != map->br_blockcount) { *next_map = *map; next_map->br_startblock += elen; next_map->br_startoff += elen; next_map->br_blockcount -= elen; } map->br_blockcount -= elen; } else { /* * There's an unshared extent (agbno, ebno - agbno) * followed by shared extent at (ebno, elen). Shrink * the reported extent length to cover only the unshared * extent and prepare to move up the start of map[i] to * ebno, with the aim of (re)formatting the new map[i] * the next time through the inner loop. */ *next_map = *map; nlen = ebno - agbno; out->bmv_length = XFS_FSB_TO_BB(mp, nlen); next_map->br_startblock += nlen; next_map->br_startoff += nlen; next_map->br_blockcount -= nlen; map->br_blockcount -= nlen; } return 0; } /* * Get inode's extents as described in bmv, and format for output. * Calls formatter to fill the user's buffer until all extents * are mapped, until the passed-in bmv->bmv_count slots have * been filled, or until the formatter short-circuits the loop, * if it is tracking filled-in extents on its own. */ int /* error code */ xfs_getbmap( xfs_inode_t *ip, struct getbmapx *bmv, /* user bmap structure */ xfs_bmap_format_t formatter, /* format to user */ void *arg) /* formatter arg */ { int64_t bmvend; /* last block requested */ int error = 0; /* return value */ int64_t fixlen; /* length for -1 case */ int i; /* extent number */ int lock; /* lock state */ xfs_bmbt_irec_t *map; /* buffer for user's data */ xfs_mount_t *mp; /* file system mount point */ int nex; /* # of user extents can do */ int subnex; /* # of bmapi's can do */ int nmap; /* number of map entries */ struct getbmapx *out; /* output structure */ int whichfork; /* data or attr fork */ int prealloced; /* this is a file with * preallocated data space */ int iflags; /* interface flags */ int bmapi_flags; /* flags for xfs_bmapi */ int cur_ext = 0; struct xfs_bmbt_irec inject_map; mp = ip->i_mount; iflags = bmv->bmv_iflags; #ifndef DEBUG /* Only allow CoW fork queries if we're debugging. */ if (iflags & BMV_IF_COWFORK) return -EINVAL; #endif if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) return -EINVAL; if (iflags & BMV_IF_ATTRFORK) whichfork = XFS_ATTR_FORK; else if (iflags & BMV_IF_COWFORK) whichfork = XFS_COW_FORK; else whichfork = XFS_DATA_FORK; switch (whichfork) { case XFS_ATTR_FORK: if (XFS_IFORK_Q(ip)) { if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) return -EINVAL; } else if (unlikely( ip->i_d.di_aformat != 0 && ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, ip->i_mount); return -EFSCORRUPTED; } prealloced = 0; fixlen = 1LL << 32; break; case XFS_COW_FORK: if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS) return -EINVAL; if (xfs_get_cowextsz_hint(ip)) { prealloced = 1; fixlen = mp->m_super->s_maxbytes; } else { prealloced = 0; fixlen = XFS_ISIZE(ip); } break; default: /* Local format data forks report no extents. */ if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL) { bmv->bmv_entries = 0; return 0; } if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && ip->i_d.di_format != XFS_DINODE_FMT_BTREE) return -EINVAL; if (xfs_get_extsz_hint(ip) || ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ prealloced = 1; fixlen = mp->m_super->s_maxbytes; } else { prealloced = 0; fixlen = XFS_ISIZE(ip); } break; } if (bmv->bmv_length == -1) { fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); bmv->bmv_length = max_t(int64_t, fixlen - bmv->bmv_offset, 0); } else if (bmv->bmv_length == 0) { bmv->bmv_entries = 0; return 0; } else if (bmv->bmv_length < 0) { return -EINVAL; } nex = bmv->bmv_count - 1; if (nex <= 0) return -EINVAL; bmvend = bmv->bmv_offset + bmv->bmv_length; if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) return -ENOMEM; out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); if (!out) return -ENOMEM; xfs_ilock(ip, XFS_IOLOCK_SHARED); switch (whichfork) { case XFS_DATA_FORK: if (!(iflags & BMV_IF_DELALLOC) && (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) goto out_unlock_iolock; /* * Even after flushing the inode, there can still be * delalloc blocks on the inode beyond EOF due to * speculative preallocation. These are not removed * until the release function is called or the inode * is inactivated. Hence we cannot assert here that * ip->i_delayed_blks == 0. */ } lock = xfs_ilock_data_map_shared(ip); break; case XFS_COW_FORK: lock = XFS_ILOCK_SHARED; xfs_ilock(ip, lock); break; case XFS_ATTR_FORK: lock = xfs_ilock_attr_map_shared(ip); break; } /* * Don't let nex be bigger than the number of extents * we can have assuming alternating holes and real extents. */ if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; bmapi_flags = xfs_bmapi_aflag(whichfork); if (!