/* * Copyright (c) 2014 Samsung Electronics Co., Ltd * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include "drm_crtc_internal.h" /** * DOC: overview * * &struct drm_bridge represents a device that hangs on to an encoder. These are * handy when a regular &drm_encoder entity isn't enough to represent the entire * encoder chain. * * A bridge is always attached to a single &drm_encoder at a time, but can be * either connected to it directly, or through an intermediate bridge:: * * encoder ---> bridge B ---> bridge A * * Here, the output of the encoder feeds to bridge B, and that furthers feeds to * bridge A. * * The driver using the bridge is responsible to make the associations between * the encoder and bridges. Once these links are made, the bridges will * participate along with encoder functions to perform mode_set/enable/disable * through the ops provided in &drm_bridge_funcs. * * drm_bridge, like drm_panel, aren't drm_mode_object entities like planes, * CRTCs, encoders or connectors and hence are not visible to userspace. They * just provide additional hooks to get the desired output at the end of the * encoder chain. * * Bridges can also be chained up using the &drm_bridge.chain_node field. * * Both legacy CRTC helpers and the new atomic modeset helpers support bridges. */ static DEFINE_MUTEX(bridge_lock); static LIST_HEAD(bridge_list); /** * drm_bridge_add - add the given bridge to the global bridge list * * @bridge: bridge control structure */ void drm_bridge_add(struct drm_bridge *bridge) { mutex_lock(&bridge_lock); list_add_tail(&bridge->list, &bridge_list); mutex_unlock(&bridge_lock); } EXPORT_SYMBOL(drm_bridge_add); /** * drm_bridge_remove - remove the given bridge from the global bridge list * * @bridge: bridge control structure */ void drm_bridge_remove(struct drm_bridge *bridge) { mutex_lock(&bridge_lock); list_del_init(&bridge->list); mutex_unlock(&bridge_lock); } EXPORT_SYMBOL(drm_bridge_remove); /** * drm_bridge_attach - attach the bridge to an encoder's chain * * @encoder: DRM encoder * @bridge: bridge to attach * @previous: previous bridge in the chain (optional) * * Called by a kms driver to link the bridge to an encoder's chain. The previous * argument specifies the previous bridge in the chain. If NULL, the bridge is * linked directly at the encoder's output. Otherwise it is linked at the * previous bridge's output. * * If non-NULL the previous bridge must be already attached by a call to this * function. * * Note that bridges attached to encoders are auto-detached during encoder * cleanup in drm_encoder_cleanup(), so drm_bridge_attach() should generally * *not* be balanced with a drm_bridge_detach() in driver code. * * RETURNS: * Zero on success, error code on failure */ int drm_bridge_attach(struct drm_encoder *encoder, struct drm_bridge *bridge, struct drm_bridge *previous) { int ret; if (!encoder || !bridge) return -EINVAL; if (previous && (!previous->dev || previous->encoder != encoder)) return -EINVAL; if (bridge->dev) return -EBUSY; bridge->dev = encoder->dev; bridge->encoder = encoder; if (previous) list_add(&bridge->chain_node, &previous->chain_node); else list_add(&bridge->chain_node, &encoder->bridge_chain); if (bridge->funcs->attach) { ret = bridge->funcs->attach(bridge); if (ret < 0) { list_del(&bridge->chain_node); bridge->dev = NULL; bridge->encoder = NULL; return ret; } } return 0; } EXPORT_SYMBOL(drm_bridge_attach); void drm_bridge_detach(struct drm_bridge *bridge) { if (WARN_ON(!bridge)) return; if (WARN_ON(!bridge->dev)) return; if (bridge->funcs->detach) bridge->funcs->detach(bridge); list_del(&bridge->chain_node); bridge->dev = NULL; } /** * DOC: bridge callbacks * * The &drm_bridge_funcs ops are populated by the bridge driver. The DRM * internals (atomic and CRTC helpers) use the helpers defined in drm_bridge.c * These helpers call a specific &drm_bridge_funcs op for all the bridges * during encoder configuration. * * For detailed specification of the bridge callbacks see &drm_bridge_funcs. */ /** * drm_bridge_chain_mode_fixup - fixup proposed mode for all bridges in the * encoder chain * @bridge: bridge control structure * @mode: desired mode to be set for the bridge * @adjusted_mode: updated mode that works for this bridge * * Calls &drm_bridge_funcs.mode_fixup for all the bridges in the * encoder chain, starting from the first bridge to the last. * * Note: the bridge passed should be the one closest to the encoder * * RETURNS: * true on success, false on failure */ bool drm_bridge_chain_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_encoder *encoder; if (!bridge) return true; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (!bridge->funcs->mode_fixup) continue; if (!bridge->funcs->mode_fixup(bridge, mode, adjusted_mode)) return false; } return true; } EXPORT_SYMBOL(drm_bridge_chain_mode_fixup); /** * drm_bridge_chain_mode_valid - validate the mode against all bridges in the * encoder chain. * @bridge: bridge control structure * @mode: desired mode to be validated * * Calls &drm_bridge_funcs.mode_valid for all the bridges in the encoder * chain, starting from the first bridge to the last. If at least one bridge * does not accept the mode the function returns the error code. * * Note: the bridge passed should be the one closest to the encoder. * * RETURNS: * MODE_OK on success, drm_mode_status Enum error code on failure */ enum drm_mode_status drm_bridge_chain_mode_valid(struct drm_bridge *bridge, const struct drm_display_mode *mode) { struct drm_encoder *encoder; if (!bridge) return MODE_OK; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { enum drm_mode_status ret; if (!bridge->funcs->mode_valid) continue; ret = bridge->funcs->mode_valid(bridge, mode); if (ret != MODE_OK) return ret; } return MODE_OK; } EXPORT_SYMBOL(drm_bridge_chain_mode_valid); /** * drm_bridge_chain_disable - disables all bridges in the encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.disable op for all the bridges in the encoder * chain, starting from the last