/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "intel_device_info.h" #include "i915_drv.h" #define PLATFORM_NAME(x) [INTEL_##x] = #x static const char * const platform_names[] = { PLATFORM_NAME(I830), PLATFORM_NAME(I845G), PLATFORM_NAME(I85X), PLATFORM_NAME(I865G), PLATFORM_NAME(I915G), PLATFORM_NAME(I915GM), PLATFORM_NAME(I945G), PLATFORM_NAME(I945GM), PLATFORM_NAME(G33), PLATFORM_NAME(PINEVIEW), PLATFORM_NAME(I965G), PLATFORM_NAME(I965GM), PLATFORM_NAME(G45), PLATFORM_NAME(GM45), PLATFORM_NAME(IRONLAKE), PLATFORM_NAME(SANDYBRIDGE), PLATFORM_NAME(IVYBRIDGE), PLATFORM_NAME(VALLEYVIEW), PLATFORM_NAME(HASWELL), PLATFORM_NAME(BROADWELL), PLATFORM_NAME(CHERRYVIEW), PLATFORM_NAME(SKYLAKE), PLATFORM_NAME(BROXTON), PLATFORM_NAME(KABYLAKE), PLATFORM_NAME(GEMINILAKE), PLATFORM_NAME(COFFEELAKE), PLATFORM_NAME(CANNONLAKE), PLATFORM_NAME(ICELAKE), }; #undef PLATFORM_NAME const char *intel_platform_name(enum intel_platform platform) { BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || platform_names[platform] == NULL)) return ""; return platform_names[platform]; } void intel_device_info_dump_flags(const struct intel_device_info *info, struct drm_printer *p) { #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); #undef PRINT_FLAG } static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) { drm_printf(p, "slice mask: %04x\n", sseu->slice_mask); drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask)); drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu)); drm_printf(p, "subslice mask %04x\n", sseu->subslice_mask); drm_printf(p, "subslice per slice: %u\n", hweight8(sseu->subslice_mask)); drm_printf(p, "EU total: %u\n", sseu->eu_total); drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); drm_printf(p, "has slice power gating: %s\n", yesno(sseu->has_slice_pg)); drm_printf(p, "has subslice power gating: %s\n", yesno(sseu->has_subslice_pg)); drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); } void intel_device_info_dump_runtime(const struct intel_device_info *info, struct drm_printer *p) { sseu_dump(&info->sseu, p); drm_printf(p, "CS timestamp frequency: %u kHz\n", info->cs_timestamp_frequency_khz); } void intel_device_info_dump(const struct intel_device_info *info, struct drm_printer *p) { struct drm_i915_private *dev_priv = container_of(info, struct drm_i915_private, info); drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n", INTEL_DEVID(dev_priv), INTEL_REVID(dev_priv), intel_platform_name(info->platform), info->gen); intel_device_info_dump_flags(info, p); } static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; const u32 fuse2 = I915_READ(GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> GEN10_F2_S_ENA_SHIFT; sseu->subslice_mask = (1 << 4) - 1; sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> GEN10_F2_SS_DIS_SHIFT); sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0)); sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1)); sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2)); sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) & GEN10_EU_DIS_SS_MASK)); /* * CNL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. */ sseu->eu_per_subslice = sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, sseu_subslice_total(sseu)) : 0; /* No restrictions on Power Gating */ sseu->has_slice_pg = 1; sseu->has_subslice_pg = 1; sseu->has_eu_pg = 1; } static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; u32 fuse, eu_dis; fuse = I915_READ(CHV_FUSE_GT); sseu->slice_mask = BIT(0); if (!(fuse & CHV_FGT_DISABLE_SS0)) { sseu->subslice_mask |= BIT(0); eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK | CHV_FGT_EU_DIS_SS0_R1_MASK); sseu->eu_total += 8 - hweight32(eu_dis); } if (!(fuse & CHV_FGT_DISABLE_SS1)) { sseu->subslice_mask |= BIT(1); eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK | CHV_FGT_EU_DIS_SS1_R1_MASK); sseu->eu_total += 8 - hweight32(eu_dis); } /* * CHV expected to always have a uniform distribution of EU * across subslices. */ sseu->eu_per_subslice = sseu_subslice_total(sseu) ? sseu->eu_total / sseu_subslice_total(sseu) : 0; /* * CHV supports subslice power gating on devices with more than * one subslice, and supports EU power gating on devices with * more than one EU pair per subslice. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = (sseu->eu_per_subslice > 2); } static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) { struct intel_device_info *info = mkwrite_device_info(dev_priv); struct sseu_dev_info *sseu = &info->sseu; int s_max = 3, ss_max = 4, eu_max = 8; int s, ss; u32 fuse2, eu_disable; u8 eu_mask = 0xff; fuse2 = I915_READ(GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ sseu->subslice_mask = (1 << ss_max) - 1; sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> GEN9_F2_SS_DIS_SHIFT); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < s_max; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; eu_disable = I915_READ(GEN9_EU_DISABLE(s)); for (ss = 0; ss < ss_max; ss++) { int eu_per_ss; if (!