(iflags & BMV_IF_PREALLOC)) bmapi_flags |= XFS_BMAPI_IGSTATE; /* * Allocate enough space to handle "subnex" maps at a time. */ error = -ENOMEM; subnex = 16; map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); if (!map) goto out_unlock_ilock; bmv->bmv_entries = 0; if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { error = 0; goto out_free_map; } do { nmap = (nex> subnex) ? subnex : nex; error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), XFS_BB_TO_FSB(mp, bmv->bmv_length), map, &nmap, bmapi_flags); if (error) goto out_free_map; ASSERT(nmap <= subnex); for (i = 0; i < nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1; i++) { out[cur_ext].bmv_oflags = 0; if (map[i].br_state == XFS_EXT_UNWRITTEN) out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; else if (map[i].br_startblock == DELAYSTARTBLOCK) out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; out[cur_ext].bmv_offset = XFS_FSB_TO_BB(mp, map[i].br_startoff); out[cur_ext].bmv_length = XFS_FSB_TO_BB(mp, map[i].br_blockcount); out[cur_ext].bmv_unused1 = 0; out[cur_ext].bmv_unused2 = 0; /* * delayed allocation extents that start beyond EOF can * occur due to speculative EOF allocation when the * delalloc extent is larger than the largest freespace * extent at conversion time. These extents cannot be * converted by data writeback, so can exist here even * if we are not supposed to be finding delalloc * extents. */ if (map[i].br_startblock == DELAYSTARTBLOCK && map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) ASSERT((iflags & BMV_IF_DELALLOC) != 0); if (map[i].br_startblock == HOLESTARTBLOCK && whichfork == XFS_ATTR_FORK) { /* came to the end of attribute fork */ out[cur_ext].bmv_oflags |= BMV_OF_LAST; goto out_free_map; } /* Is this a shared block? */ error = xfs_getbmap_adjust_shared(ip, whichfork, &map[i], &out[cur_ext], &inject_map); if (error) goto out_free_map; if (!xfs_getbmapx_fix_eof_hole(ip, whichfork, &out[cur_ext], prealloced, bmvend, map[i].br_startblock, inject_map.br_startblock != NULLFSBLOCK)) goto out_free_map; bmv->bmv_offset = out[cur_ext].bmv_offset + out[cur_ext].bmv_length; bmv->bmv_length = max_t(int64_t, 0, bmvend - bmv->bmv_offset); /* * In case we don't want to return the hole, * don't increase cur_ext so that we can reuse * it in the next loop. */ if ((iflags & BMV_IF_NO_HOLES) && map[i].br_startblock == HOLESTARTBLOCK) { memset(&out[cur_ext], 0, sizeof(out[cur_ext])); continue; } /* * In order to report shared extents accurately, * we report each distinct shared/unshared part * of a single bmbt record using multiple bmap * extents. To make that happen, we iterate the * same map array item multiple times, each * time trimming out the subextent that we just * reported. * * Because of this, we must check the out array * index (cur_ext) directly against bmv_count-1 * to avoid overflows. */ if (inject_map.br_startblock != NULLFSBLOCK) { map[i] = inject_map; i--; } bmv->bmv_entries++; cur_ext++; } } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1); out_free_map: kmem_free(map); out_unlock_ilock: xfs_iunlock(ip, lock); out_unlock_iolock: xfs_iunlock(ip, XFS_IOLOCK_SHARED); for (i = 0; i < cur_ext; i++) { /* format results & advance arg */ error = formatter(&arg, &out[i]); if (error) break; } kmem_free(out); return error; } /* * dead simple method of punching delalyed allocation blocks from a range in * the inode. Walks a block at a time so will be slow, but is only executed in * rare error cases so the overhead is not critical. This will always punch out * both the start and end blocks, even if the ranges only partially overlap * them, so it is up to the caller to ensure that partial blocks are not * passed in. */ int xfs_bmap_punch_delalloc_range( struct xfs_inode *ip, xfs_fileoff_t start_fsb, xfs_fileoff_t length) { xfs_fileoff_t remaining = length; int error = 0; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); do { int done; xfs_bmbt_irec_t imap; int nimaps = 1; xfs_fsblock_t firstblock; struct xfs_defer_ops dfops; /* * Map the range first and check that it is a delalloc extent * before trying to unmap the range. Otherwise we will be * trying to remove a real extent (which requires a * transaction) or a hole, which is probably a bad idea... */ error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, XFS_BMAPI_ENTIRE); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_alert(ip->i_mount, "Failed delalloc mapping lookup ino %lld fsb %lld.", ip->i_ino, start_fsb); } break; } if (!nimaps) { /* nothing there */ goto next_block; } if (imap.br_startblock != DELAYSTARTBLOCK) { /* been converted, ignore */ goto next_block; } WARN_ON(imap.br_blockcount == 0); /* * Note: while we initialise the firstblock/dfops pair, they * should never be used because blocks should never be * allocated or freed for a delalloc extent and hence we need * don't cancel or finish them after the xfs_bunmapi() call. */ xfs_defer_init(&dfops, &firstblock); error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, &dfops, &done); if (error) break; ASSERT(!xfs_defer_has_unfinished_work(&dfops)); next_block: start_fsb++; remaining--; } while(remaining > 0); return error; } /* * Test whether it is appropriate to check an inode for and free post EOF * blocks. The 'force' parameter determines whether we should also consider * regular files that are marked preallocated or append-only. */ bool xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) { /* prealloc/delalloc exists only on regular files */ if (!S_ISREG(VFS_I(ip)->i_mode)) return false; /* * Zero sized files with no cached pages and delalloc blocks will not * have speculative prealloc/delalloc blocks to remove. */ if (VFS_I(ip)->i_size == 0 && VFS_I(ip)->i_mapping->nrpages == 0 && ip->i_delayed_blks == 0) return false; /* If we haven't read in the extent list, then don't do it now. */ if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) return false; /* * Do not free real preallocated or append-only files unless the file * has delalloc blocks and we are forced to remove them. */ if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) if (!force || ip->i_delayed_blks == 0) return false; return true; } /* * This is called to free any blocks beyond eof. The caller must hold * IOLOCK_EXCL unless we are in the inode reclaim path and have the only * reference to the inode. */ int xfs_free_eofblocks( struct xfs_inode *ip) { struct xfs_trans *tp; int error; xfs_fileoff_t end_fsb; xfs_fileoff_t last_fsb; xfs_filblks_t map_len; int nimaps; struct xfs_bmbt_irec imap; struct xfs_mount *mp = ip->i_mount; /* * Figure out if there are any blocks beyond the end * of the file. If not, then there is nothing to do. */ end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); if (last_fsb <= end_fsb) return 0; map_len = last_fsb - end_fsb; nimaps = 1; xfs_ilock(ip, XFS_ILOCK_SHARED); error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); xfs_iunlock(ip, XFS_ILOCK_SHARED); /* * If there are blocks after the end of file, truncate the file to its * current size to free them up. */ if (!error && (nimaps != 0) && (imap.br_startblock != HOLESTARTBLOCK || ip->i_delayed_blks)) { /* * Attach the dquots to the inode up front. */ error = xfs_qm_dqattach(ip, 0); if (error) return error; /* wait on dio to ensure i_size has settled */ inode_dio_wait(VFS_I(ip)); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) { ASSERT(XFS_FORCED_SHUTDOWN(mp)); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Do not update the on-disk file size. If we update the * on-disk file size and then the system crashes before the * contents of the file are flushed to disk then the files * may be full of holes (ie NULL files bug). */ error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, XFS_ISIZE(ip)); if (error) { /* * If we get an error at this point we simply don't * bother truncating the file. */ xfs_trans_cancel(tp); } else { error = xfs_trans_commit(tp); if (!error) xfs_inode_clear_eofblocks_tag(ip); } xfs_iunlock(ip, XFS_ILOCK_EXCL); } return error; } int xfs_alloc_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len, int alloc_type) { xfs_mount_t *mp = ip->i_mount; xfs_off_t count; xfs_filblks_t allocated_fsb; xfs_filblks_t allocatesize_fsb; xfs_extlen_t extsz, temp; xfs_fileoff_t startoffset_fsb; xfs_fsblock_t firstfsb; int nimaps; int quota_flag; int rt; xfs_trans_t *tp; xfs_bmbt_irec_t imaps[1], *imapp; struct xfs_defer_ops dfops; uint qblocks, resblks, resrtextents; int error; trace_xfs_alloc_file_space(ip); if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; error = xfs_qm_dqattach(ip, 0); if (error) return error; if (len <= 0) return -EINVAL; rt = XFS_IS_REALTIME_INODE(ip); extsz = xfs_get_extsz_hint(ip); count = len; imapp = &imaps[0]; nimaps = 1; startoffset_fsb = XFS_B_TO_FSBT(mp, offset); allocatesize_fsb = XFS_B_TO_FSB(mp, count); /* * Allocate file space until done or until there is an error */ while (allocatesize_fsb && !error) { xfs_fileoff_t s, e; /* * Determine space reservations for data/realtime. */ if (unlikely(extsz)) { s = startoffset_fsb; do_div(s, extsz); s *= extsz; e = startoffset_fsb + allocatesize_fsb; if ((temp = do_mod(startoffset_fsb, extsz))) e += temp; if ((temp = do_mod(e, extsz))) e += extsz - temp; } else { s = 0; e = allocatesize_fsb; } /* * The transaction reservation is limited to a 32-bit block * count, hence we need to limit the number of blocks we are * trying to reserve to avoid an overflow. We can't allocate * more than @nimaps extents, and an extent is limited on disk * to MAXEXTLEN (21 bits), so use that to enforce the limit. */ resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); if (unlikely(rt)) { resrtextents = qblocks = resblks; resrtextents /= mp->m_sb.sb_rextsize; resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); quota_flag = XFS_QMOPT_RES_RTBLKS; } else { resrtextents = 0; resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); quota_flag = XFS_QMOPT_RES_REGBLKS; } /* * Allocate and setup the transaction. */ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents, 0, &tp); /* * Check for running out of space */ if (error) { /* * Free the transaction structure. */ ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); break; } xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag); if (error) goto error1; xfs_trans_ijoin(tp, ip, 0); xfs_defer_init(&dfops, &firstfsb); error = xfs_bmapi_write(tp, ip, startoffset_fsb, allocatesize_fsb, alloc_type, &firstfsb, resblks, imapp, &nimaps, &dfops); if (error) goto error0; /* * Complete the transaction */ error = xfs_defer_finish(&tp, &dfops); if (error) goto error0; error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); if (error) break; allocated_fsb = imapp->br_blockcount; if (nimaps == 0) { error = -ENOSPC; break; } startoffset_fsb += allocated_fsb; allocatesize_fsb -= allocated_fsb; } return error; error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ xfs_defer_cancel(&dfops); xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); error1: /* Just cancel transaction */ xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } static int xfs_unmap_extent( struct xfs_inode *ip, xfs_fileoff_t startoffset_fsb, xfs_filblks_t len_fsb, int *done) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; struct xfs_defer_ops dfops; xfs_fsblock_t firstfsb; uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); if (error) { ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); if (error) goto out_trans_cancel; xfs_trans_ijoin(tp, ip, 0); xfs_defer_init(&dfops, &firstfsb); error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, &dfops, done); if (error) goto out_bmap_cancel; xfs_defer_ijoin(&dfops, ip); error = xfs_defer_finish(&tp, &dfops); if (error) goto out_bmap_cancel; error = xfs_trans_commit(tp); out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; out_bmap_cancel: xfs_defer_cancel(&dfops); out_trans_cancel: xfs_trans_cancel(tp); goto out_unlock; } static int xfs_adjust_extent_unmap_boundaries( struct xfs_inode *ip, xfs_fileoff_t *startoffset_fsb, xfs_fileoff_t *endoffset_fsb) { struct xfs_mount *mp = ip->i_mount; struct xfs_bmbt_irec imap; int nimap, error; xfs_extlen_t mod = 0; nimap = 1; error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); if (error) return error; if (nimap && imap.br_startblock != HOLESTARTBLOCK) { ASSERT(imap.br_startblock != DELAYSTARTBLOCK); mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize); if (mod) *startoffset_fsb += mp->m_sb.sb_rextsize - mod; } nimap = 1; error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); if (error) return error; if (nimap && imap.br_startblock != HOLESTARTBLOCK) { ASSERT(imap.br_startblock != DELAYSTARTBLOCK); mod++; if (mod && mod != mp->m_sb.sb_rextsize) *endoffset_fsb -= mod; } return 0; } static int xfs_flush_unmap_range( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; struct inode *inode = VFS_I(ip); xfs_off_t rounding, start, end; int error; /* wait for the completion of any pending DIOs */ inode_dio_wait(inode); rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); start = round_down(offset, rounding); end = round_up(offset + len, rounding) - 1; error = filemap_write_and_wait_range(inode->i_mapping, start, end); if (error) return error; truncate_pagecache_range(inode, start, end); return 0; } int xfs_free_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t startoffset_fsb; xfs_fileoff_t endoffset_fsb; int done = 0, error; trace_xfs_free_file_space(ip); error = xfs_qm_dqattach(ip, 0); if (error) return error; if (len <= 0) /* if nothing being freed */ return 0; error = xfs_flush_unmap_range(ip, offset, len); if (error) return error; startoffset_fsb = XFS_B_TO_FSB(mp, offset); endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); /* * Need to zero the stuff we're not freeing, on disk. If it's a RT file * and we can't use unwritten extents then we actually need to ensure * to zero the whole extent, otherwise we just need to take of block * boundaries, and xfs_bunmapi will handle the rest. */ if (XFS_IS_REALTIME_INODE(ip) && !xfs_sb_version_hasextflgbit(&mp->m_sb)) { error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, &endoffset_fsb); if (error) return error; } if (endoffset_fsb > startoffset_fsb) { while (!done) { error = xfs_unmap_extent(ip, startoffset_fsb, endoffset_fsb - startoffset_fsb, &done); if (error) return error; } } /* * Now that we've unmap all full blocks we'll have to zero out any * partial block at the beginning and/or end. xfs_zero_range is * smart enough to skip any holes, including those we just created, * but we must take care not to zero beyond EOF and enlarge i_size. */ if (offset >= XFS_ISIZE(ip)) return 0; if (offset + len > XFS_ISIZE(ip)) len = XFS_ISIZE(ip) - offset; return