// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Pin control enable input pins. */ #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE 0x00 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0 0x01 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1 0x02 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2 0x04 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3 0x08 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT 0x10 /* Pin control high power mode input pins. */ #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE 0x00 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0 0x01 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1 0x02 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2 0x04 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3 0x08 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B 0x10 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT 0x20 /* * Used with enable parameters to specify that hardware default register values * should be left unaltered. */ #define SPMI_REGULATOR_USE_HW_DEFAULT 2 /* Soft start strength of a voltage switch type regulator */ enum spmi_vs_soft_start_str { SPMI_VS_SOFT_START_STR_0P05_UA = 0, SPMI_VS_SOFT_START_STR_0P25_UA, SPMI_VS_SOFT_START_STR_0P55_UA, SPMI_VS_SOFT_START_STR_0P75_UA, SPMI_VS_SOFT_START_STR_HW_DEFAULT, }; /** * struct spmi_regulator_init_data - spmi-regulator initialization data * @pin_ctrl_enable: Bit mask specifying which hardware pins should be * used to enable the regulator, if any * Value should be an ORing of * SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants. If * the bit specified by * SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is * set, then pin control enable hardware registers * will not be modified. * @pin_ctrl_hpm: Bit mask specifying which hardware pins should be * used to force the regulator into high power * mode, if any * Value should be an ORing of * SPMI_REGULATOR_PIN_CTRL_HPM_* constants. If * the bit specified by * SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is * set, then pin control mode hardware registers * will not be modified. * @vs_soft_start_strength: This parameter sets the soft start strength for * voltage switch type regulators. Its value * should be one of SPMI_VS_SOFT_START_STR_*. If * its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT, * then the soft start strength will be left at its * default hardware value. */ struct spmi_regulator_init_data { unsigned pin_ctrl_enable; unsigned pin_ctrl_hpm; enum spmi_vs_soft_start_str vs_soft_start_strength; }; /* These types correspond to unique register layouts. */ enum spmi_regulator_logical_type { SPMI_REGULATOR_LOGICAL_TYPE_SMPS, SPMI_REGULATOR_LOGICAL_TYPE_LDO, SPMI_REGULATOR_LOGICAL_TYPE_VS, SPMI_REGULATOR_LOGICAL_TYPE_BOOST, SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS, SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP, SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO, SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS, SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS, SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO, SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426, }; enum spmi_regulator_type { SPMI_REGULATOR_TYPE_BUCK = 0x03, SPMI_REGULATOR_TYPE_LDO = 0x04, SPMI_REGULATOR_TYPE_VS = 0x05, SPMI_REGULATOR_TYPE_BOOST = 0x1b, SPMI_REGULATOR_TYPE_FTS = 0x1c, SPMI_REGULATOR_TYPE_BOOST_BYP = 0x1f, SPMI_REGULATOR_TYPE_ULT_LDO = 0x21, SPMI_REGULATOR_TYPE_ULT_BUCK = 0x22, }; enum spmi_regulator_subtype { SPMI_REGULATOR_SUBTYPE_GP_CTL = 0x08, SPMI_REGULATOR_SUBTYPE_RF_CTL = 0x09, SPMI_REGULATOR_SUBTYPE_N50 = 0x01, SPMI_REGULATOR_SUBTYPE_N150 = 0x02, SPMI_REGULATOR_SUBTYPE_N300 = 0x03, SPMI_REGULATOR_SUBTYPE_N600 = 0x04, SPMI_REGULATOR_SUBTYPE_N1200 = 0x05, SPMI_REGULATOR_SUBTYPE_N600_ST = 0x06, SPMI_REGULATOR_SUBTYPE_N1200_ST = 0x07, SPMI_REGULATOR_SUBTYPE_N900_ST = 0x14, SPMI_REGULATOR_SUBTYPE_N300_ST = 0x15, SPMI_REGULATOR_SUBTYPE_P50 = 0x08, SPMI_REGULATOR_SUBTYPE_P150 = 0x09, SPMI_REGULATOR_SUBTYPE_P300 = 0x0a, SPMI_REGULATOR_SUBTYPE_P600 = 0x0b, SPMI_REGULATOR_SUBTYPE_P1200 = 0x0c, SPMI_REGULATOR_SUBTYPE_LN = 0x10, SPMI_REGULATOR_SUBTYPE_LV_P50 = 0x28, SPMI_REGULATOR_SUBTYPE_LV_P150 = 0x29, SPMI_REGULATOR_SUBTYPE_LV_P300 = 0x2a, SPMI_REGULATOR_SUBTYPE_LV_P600 = 0x2b, SPMI_REGULATOR_SUBTYPE_LV_P1200 = 