/* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes , May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include #include #include #include #include #include #define MXCSR_DEFAULT 0x1f80 extern unsigned int mxcsr_feature_mask; extern union thread_xstate init_fpstate; extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__activate_curr(struct fpu *fpu); extern void fpstate_init(union thread_xstate *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct i387_soft_struct *soft); #else static inline void fpstate_init_soft(struct i387_soft_struct *soft) {} #endif static inline void fpstate_init_fxstate(struct i387_fxsave_struct *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * High level FPU state handling functions: */ extern void fpu__save(struct fpu *fpu); extern void fpu__restore(void); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); extern void fpu__clear(struct fpu *fpu); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, * on this CPU. * * This will disable any lazy FPU state restore of the current FPU state, * but if the current thread owns the FPU, it will still be saved by. */ static inline void __cpu_disable_lazy_restore(unsigned int cpu) { per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; } static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } #define X87_FSW_ES (1 << 7) /* Exception Summary */ static __always_inline __pure bool use_eager_fpu(void) { return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); } static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has_safe(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has_safe(X86_FEATURE_FXSR); } extern void fpstate_sanitize_xstate(struct fpu *fpu); #define user_insn(insn, output, input...) \ ({ \ int err; \ asm volatile(ASM_STAC "\n" \ "1:" #insn "\n\t" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define check_insn(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) static inline int copy_fregs_to_user(struct i387_fsave_struct __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct i387_fxsave_struct __user *fx) { if (config_enabled(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); /* See comment in copy_fxregs_to_kernel() below. */ return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); } static inline int copy_kernel_to_fxregs(struct i387_fxsave_struct *fx) { if (config_enabled(CONFIG_X86_32)) return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); /* See comment in copy_fxregs_to_kernel() below. */ return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); } static inline int copy_user_to_fxregs(struct i387_fxsave_struct __user *fx) { if (config_enabled(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); /* See comment in copy_fxregs_to_kernel() below. */ return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); } static inline int copy_kernel_to_fregs(struct i387_fsave_struct *fx) { return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct i387_fsave_struct __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (config_enabled(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); else { /* Using "rex64; fxsave %0" is broken because, if the memory * operand uses any extended registers for addressing, a second * REX prefix will be generated (to the assembler, rex64 * followed by semicolon is a separate instruction), and hence * the 64-bitness is lost. * * Using "fxsaveq %0" would be the ideal choice, but is only * supported starting with gas 2.16. * * Using, as a workaround, the properly prefixed form below * isn't accepted by any binutils version so far released, * complaining that the same type of prefix is used twice if * an extended register is needed for addressing (fix submitted * to mainline 2005-11-21). * * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); * * This, however, we can work around by forcing the compiler to * select an addressing mode that doesn't require extended * registers. */ asm volatile( "rex64/fxsave (%[fx])" : "=m" (fpu->state.fxsave) : [fx] "R" (&fpu->state.fxsave)); } } /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ static inline int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave)); return 0; } static inline int __copy_fpstate_to_fpregs(struct fpu *fpu) { if (use_xsave()) return copy_kernel_to_xregs(&fpu->state.xsave, -1); else if (use_fxsr()) return copy_kernel_to_fxregs(&fpu->state.fxsave); else return copy_kernel_to_fregs(&fpu->state.fsave); } static inline int copy_fpstate_to_fpregs(struct fpu *fpu) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpu->fpregs_active)); } return __copy_fpstate_to_fpregs(fpu); } /* * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation' * idiom, which is then paired with the sw-flag (fpregs_active) later on: */ static inline void __fpregs_activate_hw(void) { if (!use_eager_fpu()) clts(); } static inline void __fpregs_deactivate_hw(void) { if (!use_eager_fpu()) stts(); } /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */ static inline void __fpregs_deactivate(struct fpu *fpu) { fpu->fpregs_active = 0; this_cpu_write(fpu_fpregs_owner_ctx, NULL); } /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */ static inline void __fpregs_activate(struct fpu *fpu) { fpu->fpregs_active = 1; this_cpu_write(fpu_fpregs_owner_ctx, fpu); } /* * The question "does this thread have fpu access?" * is slightly racy, since preemption could come in * and revoke it immediately after the test. * * However, even in that very unlikely scenario, * we can just assume we have FPU access - typically * to save the FP state - we'll just take a #NM * fault and get the FPU access back. */ static inline int fpregs_active(void) { return current->thread.fpu.fpregs_active; } /* * Encapsulate the CR0.TS handling together with the * software flag. * * These generally need preemption protection to work, * do try to avoid using these on their own. */ static inline void fpregs_activate(struct fpu *fpu) { __fpregs_activate_hw(); __fpregs_activate(fpu); } static inline void fpregs_deactivate(struct fpu *fpu) { __fpregs_deactivate(fpu); __fpregs_deactivate_hw(); } /* * Definitions for the eXtended Control Register instructions */ #define XCR_XFEATURE_ENABLED_MASK 0x00000000 static inline u64 xgetbv(u32 index) { u32 eax, edx; asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ : "=a" (eax), "=d" (edx) : "c" (index)); return eax + ((u64)edx << 32); } static inline void xsetbv(u32 index, u64 value) { u32 eax = value; u32 edx = value >> 32; asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ : : "a" (eax), "d" (edx), "c" (index)); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state and * sets the new state of the CR0.TS bit. This is * done within the context of the old process. * * - switch_fpu_finish() restores the new state as * necessary. */ typedef struct { int preload; } fpu_switch_t; static inline fpu_switch_t switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu) { fpu_switch_t fpu; /* * If the task has used the math, pre-load the FPU on xsave processors * or if the past 5 consecutive context-switches used math. */ fpu.preload = new_fpu->fpstate_active && (use_eager_fpu() || new_fpu->counter > 5); if (old_fpu->fpregs_active) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ old_fpu->fpregs_active = 0; /* Don't change CR0.TS if we just switch! */ if (fpu.preload) { new_fpu->counter++; __fpregs_activate(new_fpu); prefetch(&new_fpu->state); } else { __fpregs_deactivate_hw(); } } else { old_fpu->counter = 0; old_fpu->last_cpu = -1; if (fpu.preload) { new_fpu->counter++; if (fpu_want_lazy_restore(new_fpu, cpu)) fpu.preload = 0; else prefetch(&new_fpu->state); fpregs_activate(new_fpu); } } return fpu; } /* * By the time this gets called, we've already cleared CR0.TS and * given the process the FPU if we are going to preload the FPU * state - all we need to do is to conditionally restore the register * state itself. */ static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch) { if (fpu_switch.preload) { if (unlikely(copy_fpstate_to_fpregs(new_fpu))) fpu__clear(new_fpu); } } /* * Signal frame handlers... */ extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fx, int size); /* * Needs to be preemption-safe. * * NOTE! user_fpu_begin() must be used only immediately before restoring * the save state. It does not do any saving/restoring on its own. In * lazy FPU mode, it is just an optimization to avoid a #NM exception, * the task can lose the FPU right after preempt_enable(). */ static inline void user_fpu_begin(void) { struct fpu *fpu = ¤t->thread.fpu; preempt_disable(); if (!fpregs_active()) fpregs_activate(fpu); preempt_enable(); } #endif /* _ASM_X86_FPU_INTERNAL_H */