xfs_zero_range(ip, offset, len, NULL); } /* * Preallocate and zero a range of a file. This mechanism has the allocation * semantics of fallocate and in addition converts data in the range to zeroes. */ int xfs_zero_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; uint blksize; int error; trace_xfs_zero_file_space(ip); blksize = 1 << mp->m_sb.sb_blocklog; /* * Punch a hole and prealloc the range. We use hole punch rather than * unwritten extent conversion for two reasons: * * 1.) Hole punch handles partial block zeroing for us. * * 2.) If prealloc returns ENOSPC, the file range is still zero-valued * by virtue of the hole punch. */ error = xfs_free_file_space(ip, offset, len); if (error) goto out; error = xfs_alloc_file_space(ip, round_down(offset, blksize), round_up(offset + len, blksize) - round_down(offset, blksize), XFS_BMAPI_PREALLOC); out: return error; } /* * @next_fsb will keep track of the extent currently undergoing shift. * @stop_fsb will keep track of the extent at which we have to stop. * If we are shifting left, we will start with block (offset + len) and * shift each extent till last extent. * If we are shifting right, we will start with last extent inside file space * and continue until we reach the block corresponding to offset. */ static int xfs_shift_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len, enum shift_direction direction) { int done = 0; struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; struct xfs_defer_ops dfops; xfs_fsblock_t first_block; xfs_fileoff_t stop_fsb; xfs_fileoff_t next_fsb; xfs_fileoff_t shift_fsb; uint resblks; ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); if (direction == SHIFT_LEFT) { /* * Reserve blocks to cover potential extent merges after left * shift operations. */ resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); next_fsb = XFS_B_TO_FSB(mp, offset + len); stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); } else { /* * If right shift, delegate the work of initialization of * next_fsb to xfs_bmap_shift_extent as it has ilock held. */ resblks = 0; next_fsb = NULLFSBLOCK; stop_fsb = XFS_B_TO_FSB(mp, offset); } shift_fsb = XFS_B_TO_FSB(mp, len); /* * Trim eofblocks to avoid shifting uninitialized post-eof preallocation * into the accessible region of the file. */ if (xfs_can_free_eofblocks(ip, true)) { error = xfs_free_eofblocks(ip); if (error) return error; } /* * Writeback and invalidate cache for the remainder of the file as we're * about to shift down every extent from offset to EOF. */ error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, offset, -1); if (error) return error; error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, offset >> PAGE_SHIFT, -1); if (error) return error; /* * The extent shiting code works on extent granularity. So, if * stop_fsb is not the starting block of extent, we need to split * the extent at stop_fsb. */ if (direction == SHIFT_RIGHT) { error = xfs_bmap_split_extent(ip, stop_fsb); if (error) return error; } while (!error && !done) { error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); if (error) break; xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); if (error) goto out_trans_cancel; xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_defer_init(&dfops, &first_block); /* * We are using the write transaction in which max 2 bmbt * updates are allowed */ error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, &done, stop_fsb, &first_block, &dfops, direction, XFS_BMAP_MAX_SHIFT_EXTENTS); if (error) goto out_bmap_cancel; error = xfs_defer_finish(&tp, &dfops); if (error) goto out_bmap_cancel; error = xfs_trans_commit(tp); } return error; out_bmap_cancel: xfs_defer_cancel(&dfops); out_trans_cancel: xfs_trans_cancel(tp); return error; } /* * xfs_collapse_file_space() * This routine frees disk space and shift extent for the given file. * The first thing we do is to free data blocks in the specified range * by calling xfs_free_file_space(). It would also sync dirty data * and invalidate page cache over the region on which collapse range * is working. And Shift extent records to the left to cover a hole. * RETURNS: * 0 on success * errno on error * */ int xfs_collapse_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { int error; ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); trace_xfs_collapse_file_space(ip); error = xfs_free_file_space(ip, offset, len); if (error) return error; return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); } /* * xfs_insert_file_space() * This routine create hole space by shifting extents for the given file. * The first thing we do is to sync dirty data and invalidate page cache * over the region on which insert range is working. And split an extent * to two extents at given offset by calling xfs_bmap_split_extent. * And shift all extent records which are laying between [offset, * last allocated extent] to the right to reserve hole range. * RETURNS: * 0 on success * errno on error */ int xfs_insert_file_space( struct xfs_inode *ip, loff_t offset, loff_t len) { ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); trace_xfs_insert_file_space(ip); return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); } /* * We need to check that the format of the data fork in the temporary inode is * valid for the target inode before doing the swap. This is not a problem with * attr1 because of the fixed fork offset, but attr2 has a dynamically sized * data fork depending on the space the attribute fork is taking so we can get * invalid formats on the target inode. * * E.g. target has space for 7 extents in extent format, temp inode only has * space for 6. If we defragment down to 7 extents, then the tmp format is a * btree, but when swapped it needs to be in extent format. Hence we can't just * blindly swap data forks on attr2 filesystems. * * Note that we check the swap in both directions so that we don't end up with * a corrupt temporary inode, either. * * Note that fixing the way xfs_fsr sets up the attribute fork in the source * inode will prevent this situation from occurring, so all we do here is * reject and log the attempt. basically we are putting the responsibility on * userspace to get this right. */ static int xfs_swap_extents_check_format( struct xfs_inode *ip, /* target inode */ struct xfs_inode *tip) /* tmp inode */ { /* Should never get a local format */ if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) return -EINVAL; /* * if the target inode has less extents that then temporary inode then * why did userspace call us? */ if (ip->i_d.di_nextents < tip->i_d.di_nextents) return -EINVAL; /* * If we have to use the (expensive) rmap swap method, we can * handle any number of extents and any format. */ if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) return 0; /* * if the target inode is in extent form and the temp inode is in btree * form then we will end up with the target inode in the wrong format * as we already know there are less extents in the temp inode. */ if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && tip->i_d.di_format == XFS_DINODE_FMT_BTREE) return -EINVAL; /* Check temp in extent form to max in target */ if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; /* Check target in extent form to max in temp */ if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; /* * If we are in a btree format, check that the temp root block will fit * in the target and that it has enough extents to be in btree format * in the target. * * Note that we have to be careful to allow btree->extent conversions * (a common defrag case) which will occur when the temp inode is in * extent format... */ if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_Q(ip) && XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) return -EINVAL; if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; } /* Reciprocal target->temp btree format checks */ if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_Q(tip) && XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) return -EINVAL; if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; } return 0; } static int xfs_swap_extent_flush( struct xfs_inode *ip) { int error; error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) return error; truncate_pagecache_range(VFS_I(ip), 0, -1); /* Verify O_DIRECT for ftmp */ if (VFS_I(ip)->i_mapping->nrpages) return -EINVAL; return 0; } /* * Move extents from one file to another, when rmap is enabled. */ STATIC int xfs_swap_extent_rmap( struct xfs_trans **tpp, struct xfs_inode *ip, struct xfs_inode *tip) { struct xfs_bmbt_irec irec; struct xfs_bmbt_irec uirec; struct xfs_bmbt_irec tirec; xfs_fileoff_t offset_fsb; xfs_fileoff_t end_fsb; xfs_filblks_t count_fsb; xfs_fsblock_t firstfsb; struct xfs_defer_ops dfops; int error; xfs_filblks_t ilen; xfs_filblks_t rlen; int nimaps; uint64_t tip_flags2; /* * If the source file has shared blocks, we must flag the donor * file as having shared blocks so that we get the shared-block * rmap functions when we go to fix up the rmaps. The flags * will be switch for reals later. */ tip_flags2 = tip->i_d.di_flags2; if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; offset_fsb = 0; end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); while (count_fsb) { /* Read extent from the donor file */ nimaps = 1; error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, &nimaps, 0); if (error) goto out; ASSERT(nimaps == 1); ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); trace_xfs_swap_extent_rmap_remap(tip, &tirec); ilen = tirec.br_blockcount; /* Unmap the old blocks in the source file. */ while (tirec.br_blockcount) { xfs_defer_init(&dfops, &firstfsb); trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); /* Read