0x2c, SPMI_REGULATOR_SUBTYPE_LV_P450 = 0x2d, SPMI_REGULATOR_SUBTYPE_LV100 = 0x01, SPMI_REGULATOR_SUBTYPE_LV300 = 0x02, SPMI_REGULATOR_SUBTYPE_MV300 = 0x08, SPMI_REGULATOR_SUBTYPE_MV500 = 0x09, SPMI_REGULATOR_SUBTYPE_HDMI = 0x10, SPMI_REGULATOR_SUBTYPE_OTG = 0x11, SPMI_REGULATOR_SUBTYPE_5V_BOOST = 0x01, SPMI_REGULATOR_SUBTYPE_FTS_CTL = 0x08, SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09, SPMI_REGULATOR_SUBTYPE_FTS426_CTL = 0x0a, SPMI_REGULATOR_SUBTYPE_BB_2A = 0x01, SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0d, SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0e, SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0f, SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10, }; enum spmi_common_regulator_registers { SPMI_COMMON_REG_DIG_MAJOR_REV = 0x01, SPMI_COMMON_REG_TYPE = 0x04, SPMI_COMMON_REG_SUBTYPE = 0x05, SPMI_COMMON_REG_VOLTAGE_RANGE = 0x40, SPMI_COMMON_REG_VOLTAGE_SET = 0x41, SPMI_COMMON_REG_MODE = 0x45, SPMI_COMMON_REG_ENABLE = 0x46, SPMI_COMMON_REG_PULL_DOWN = 0x48, SPMI_COMMON_REG_SOFT_START = 0x4c, SPMI_COMMON_REG_STEP_CTRL = 0x61, }; /* * Second common register layout used by newer devices starting with ftsmps426 * Note that some of the registers from the first common layout remain * unchanged and their definition is not duplicated. */ enum spmi_ftsmps426_regulator_registers { SPMI_FTSMPS426_REG_VOLTAGE_LSB = 0x40, SPMI_FTSMPS426_REG_VOLTAGE_MSB = 0x41, SPMI_FTSMPS426_REG_VOLTAGE_ULS_LSB = 0x68, SPMI_FTSMPS426_REG_VOLTAGE_ULS_MSB = 0x69, }; enum spmi_vs_registers { SPMI_VS_REG_OCP = 0x4a, SPMI_VS_REG_SOFT_START = 0x4c, }; enum spmi_boost_registers { SPMI_BOOST_REG_CURRENT_LIMIT = 0x4a, }; enum spmi_boost_byp_registers { SPMI_BOOST_BYP_REG_CURRENT_LIMIT = 0x4b, }; enum spmi_saw3_registers { SAW3_SECURE = 0x00, SAW3_ID = 0x04, SAW3_SPM_STS = 0x0C, SAW3_AVS_STS = 0x10, SAW3_PMIC_STS = 0x14, SAW3_RST = 0x18, SAW3_VCTL = 0x1C, SAW3_AVS_CTL = 0x20, SAW3_AVS_LIMIT = 0x24, SAW3_AVS_DLY = 0x28, SAW3_AVS_HYSTERESIS = 0x2C, SAW3_SPM_STS2 = 0x38, SAW3_SPM_PMIC_DATA_3 = 0x4C, SAW3_VERSION = 0xFD0, }; /* Used for indexing into ctrl_reg. These are offets from 0x40 */ enum spmi_common_control_register_index { SPMI_COMMON_IDX_VOLTAGE_RANGE = 0, SPMI_COMMON_IDX_VOLTAGE_SET = 1, SPMI_COMMON_IDX_MODE = 5, SPMI_COMMON_IDX_ENABLE = 6, }; /* Common regulator control register layout */ #define SPMI_COMMON_ENABLE_MASK 0x80 #define SPMI_COMMON_ENABLE 0x80 #define SPMI_COMMON_DISABLE 0x00 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0f /* Common regulator mode register layout */ #define SPMI_COMMON_MODE_HPM_MASK 0x80 #define SPMI_COMMON_MODE_AUTO_MASK 0x40 #define SPMI_COMMON_MODE_BYPASS_MASK 0x20 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK 0x1f #define SPMI_FTSMPS426_MODE_BYPASS_MASK 3 #define SPMI_FTSMPS426_MODE_RETENTION_MASK 4 #define SPMI_FTSMPS426_MODE_LPM_MASK 5 #define SPMI_FTSMPS426_MODE_AUTO_MASK 6 #define SPMI_FTSMPS426_MODE_HPM_MASK 7 #define SPMI_FTSMPS426_MODE_MASK 0x07 /* Common regulator pull down control register layout */ #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK 0x80 /* LDO regulator current limit control register layout */ #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80 /* LDO regulator soft start control register layout */ #define SPMI_LDO_SOFT_START_ENABLE_MASK 0x80 /* VS regulator over current protection control register layout */ #define SPMI_VS_OCP_OVERRIDE 0x01 #define SPMI_VS_OCP_NO_OVERRIDE 0x00 /* VS regulator soft start control register layout */ #define SPMI_VS_SOFT_START_ENABLE_MASK 0x80 #define SPMI_VS_SOFT_START_SEL_MASK 0x03 /* Boost regulator current limit control register layout */ #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80 #define SPMI_BOOST_CURRENT_LIMIT_MASK 0x07 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES 10 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS 30 #define SPMI_VS_OCP_FALL_DELAY_US 90 #define SPMI_VS_OCP_FAULT_DELAY_US 20000 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK 0x18 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT 3 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK 0x07 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT 0 /* Clock rate in kHz of the FTSMPS regulator reference clock. */ #define SPMI_FTSMPS_CLOCK_RATE 19200 /* Minimum voltage stepper delay for each step. */ #define SPMI_FTSMPS_STEP_DELAY 8 #define