(sseu->subslice_mask & BIT(ss))) /* skip disabled subslice */ continue; eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) & eu_mask); /* * Record which subslice(s) has(have) 7 EUs. we * can tune the hash used to spread work among * subslices if they are unbalanced. */ if (eu_per_ss == 7) sseu->subslice_7eu[s] |= BIT(ss); sseu->eu_total += eu_per_ss; } } /* * SKL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. BXT is expected to be perfectly uniform in EU * distribution. */ sseu->eu_per_subslice = sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, sseu_subslice_total(sseu)) : 0; /* * SKL+ supports slice power gating on devices with more than * one slice, and supports EU power gating on devices with * more than one EU pair per subslice. BXT+ supports subslice * power gating on devices with more than one subslice, and * supports EU power gating on devices with more than one EU * pair per subslice. */ sseu->has_slice_pg = !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = sseu->eu_per_subslice > 2; if (IS_GEN9_LP(dev_priv)) { #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask & BIT(ss))) info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3; sseu->min_eu_in_pool = 0; if (info->has_pooled_eu) { if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) sseu->min_eu_in_pool = 3; else if (IS_SS_DISABLED(1)) sseu->min_eu_in_pool = 6; else sseu->min_eu_in_pool = 9; } #undef IS_SS_DISABLED } } static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; const int s_max = 3, ss_max = 3, eu_max = 8; int s, ss; u32 fuse2, eu_disable[3]; /* s_max */ fuse2 = I915_READ(GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ sseu->subslice_mask = GENMASK(ss_max - 1, 0); sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> GEN8_F2_SS_DIS_SHIFT); eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << (32 - GEN8_EU_DIS0_S1_SHIFT)); eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << (32 - GEN8_EU_DIS1_S2_SHIFT)); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < s_max; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; for (ss = 0; ss < ss_max; ss++) { u32 n_disabled; if (!(sseu->subslice_mask & BIT(ss))) /* skip disabled subslice */ continue; n_disabled = hweight8(eu_disable[s] >> (ss * eu_max)); /* * Record which subslices have 7 EUs. */ if (eu_max - n_disabled == 7) sseu->subslice_7eu[s] |= 1 << ss; sseu->eu_total += eu_max - n_disabled; } } /* * BDW is expected to always have a uniform distribution of EU across * subslices with the exception that any one EU in any one subslice may * be fused off for die recovery. */ sseu->eu_per_subslice = sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, sseu_subslice_total(sseu)) : 0; /* * BDW supports slice power gating on devices with more than * one slice. */ sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) { struct intel_device_info *info = mkwrite_device_info(dev_priv); struct sseu_dev_info *sseu = &info->sseu; u32 fuse1; /* * There isn't a register to tell us how many slices/subslices. We * work off the PCI-ids here. */ switch (info->gt) { default: MISSING_CASE(info->gt); /* fall through */ case 1: sseu->slice_mask = BIT(0); sseu->subslice_mask = BIT(0); break; case 2: sseu->slice_mask = BIT(0); sseu->subslice_mask = BIT(0) | BIT(1); break; case 3: sseu->slice_mask = BIT(0) | BIT(1); sseu->subslice_mask = BIT(0) | BIT(1); break; } fuse1 = I915_READ(HSW_PAVP_FUSE1); switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { default: MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT); /* fall through */ case HSW_F1_EU_DIS_10EUS: sseu->eu_per_subslice = 10; break; case HSW_F1_EU_DIS_8EUS: sseu->eu_per_subslice = 8; break; case HSW_F1_EU_DIS_6EUS: sseu->eu_per_subslice = 6; break; } sseu->eu_total = sseu_subslice_total(sseu) * sseu->eu_per_subslice; /* No powergating for you. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) { u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); u32 base_freq, frac_freq; base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; base_freq *= 1000; frac_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); frac_freq = 1000 / (frac_freq + 1); return base_freq + frac_freq; } static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) { u32 f12_5_mhz = 12500; u32 f19_2_mhz = 19200; u32 f24_mhz = 24000; if (INTEL_GEN(dev_priv) <= 4) { /* PRMs say: * * "The value in this register increments once every 16 * hclks." (through the “Clocking Configuration” * (“CLKCFG”) MCHBAR register) */ return dev_priv->rawclk_freq / 16; } else if (INTEL_GEN(dev_priv) <= 8) { /* PRMs say: * * "The PCU TSC counts 10ns increments; this timestamp * reflects bits 38:3 of the TSC (i.e. 80ns granularity, * rolling over every 1.5 hours). */ return f12_5_mhz; } else if (INTEL_GEN(dev_priv) <= 9) { u32 ctc_reg = I915_READ(CTC_MODE); u32 freq = 0; if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(dev_priv); } else { freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; /* Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> CTC_SHIFT_PARAMETER_SHIFT); } return