extent from the source file */ nimaps = 1; error = xfs_bmapi_read(ip, tirec.br_startoff, tirec.br_blockcount, &irec, &nimaps, 0); if (error) goto out_defer; ASSERT(nimaps == 1); ASSERT(tirec.br_startoff == irec.br_startoff); trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); /* Trim the extent. */ uirec = tirec; uirec.br_blockcount = rlen = min_t(xfs_filblks_t, tirec.br_blockcount, irec.br_blockcount); trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); /* Remove the mapping from the donor file. */ error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, tip, &uirec); if (error) goto out_defer; /* Remove the mapping from the source file. */ error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, ip, &irec); if (error) goto out_defer; /* Map the donor file's blocks into the source file. */ error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, ip, &uirec); if (error) goto out_defer; /* Map the source file's blocks into the donor file. */ error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, tip, &irec); if (error) goto out_defer; xfs_defer_ijoin(&dfops, ip); error = xfs_defer_finish(tpp, &dfops); if (error) goto out_defer; tirec.br_startoff += rlen; if (tirec.br_startblock != HOLESTARTBLOCK && tirec.br_startblock != DELAYSTARTBLOCK) tirec.br_startblock += rlen; tirec.br_blockcount -= rlen; } /* Roll on... */ count_fsb -= ilen; offset_fsb += ilen; } tip->i_d.di_flags2 = tip_flags2; return 0; out_defer: xfs_defer_cancel(&dfops); out: trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); tip->i_d.di_flags2 = tip_flags2; return error; } /* Swap the extents of two files by swapping data forks. */ STATIC int xfs_swap_extent_forks( struct xfs_trans *tp, struct xfs_inode *ip, struct xfs_inode *tip, int *src_log_flags, int *target_log_flags) { struct xfs_ifork tempifp, *ifp, *tifp; xfs_filblks_t aforkblks = 0; xfs_filblks_t taforkblks = 0; xfs_extnum_t junk; xfs_extnum_t nextents; uint64_t tmp; int error; /* * Count the number of extended attribute blocks */ if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, &aforkblks); if (error) return error; } if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, &taforkblks); if (error) return error; } /* * Btree format (v3) inodes have the inode number stamped in the bmbt * block headers. We can't start changing the bmbt blocks until the * inode owner change is logged so recovery does the right thing in the * event of a crash. Set the owner change log flags now and leave the * bmbt scan as the last step. */ if (ip->i_d.di_version == 3 && ip->i_d.di_format == XFS_DINODE_FMT_BTREE) (*target_log_flags) |= XFS_ILOG_DOWNER; if (tip->i_d.di_version == 3 && tip->i_d.di_format == XFS_DINODE_FMT_BTREE) (*src_log_flags) |= XFS_ILOG_DOWNER; /* * Swap the data forks of the inodes */ ifp = &ip->i_df; tifp = &tip->i_df; tempifp = *ifp; /* struct copy */ *ifp = *tifp; /* struct copy */ *tifp = tempifp; /* struct copy */ /* * Fix the on-disk inode values */ tmp = (uint64_t)ip->i_d.di_nblocks; ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; tmp = (uint64_t) ip->i_d.di_nextents; ip->i_d.di_nextents = tip->i_d.di_nextents; tip->i_d.di_nextents = tmp; tmp = (uint64_t) ip->i_d.di_format; ip->i_d.di_format = tip->i_d.di_format; tip->i_d.di_format = tmp; /* * The extents in the source inode could still contain speculative * preallocation beyond EOF (e.g. the file is open but not modified * while defrag is in progress). In that case, we need to copy over the * number of delalloc blocks the data fork in the source inode is * tracking beyond EOF so that when the fork is truncated away when the * temporary inode is unlinked we don't underrun the i_delayed_blks * counter on that inode. */ ASSERT(tip->i_delayed_blks == 0); tip->i_delayed_blks = ip->i_delayed_blks; ip->i_delayed_blks = 0; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* * If the extents fit in the inode, fix the pointer. Otherwise * it's already NULL or pointing to the extent. */ nextents = xfs_iext_count(&ip->i_df); if (nextents <= XFS_INLINE_EXTS) ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; (*src_log_flags) |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: ASSERT(ip->i_d.di_version < 3 || (*src_log_flags & XFS_ILOG_DOWNER)); (*src_log_flags) |= XFS_ILOG_DBROOT; break; } switch (tip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* * If the extents fit in the inode, fix the pointer. Otherwise * it's already NULL or pointing to the extent. */ nextents = xfs_iext_count(&tip->i_df); if (nextents <= XFS_INLINE_EXTS) tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext; (*target_log_flags) |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: (*target_log_flags) |= XFS_ILOG_DBROOT; ASSERT(tip->i_d.di_version < 3 || (*target_log_flags & XFS_ILOG_DOWNER)); break; } return 0; } int xfs_swap_extents( struct