SPMI_DEFAULT_STEP_DELAY 20 /* * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to * adjust the step rate in order to account for oscillator variance. */ #define SPMI_FTSMPS_STEP_MARGIN_NUM 4 #define SPMI_FTSMPS_STEP_MARGIN_DEN 5 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK 0x03 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT 0 /* Clock rate in kHz of the FTSMPS426 regulator reference clock. */ #define SPMI_FTSMPS426_CLOCK_RATE 4800 /* Minimum voltage stepper delay for each step. */ #define SPMI_FTSMPS426_STEP_DELAY 2 /* * The ratio SPMI_FTSMPS426_STEP_MARGIN_NUM/SPMI_FTSMPS426_STEP_MARGIN_DEN is * used to adjust the step rate in order to account for oscillator variance. */ #define SPMI_FTSMPS426_STEP_MARGIN_NUM 10 #define SPMI_FTSMPS426_STEP_MARGIN_DEN 11 /* VSET value to decide the range of ULT SMPS */ #define ULT_SMPS_RANGE_SPLIT 0x60 /** * struct spmi_voltage_range - regulator set point voltage mapping description * @min_uV: Minimum programmable output voltage resulting from * set point register value 0x00 * @max_uV: Maximum programmable output voltage * @step_uV: Output voltage increase resulting from the set point * register value increasing by 1 * @set_point_min_uV: Minimum allowed voltage * @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order * to pick which range should be used in the case of * overlapping set points. * @n_voltages: Number of preferred voltage set points present in this * range * @range_sel: Voltage range register value corresponding to this range * * The following relationships must be true for the values used in this struct: * (max_uV - min_uV) % step_uV == 0 * (set_point_min_uV - min_uV) % step_uV == 0* * (set_point_max_uV - min_uV) % step_uV == 0* * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1 * * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to * specify that the voltage range has meaning, but is not preferred. */ struct spmi_voltage_range { int min_uV; int max_uV; int step_uV; int set_point_min_uV; int set_point_max_uV; unsigned n_voltages; u8 range_sel; }; /* * The ranges specified in the spmi_voltage_set_points struct must be listed * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV. */ struct spmi_voltage_set_points { struct spmi_voltage_range *range; int count; unsigned n_voltages; }; struct spmi_regulator { struct regulator_desc desc; struct device *dev; struct delayed_work ocp_work; struct regmap *regmap; struct spmi_voltage_set_points *set_points; enum spmi_regulator_logical_type logical_type; int ocp_irq; int ocp_count; int ocp_max_retries; int ocp_retry_delay_ms; int hpm_min_load; int slew_rate; ktime_t vs_enable_time; u16 base; struct list_head node; }; struct spmi_regulator_mapping { enum spmi_regulator_type type; enum spmi_regulator_subtype subtype; enum spmi_regulator_logical_type logical_type; u32 revision_min; u32 revision_max; struct regulator_ops *ops; struct spmi_voltage_set_points *set_points; int hpm_min_load; }; struct spmi_regulator_data { const char *name; u16 base; const char *supply; const char *ocp; u16 force_type; }; #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \ _logical_type, _ops_val, _set_points_val, _hpm_min_load) \ { \ .type = SPMI_REGULATOR_TYPE_##_type, \ .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \ .revision_min = _dig_major_min, \ .revision_max = _dig_major_max, \ .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \ .ops = &spmi_##_ops_val##_ops, \ .set_points = &_set_points_val##_set_points, \ .hpm_min_load = _hpm_min_load, \ } #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \ { \ .type = SPMI_REGULATOR_TYPE_VS, \ .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \ .revision_min = _dig_major_min, \ .revision_max = _dig_major_max, \ .