/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_CPUID_H #define ARCH_X86_KVM_CPUID_H #include "x86.h" #include #include extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly; void kvm_set_cpu_caps(void); void kvm_update_cpuid(struct kvm_vcpu *vcpu); struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, u32 function, u32 index); int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries, unsigned int type); int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries); int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only); int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu); static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) { return vcpu->arch.maxphyaddr; } struct cpuid_reg { u32 function; u32 index; int reg; }; static const struct cpuid_reg reverse_cpuid[] = { [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, }; /* * Reverse CPUID and its derivatives can only be used for hardware-defined * feature words, i.e. words whose bits directly correspond to a CPUID leaf. * Retrieving a feature bit or masking guest CPUID from a Linux-defined word * is nonsensical as the bit number/mask is an arbitrary software-defined value * and can't be used by KVM to query/control guest capabilities. And obviously * the leaf being queried must have an entry in the lookup table. */ static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) { BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); } /* * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain * the hardware defined bit number (stored in bits 4:0) and a software defined * "word" (stored in bits 31:5). The word is used to index into arrays of * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). */ static __always_inline u32 __feature_bit(int x86_feature) { reverse_cpuid_check(x86_feature / 32); return 1 << (x86_feature & 31); } #define feature_bit(name) __feature_bit(X86_FEATURE_##name) static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) { unsigned int x86_leaf = x86_feature / 32; reverse_cpuid_check(x86_leaf); return reverse_cpuid[x86_leaf]; } static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, u32 reg) { switch (reg) { case CPUID_EAX: return &entry->eax; case CPUID_EBX: return &entry->ebx; case CPUID_ECX: return &entry->ecx; case CPUID_EDX: return &entry->edx; default: BUILD_BUG(); return NULL; } } static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); return __cpuid_entry_get_reg(entry, cpuid.reg); } static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); return *reg & __feature_bit(x86_feature); } static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { return cpuid_entry_get(entry, x86_feature); } static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg &= ~__feature_bit(x86_feature); } static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg |= __feature_bit(x86_feature); } static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature, bool set) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); /* * Open coded instead of using cpuid_entry_{clear,set}() to coerce the * compiler into using CMOV instead of Jcc when possible. */ if (set) *reg |= __feature_bit(x86_feature); else *reg &= ~__feature_bit(x86_feature); } static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry, enum cpuid_leafs leaf) { u32 *reg = cpuid_entry_get_reg(entry, leaf * 32); BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps)); *reg = kvm_cpu_caps[leaf]; } static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu, unsigned int x86_feature) { const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); struct kvm_cpuid_entry2 *entry; entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index); if (!entry) return NULL; return __cpuid_entry_get_reg(entry, cpuid.reg); } static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu, unsigned int x86_feature) { u32 *reg; reg = guest_cpuid_get_register(vcpu, x86_feature); if (!reg) return false; return *reg & __feature_bit(x86_feature); } static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu, unsigned int x86_feature) { u32 *reg; reg = guest_cpuid_get_register(vcpu, x86_feature); if (reg) *reg &= ~__feature_bit(x86_feature); } static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0, 0); return best && (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) || is_guest_vendor_hygon(best->ebx, best->ecx, best->edx)); } static inline int guest_cpuid_family(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1, 0); if (!best) return -1; return x86_family(best->eax); } static inline int guest_cpuid_model(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1, 0); if (!best) return -1; return x86_model(best->eax); } static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1, 0); if (!best) return -1; return x86_stepping(best->eax); } static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu) { return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT; } static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu) { return vcpu->arch.msr_misc_features_enables & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; } static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature) { unsigned int x86_leaf = x86_feature / 32; reverse_cpuid_check(x86_leaf); kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature); } static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature) { unsigned int x86_leaf = x86_feature / 32; reverse_cpuid_check(x86_leaf); kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature); } static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature) { unsigned int x86_leaf = x86_feature / 32; reverse_cpuid_check(x86_leaf); return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature); } static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature) { return !!kvm_cpu_cap_get(x86_feature); } static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature) { if (boot_cpu_has(x86_feature)) kvm_cpu_cap_set(x86_feature); } static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) { return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); } #endif