xfs_inode *ip, /* target inode */ struct xfs_inode *tip, /* tmp inode */ struct xfs_swapext *sxp) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; struct xfs_bstat *sbp = &sxp->sx_stat; int src_log_flags, target_log_flags; int error = 0; int lock_flags; struct xfs_ifork *cowfp; uint64_t f; int resblks; /* * Lock the inodes against other IO, page faults and truncate to * begin with. Then we can ensure the inodes are flushed and have no * page cache safely. Once we have done this we can take the ilocks and * do the rest of the checks. */ lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); lock_flags = XFS_MMAPLOCK_EXCL; xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); /* Verify that both files have the same format */ if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { error = -EINVAL; goto out_unlock; } /* Verify both files are either real-time or non-realtime */ if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { error = -EINVAL; goto out_unlock; } error = xfs_swap_extent_flush(ip); if (error) goto out_unlock; error = xfs_swap_extent_flush(tip); if (error) goto out_unlock; /* * Extent "swapping" with rmap requires a permanent reservation and * a block reservation because it's really just a remap operation * performed with log redo items! */ if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { /* * Conceptually this shouldn't affect the shape of either * bmbt, but since we atomically move extents one by one, * we reserve enough space to rebuild both trees. */ resblks = XFS_SWAP_RMAP_SPACE_RES(mp, XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), XFS_DATA_FORK) + XFS_SWAP_RMAP_SPACE_RES(mp, XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), XFS_DATA_FORK); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); } else error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) goto out_unlock; /* * Lock and join the inodes to the tansaction so that transaction commit * or cancel will unlock the inodes from this point onwards. */ xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); lock_flags |= XFS_ILOCK_EXCL; xfs_trans_ijoin(tp, ip, 0); xfs_trans_ijoin(tp, tip, 0); /* Verify all data are being swapped */ if (sxp->sx_offset != 0 || sxp->sx_length != ip->i_d.di_size || sxp->sx_length != tip->i_d.di_size) { error = -EFAULT; goto out_trans_cancel; } trace_xfs_swap_extent_before(ip, 0); trace_xfs_swap_extent_before(tip, 1); /* check inode formats now that data is flushed */ error = xfs_swap_extents_check_format(ip, tip); if (error) { xfs_notice(mp, "%s: inode 0x%llx format is incompatible for exchanging.", __func__, ip->i_ino); goto out_trans_cancel; } /* * Compare the current change & modify times with that * passed in. If they differ, we abort this swap. * This is the mechanism used to ensure the calling * process that the file was not changed out from * under it. */ if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { error = -EBUSY; goto out_trans_cancel; } /* * Note the trickiness in setting the log flags - we set the owner log * flag on the opposite inode (i.e. the inode we are setting the new * owner to be) because once we swap the forks and log that, log * recovery is going to see the fork as owned by the swapped inode, * not the pre-swapped inodes. */ src_log_flags = XFS_ILOG_CORE; target_log_flags = XFS_ILOG_CORE; if (xfs_sb_version_hasrmapbt(&mp->m_sb)) error = xfs_swap_extent_rmap(&tp, ip, tip); else error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, &target_log_flags); if (error) goto out_trans_cancel; /* Do we have to swap reflink flags? */ if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; cowfp = ip->i_cowfp; ip->i_cowfp = tip->i_cowfp; tip->i_cowfp = cowfp; xfs_inode_set_cowblocks_tag(ip); xfs_inode_set_cowblocks_tag(tip); } xfs_trans_log_inode(tp, ip, src_log_flags); xfs_trans_log_inode(tp, tip, target_log_flags); /* * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems * have inode number owner values in the bmbt blocks that still refer to * the old inode. Scan each bmbt to fix up the owner values with the * inode number of the current inode. */ if (src_log_flags & XFS_ILOG_DOWNER) { error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, NULL); if (error) goto out_trans_cancel; } if (target_log_flags & XFS_ILOG_DOWNER) { error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, tip->i_ino, NULL); if (error) goto out_trans_cancel; } /* * If this is a synchronous mount, make sure that the * transaction goes to disk before returning to the user. */ if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); trace_xfs_swap_extent_after(ip, 0); trace_xfs_swap_extent_after(tip, 1); out_unlock: xfs_iunlock(ip, lock_flags); xfs_iunlock(tip, lock_flags); unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); return error; out_trans_cancel: xfs_trans_cancel(tp); goto out_unlock; }