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_VS, \ .ops = &spmi_vs_ops, \ } #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \ _set_point_max_uV, _max_uV, _step_uV) \ { \ .min_uV = _min_uV, \ .max_uV = _max_uV, \ .set_point_min_uV = _set_point_min_uV, \ .set_point_max_uV = _set_point_max_uV, \ .step_uV = _step_uV, \ .range_sel = _range_sel, \ } #define DEFINE_SPMI_SET_POINTS(name) \ struct spmi_voltage_set_points name##_set_points = { \ .range = name##_ranges, \ .count = ARRAY_SIZE(name##_ranges), \ } /* * These tables contain the physically available PMIC regulator voltage setpoint * ranges. Where two ranges overlap in hardware, one of the ranges is trimmed * to ensure that the setpoints available to software are monotonically * increasing and unique. The set_voltage callback functions expect these * properties to hold. */ static struct spmi_voltage_range pldo_ranges[] = { SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000), SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000), }; static struct spmi_voltage_range nldo1_ranges[] = { SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), }; static struct spmi_voltage_range nldo2_ranges[] = { SPMI_VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500), SPMI_VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250), SPMI_VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500), }; static struct spmi_voltage_range nldo3_ranges[] = { SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), SPMI_VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500), SPMI_VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500), }; static struct spmi_voltage_range ln_ldo_ranges[] = { SPMI_VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000), SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000), }; static struct spmi_voltage_range smps_ranges[] = { SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000), }; static struct spmi_voltage_range ftsmps_ranges[] = { SPMI_VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000), SPMI_VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000), }; static struct spmi_voltage_range ftsmps2p5_ranges[] = { SPMI_VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000), SPMI_VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000), }; static struct spmi_voltage_range ftsmps426_ranges[] = { SPMI_VOLTAGE_RANGE(0, 0, 320000, 1352000, 1352000, 4000), }; static struct spmi_voltage_range boost_ranges[] = { SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000), }; static struct spmi_voltage_range boost_byp_ranges[] = { SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000), }; static struct spmi_voltage_range ult_lo_smps_ranges[] = { SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), SPMI_VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000), }; static struct spmi_voltage_range ult_ho_smps_ranges[] = { SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000), }; static struct spmi_voltage_range ult_nldo_ranges[] = { SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), }; static struct spmi_voltage_range ult_pldo_ranges[] = { SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500), }; static DEFINE_SPMI_SET_POINTS(pldo); static DEFINE_SPMI_SET_POINTS(nldo1); static DEFINE_SPMI_SET_POINTS(nldo2); static DEFINE_SPMI_SET_POINTS(nldo3); static DEFINE_SPMI_SET_POINTS(ln_ldo); static DEFINE_SPMI_SET_POINTS(smps); static DEFINE_SPMI_SET_POINTS(ftsmps); static DEFINE_SPMI_SET_POINTS(ftsmps2p5); static DEFINE_SPMI_SET_POINTS(ftsmps426); static DEFINE_SPMI_SET_POINTS(boost); static DEFINE_SPMI_SET_POINTS(boost_byp); static DEFINE_SPMI_SET_POINTS(ult_lo_smps); static DEFINE_SPMI_SET_POINTS(ult_ho_smps); static DEFINE_SPMI_SET_POINTS(ult_nldo); static DEFINE_SPMI_SET_POINTS(ult_pldo); static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf, int len) { return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len); } static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr, u8 *buf, int len) { return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len); } static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val, u8 mask) { return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val); } static int spmi_regulator_vs_enable(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); if (vreg->ocp_irq) { vreg->ocp_count = 0; vreg->vs_enable_time = ktime_get(); } return regulator_enable_regmap(rdev); } static int spmi_regulator_vs_ocp(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 reg = SPMI_VS_OCP_OVERRIDE; return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, ®, 1); } static int spmi_regulator_select_voltage(struct spmi_regulator *vreg, int min_uV, int max_uV) { const struct spmi_voltage_range *range; int uV = min_uV; int lim_min_uV, lim_max_uV, i, range_id, range_max_uV; int selector, voltage_sel; /* Check if request voltage is outside of physically settable range. */ lim_min_uV = vreg->set_points->range[0].set_point_min_uV; lim_max_uV = vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV; if (uV < lim_min_uV && max_uV >= lim_min_uV) uV = lim_min_uV; if (uV < lim_min_uV || uV > lim_max_uV) { dev_err(vreg->dev, "request v=[%d, %d] is outside possible v=[%d, %d]\n", min_uV, max_uV, lim_min_uV, lim_max_uV); return -EINVAL; } /* Find the range which uV is inside of. */ for (i = vreg->set_points->count - 1; i > 0; i--) { range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV; if (uV > range_max_uV && range_max_uV > 0) break; } range_id = i; range = &vreg->set_points->range[range_id]; /* * Force uV to be an allowed set point by applying a ceiling function to * the uV value. */ voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV); uV = voltage_sel * range->step_uV + range->min_uV; if (uV > max_uV) { dev_err(vreg->dev, "request v=[%d, %d] cannot be met by any set point; " "next set point: %d\n", min_uV, max_uV, uV); return -EINVAL; } selector = 0; for (i = 0; i < range_id; i++) selector += vreg->set_points->range[i].n_voltages; selector += (uV - range->set_point_min_uV) / range->step_uV; return selector; } static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg, unsigned selector, u8 *range_sel, u8 *voltage_sel) { const struct spmi_voltage_range *range, *end; unsigned offset; range = vreg->set_points->range; end = range + vreg->set_points->count; for (; range < end; range++) { if (selector < range->n_voltages) { /* * hardware selectors between set point min and real * min are invalid so we ignore them */ offset = range->set_point_min_uV - range->min_uV; offset /= range->step_uV; *voltage_sel = selector + offset; *range_sel = range->range_sel; return 0; } selector -= range->n_voltages; } return -EINVAL; } static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel, const struct spmi_voltage_range *range) { unsigned sw_sel = 0; unsigned offset, max_hw_sel; const struct spmi_voltage_range *r = vreg->set_points->range; const struct spmi_voltage_range *end = r + vreg->set_points->count; for (; r < end; r++) { if (r == range && range->n_voltages) { /* * hardware selectors between set point min and real * min and between set point max and real max are * invalid so we return an error if they're * programmed into the hardware */ offset = range->set_point_min_uV - range->min_uV; offset /= range->step_uV; if (hw_sel < offset) return -EINVAL; max_hw_sel = range->set_point_max_uV - range->min_uV; max_hw_sel /= range->step_uV; if (hw_sel > max_hw_sel) return -EINVAL; return sw_sel + hw_sel - offset; } sw_sel += r->n_voltages; } return -EINVAL; } static const struct spmi_voltage_range * spmi_regulator_find_range(struct spmi_regulator *vreg) { u8 range_sel; const struct spmi_voltage_range *range, *end; range = vreg->set_points->range; end = range + vreg->set_points->count; spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1); for (; range < end; range++) if (range->range_sel == range_sel) return range; return NULL; } static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg, int min_uV, int max_uV) { const struct spmi_voltage_range *range; int uV = min_uV; int i, selector; range = spmi_regulator_find_range(vreg); if (!range) goto different_range; if (uV < range->min_uV && max_uV >= range->min_uV) uV = range->min_uV; if (uV < range->min_uV || uV > range->max_uV) { /* Current range doesn't support the requested voltage. */ goto different_range; } /* * Force uV to be an allowed set point by applying a ceiling function to * the uV value. */ uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV); uV = uV * range->step_uV + range->min_uV; if (uV > max_uV) { /* * No set point in the current voltage range is within the * requested min_uV to max_uV range. */ goto different_range; } selector = 0; for (i = 0; i < vreg->set_points->count; i++) { if (uV >= vreg->set_points->range[i].set_point_min_uV && uV <= vreg->set_points->range[i].set_point_max_uV) { selector += (uV - vreg->set_points->range[i].set_point_min_uV) / vreg->set_points->range[i].step_uV; break; } selector += vreg->set_points->range[i].n_voltages; } if (selector >= vreg->set_points->n_voltages) goto different_range; return selector; different_range: return spmi_regulator_select_voltage(vreg, min_uV, max_uV); } static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev, int min_uV, int