bridge to the first. These are called before * calling the encoder's prepare op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_disable(struct drm_bridge *bridge) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->disable) iter->funcs->disable(iter); if (iter == bridge) break; } } EXPORT_SYMBOL(drm_bridge_chain_disable); /** * drm_bridge_chain_post_disable - cleans up after disabling all bridges in the * encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.post_disable op for all the bridges in the * encoder chain, starting from the first bridge to the last. These are called * after completing the encoder's prepare op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_post_disable(struct drm_bridge *bridge) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->post_disable) bridge->funcs->post_disable(bridge); } } EXPORT_SYMBOL(drm_bridge_chain_post_disable); /** * drm_bridge_chain_mode_set - set proposed mode for all bridges in the * encoder chain * @bridge: bridge control structure * @mode: desired mode to be set for the encoder chain * @adjusted_mode: updated mode that works for this encoder chain * * Calls &drm_bridge_funcs.mode_set op for all the bridges in the * encoder chain, starting from the first bridge to the last. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->mode_set) bridge->funcs->mode_set(bridge, mode, adjusted_mode); } } EXPORT_SYMBOL(drm_bridge_chain_mode_set); /** * drm_bridge_chain_pre_enable - prepares for enabling all bridges in the * encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.pre_enable op for all the bridges in the encoder * chain, starting from the last bridge to the first. These are called * before calling the encoder's commit op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_pre_enable(struct drm_bridge *bridge) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->pre_enable) iter->funcs->pre_enable(iter); } } EXPORT_SYMBOL(drm_bridge_chain_pre_enable); /** * drm_bridge_chain_enable - enables all bridges in the encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.enable op for all the bridges in the encoder * chain, starting from the first bridge to the last. These are called * after completing the encoder's commit op. * * Note that the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_enable(struct drm_bridge *bridge) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->enable) bridge->funcs->enable(bridge); } } EXPORT_SYMBOL(drm_bridge_chain_enable); /** * drm_atomic_bridge_chain_disable - disables all bridges in the encoder chain * @bridge: bridge control structure * @state: atomic state being committed * * Calls &drm_bridge_funcs.atomic_disable (falls back on * &drm_bridge_funcs.disable) op for all the bridges in the encoder chain, * starting from the last bridge to the first. These are called before calling * &drm_encoder_helper_funcs.atomic_disable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_disable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->atomic_disable) iter->funcs->atomic_disable(iter, state); else if (iter->funcs->disable) iter->funcs->disable(iter); if (iter == bridge) break; } } EXPORT_SYMBOL(drm_atomic_bridge_chain_disable); /** * drm_atomic_bridge_chain_post_disable - cleans up after disabling all bridges * in the encoder chain * @bridge: bridge control structure * @state: atomic state being committed * * Calls &drm_bridge_funcs.atomic_post_disable (falls back on * &drm_bridge_funcs.post_disable) op for all the bridges in the encoder chain, * starting from the first bridge to the last. These are called after completing * &drm_encoder_helper_funcs.atomic_disable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_post_disable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->atomic_post_disable) bridge->funcs->atomic_post_disable(bridge, state); else if (bridge->funcs->post_disable) bridge->funcs->post_disable(bridge); } } EXPORT_SYMBOL(drm_atomic_bridge_chain_post_disable); /** * drm_atomic_bridge_chain_pre_enable - prepares for enabling all bridges in * the encoder chain * @bridge: bridge control structure * @state: atomic state being committed * * Calls &drm_bridge_funcs.atomic_pre_enable (falls back on * &drm_bridge_funcs.pre_enable) op for all the bridges in the encoder chain, * starting from the last bridge to the first. These are called before calling * &drm_encoder_helper_funcs.atomic_enable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_pre_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->atomic_pre_enable) iter->funcs->atomic_pre_enable(iter, state); else if (iter->funcs->pre_enable) iter->funcs->pre_enable(iter); if (iter == bridge) break; } } EXPORT_SYMBOL(drm_atomic_bridge_chain_pre_enable); /** * drm_atomic_bridge_chain_enable - enables all bridges in the encoder chain * @bridge: bridge control structure * @state: atomic state being committed * * Calls &drm_bridge_funcs.atomic_enable (falls back on * &drm_bridge_funcs.enable) op for all the bridges in the encoder chain, * starting from the first bridge to the last. These are called after completing * &drm_encoder_helper_funcs.atomic_enable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->atomic_enable) bridge->funcs->atomic_enable(bridge, state); else if (bridge->funcs->enable) bridge->funcs->enable(bridge); } } EXPORT_SYMBOL(drm_atomic_bridge_chain_enable); #ifdef CONFIG_OF /** * of_drm_find_bridge - find the bridge corresponding to the device node in * the global bridge list * * @np: device node * * RETURNS: * drm_bridge control struct on success, NULL on failure */ struct drm_bridge *of_drm_find_bridge(struct device_node *np) { struct drm_bridge *bridge; mutex_lock(&bridge_lock); list_for_each_entry(bridge, &bridge_list, list) { if (bridge->of_node == np) { mutex_unlock(&bridge_lock); return bridge; } } mutex_unlock(&bridge_lock); return NULL; } EXPORT_SYMBOL(of_drm_find_bridge); #endif MODULE_AUTHOR("Ajay Kumar "); MODULE_DESCRIPTION("DRM bridge infrastructure"); MODULE_LICENSE("GPL and additional rights");