freq; } else if (INTEL_GEN(dev_priv) <= 10) { u32 ctc_reg = I915_READ(CTC_MODE); u32 freq = 0; u32 rpm_config_reg = 0; /* First figure out the reference frequency. There are 2 ways * we can compute the frequency, either through the * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE * tells us which one we should use. */ if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(dev_priv); } else { u32 crystal_clock; rpm_config_reg = I915_READ(RPM_CONFIG0); crystal_clock = (rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: freq = f19_2_mhz; break; case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: freq = f24_mhz; break; } /* Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((rpm_config_reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); } return freq; } MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); return 0; } /** * intel_device_info_runtime_init - initialize runtime info * @info: intel device info struct * * Determine various intel_device_info fields at runtime. * * Use it when either: * - it's judged too laborious to fill n static structures with the limit * when a simple if statement does the job, * - run-time checks (eg read fuse/strap registers) are needed. * * This function needs to be called: * - after the MMIO has been setup as we are reading registers, * - after the PCH has been detected, * - before the first usage of the fields it can tweak. */ void intel_device_info_runtime_init(struct intel_device_info *info) { struct drm_i915_private *dev_priv = container_of(info, struct drm_i915_private, info); enum pipe pipe; if (INTEL_GEN(dev_priv) >= 10) { for_each_pipe(dev_priv, pipe) info->num_scalers[pipe] = 2; } else if (INTEL_GEN(dev_priv) == 9) { info->num_scalers[PIPE_A] = 2; info->num_scalers[PIPE_B] = 2; info->num_scalers[PIPE_C] = 1; } /* * Skylake and Broxton currently don't expose the topmost plane as its * use is exclusive with the legacy cursor and we only want to expose * one of those, not both. Until we can safely expose the topmost plane * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, * we don't expose the topmost plane at all to prevent ABI breakage * down the line. */ if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv)) for_each_pipe(dev_priv, pipe) info->num_sprites[pipe] = 3; else if (IS_BROXTON(dev_priv)) { info->num_sprites[PIPE_A] = 2; info->num_sprites[PIPE_B] = 2; info->num_sprites[PIPE_C] = 1; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { for_each_pipe(dev_priv, pipe) info->num_sprites[pipe] = 2; } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { for_each_pipe(dev_priv, pipe) info->num_sprites[pipe] = 1; } if (i915_modparams.disable_display) { DRM_INFO("Display disabled (module parameter)\n"); info->num_pipes = 0; } else if (info->num_pipes > 0 && (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) && HAS_PCH_SPLIT(dev_priv)) { u32 fuse_strap = I915_READ(FUSE_STRAP); u32 sfuse_strap = I915_READ(SFUSE_STRAP); /* * SFUSE_STRAP is supposed to have a bit signalling the display * is fused off. Unfortunately it seems that, at least in * certain cases, fused off display means that PCH display * reads don't land anywhere. In that case, we read 0s. * * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK * should be set when taking over after the firmware. */ if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || (HAS_PCH_CPT(dev_priv) && !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { DRM_INFO("Display fused off, disabling\n"); info->num_pipes = 0; } else if (fuse_strap & IVB_PIPE_C_DISABLE) { DRM_INFO("PipeC fused off\n"); info->num_pipes -= 1; } } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) { u32 dfsm = I915_READ(SKL_DFSM); u8 disabled_mask = 0; bool invalid; int num_bits; if (dfsm & SKL_DFSM_PIPE_A_DISABLE) disabled_mask |= BIT(PIPE_A); if (dfsm & SKL_DFSM_PIPE_B_DISABLE) disabled_mask |= BIT(PIPE_B); if (dfsm & SKL_DFSM_PIPE_C_DISABLE) disabled_mask |= BIT(PIPE_C); num_bits = hweight8(disabled_mask); switch (disabled_mask) { case BIT(PIPE_A): case BIT(PIPE_B): case BIT(PIPE_A) | BIT(PIPE_B): case BIT(PIPE_A) | BIT(PIPE_C): invalid = true; break; default: invalid = false; } if (num_bits > info->num_pipes || invalid) DRM_ERROR("invalid pipe fuse configuration: 0x%x\n", disabled_mask); else info->num_pipes -= num_bits; } /* Initialize slice/subslice/EU info */ if (IS_HASWELL(dev_priv)) haswell_sseu_info_init(dev_priv); else if (IS_CHERRYVIEW(dev_priv)) cherryview_sseu_info_init(dev_priv); else if (IS_BROADWELL(dev_priv)) broadwell_sseu_info_init(dev_priv); else if (INTEL_GEN(dev_priv) == 9) gen9_sseu_info_init(dev_priv); else if (INTEL_GEN(dev_priv) >= 10) gen10_sseu_info_init(dev_priv); /* Initialize command stream timestamp frequency */ info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); } void intel_driver_caps_print(const struct intel_driver_caps *caps, struct drm_printer *p) { drm_printf(p, "scheduler: %x\n", caps->scheduler); }