max_uV) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); /* * Favor staying in the current voltage range if possible. This avoids * voltage spikes that occur when changing the voltage range. */ return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV); } static int spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); int ret; u8 buf[2]; u8 range_sel, voltage_sel; ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); if (ret) return ret; buf[0] = range_sel; buf[1] = voltage_sel; return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2); } static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev, unsigned selector); static int spmi_regulator_ftsmps426_set_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 buf[2]; int mV; mV = spmi_regulator_common_list_voltage(rdev, selector) / 1000; buf[0] = mV & 0xff; buf[1] = mV >> 8; return spmi_vreg_write(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2); } static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev, unsigned int old_selector, unsigned int new_selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); const struct spmi_voltage_range *range; int diff_uV; range = spmi_regulator_find_range(vreg); if (!range) return -EINVAL; diff_uV = abs(new_selector - old_selector) * range->step_uV; return DIV_ROUND_UP(diff_uV, vreg->slew_rate); } static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); const struct spmi_voltage_range *range; u8 voltage_sel; spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1); range = spmi_regulator_find_range(vreg); if (!range) return -EINVAL; return spmi_hw_selector_to_sw(vreg, voltage_sel, range); } static int spmi_regulator_ftsmps426_get_voltage(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); const struct spmi_voltage_range *range; u8 buf[2]; int uV; spmi_vreg_read(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2); uV = (((unsigned int)buf[1] << 8) | (unsigned int)buf[0]) * 1000; range = vreg->set_points->range; return (uV - range->set_point_min_uV) / range->step_uV; } static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev, int min_uV, int max_uV) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); return spmi_regulator_select_voltage(vreg, min_uV, max_uV); } static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 sel = selector; /* * Certain types of regulators do not have a range select register so * only voltage set register needs to be written. */ return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1); } static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 selector; int ret; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1); if (ret) return ret; return selector; } static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); int ret; u8 range_sel, voltage_sel; ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); if (ret) return ret; /* * Calculate VSET based on range * In case of range 0: voltage_sel is a 7 bit value, can be written * witout any modification. * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to * [011]. */ if (range_sel == 1) voltage_sel |= ULT_SMPS_RANGE_SPLIT; return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET, voltage_sel, 0xff); } static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); const struct spmi_voltage_range *range; u8 voltage_sel; spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1); range = spmi_regulator_find_range(vreg); if (!range) return -EINVAL; if (range->range_sel == 1) voltage_sel &= ~ULT_SMPS_RANGE_SPLIT; return spmi_hw_selector_to_sw(vreg, voltage_sel, range); } static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); int uV = 0; int i; if (selector >= vreg->set_points->n_voltages) return 0; for (i = 0; i < vreg->set_points->count; i++) { if (selector < vreg->set_points->range[i].n_voltages) { uV = selector * vreg->set_points->range[i].step_uV + vreg->set_points->range[i].set_point_min_uV; break; } selector -= vreg->set_points->range[i].n_voltages; } return uV; } static int spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 mask = SPMI_COMMON_MODE_BYPASS_MASK; u8 val = 0; if (enable) val = mask; return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); } static int spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 val; int ret; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1); *enable = val & SPMI_COMMON_MODE_BYPASS_MASK; return ret; } static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 reg; spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1); reg &= SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK; switch (reg) { case SPMI_COMMON_MODE_HPM_MASK: return REGULATOR_MODE_NORMAL; case SPMI_COMMON_MODE_AUTO_MASK: return REGULATOR_MODE_FAST; default: return REGULATOR_MODE_IDLE; } } static unsigned int spmi_regulator_ftsmps426_get_mode(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 reg; spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1); switch (reg) { case SPMI_FTSMPS426_MODE_HPM_MASK: return REGULATOR_MODE_NORMAL; case SPMI_FTSMPS426_MODE_AUTO_MASK: return REGULATOR_MODE_FAST; default: return REGULATOR_MODE_IDLE; } } static int spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK; u8 val; switch (mode) { case REGULATOR_MODE_NORMAL: val = SPMI_COMMON_MODE_HPM_MASK; break; case REGULATOR_MODE_FAST: val = SPMI_COMMON_MODE_AUTO_MASK; break; default: val = 0; break; } return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); } static int spmi_regulator_ftsmps426_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); u8 mask = SPMI_FTSMPS426_MODE_MASK; u8 val; switch (mode) { case REGULATOR_MODE_NORMAL: val = SPMI_FTSMPS426_MODE_HPM_MASK; break; case REGULATOR_MODE_FAST: val = SPMI_FTSMPS426_MODE_AUTO_MASK; break; case REGULATOR_MODE_IDLE: val = SPMI_FTSMPS426_MODE_LPM_MASK; break; default: return -EINVAL; } return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); } static int spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); unsigned int mode; if (load_uA >= vreg->hpm_min_load) mode = REGULATOR_MODE_NORMAL; else mode = REGULATOR_MODE_IDLE; return spmi_regulator_common_set_mode(rdev, mode); } static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK; return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN, mask, mask); } static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK; return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START, mask, mask); } static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); enum spmi_regulator_logical_type type = vreg->logical_type; unsigned int current_reg; u8 reg; u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK | SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK; int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500; if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST) current_reg = SPMI_BOOST_REG_CURRENT_LIMIT; else current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT; if (ilim_uA > max || ilim_uA <= 0) return -EINVAL; reg = (ilim_uA - 1) / 500; reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK; return spmi_vreg_update_bits(vreg, current_reg, reg, mask); } static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg) { int ret; ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE, SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK); vreg->vs_enable_time = ktime_get(); ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE, SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK); return ret; } static void spmi_regulator_vs_ocp_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct spmi_regulator *vreg = container_of(dwork, struct spmi_regulator, ocp_work); spmi_regulator_vs_clear_ocp(vreg); } static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data) { struct spmi_regulator *vreg = data; ktime_t ocp_irq_time; s64 ocp_trigger_delay_us; ocp_irq_time = ktime_get(); ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time, vreg->vs_enable_time); /* * Reset the OCP count if there is a large delay between switch enable * and when OCP triggers. This is indicative of a hotplug event as * opposed to a fault. */ if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US) vreg->ocp_count = 0; /* Wait for switch output to settle back to 0 V after OCP triggered. */ udelay(SPMI_VS_OCP_FALL_DELAY_US); vreg->ocp_count++; if (vreg->ocp_count == 1) { /* Immediately clear the over current condition. */ spmi_regulator_vs_clear_ocp(vreg); } else if (vreg->ocp_count <= vreg->ocp_max_retries) { /* Schedule the over current clear task to run later. */ schedule_delayed_work(&vreg->ocp_work, msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1); } else { dev_err(vreg->dev, "OCP triggered %d times; no further retries\n", vreg->ocp_count); } return IRQ_HANDLED; } #define SAW3_VCTL_DATA_MASK 0xFF #define SAW3_VCTL_CLEAR_MASK 0x700FF #define SAW3_AVS_CTL_EN_MASK 0x1 #define SAW3_AVS_CTL_TGGL_MASK 0x8000000 #define SAW3_AVS_CTL_CLEAR_MASK 0x7efc00 static struct regmap *saw_regmap; static void spmi_saw_set_vdd(void *data) { u32 vctl, data3, avs_ctl, pmic_sts; bool avs_enabled = false; unsigned long timeout; u8 voltage_sel = *(u8 *)data; regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl); regmap_read(saw_regmap, SAW3_VCTL, &vctl); regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3); /* select the band */ vctl &= ~SAW3_VCTL_CLEAR_MASK; vctl |= (u32)voltage_sel; data3 &= ~SAW3_VCTL_CLEAR_MASK; data3 |= (u32)voltage_sel; /* If AVS is enabled, switch it off during the voltage change */ avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl; if (avs_enabled) { avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK; regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl); } regmap_write(saw_regmap, SAW3_RST, 1); regmap_write(saw_regmap, SAW3_VCTL, vctl); regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3); timeout = jiffies + usecs_to_jiffies(100); do { regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts); pmic_sts &= SAW3_VCTL_DATA_MASK; if (pmic_sts == (u32)voltage_sel) break; cpu_relax(); } while (time_before(jiffies, timeout)); /* After successful voltage change, switch the AVS back on */ if (avs_enabled) { pmic_sts &= 0x3f; avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK; avs_ctl |= ((pmic_sts - 4) << 10); avs_ctl |= (pmic_sts << 17); avs_ctl |= SAW3_AVS_CTL_TGGL_MASK; regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl); } } static int spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector) { struct spmi_regulator *vreg = rdev_get_drvdata(rdev); int ret; u8 range_sel, voltage_sel; ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); if (ret) return ret; if (0 != range_sel) { dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \ range_sel, voltage_sel); return -EINVAL; } /* Always do the SAW register writes on the first CPU */ return smp_call_function_single(0, spmi_saw_set_vdd, \ &voltage_sel, true); } static struct regulator_ops spmi_saw_ops = {}; static struct regulator_ops spmi_smps_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_common_set_voltage, .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, .get_voltage_sel = spmi_regulator_common_get_voltage, .map_voltage = spmi_regulator_common_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_pull_down = spmi_regulator_common_set_pull_down, }; static struct regulator_ops spmi_ldo_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_common_set_voltage, .get_voltage_sel = spmi_regulator_common_get_voltage, .map_voltage = spmi_regulator_common_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_bypass = spmi_regulator_common_set_bypass, .get_bypass = spmi_regulator_common_get_bypass, .set_pull_down = spmi_regulator_common_set_pull_down, .set_soft_start = spmi_regulator_common_set_soft_start, }; static struct regulator_ops spmi_ln_ldo_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_common_set_voltage, .get_voltage_sel = spmi_regulator_common_get_voltage, .map_voltage = spmi_regulator_common_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_bypass = spmi_regulator_common_set_bypass, .get_bypass = spmi_regulator_common_get_bypass, }; static struct regulator_ops spmi_vs_ops = { .enable = spmi_regulator_vs_enable, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_pull_down = spmi_regulator_common_set_pull_down, .set_soft_start = spmi_regulator_common_set_soft_start, .set_over_current_protection = spmi_regulator_vs_ocp, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, }; static struct regulator_ops spmi_boost_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_single_range_set_voltage, .get_voltage_sel = spmi_regulator_single_range_get_voltage, .map_voltage = spmi_regulator_single_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_input_current_limit = spmi_regulator_set_ilim, }; static struct regulator_ops spmi_ftsmps_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_common_set_voltage, .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, .get_voltage_sel = spmi_regulator_common_get_voltage, .map_voltage = spmi_regulator_common_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_pull_down = spmi_regulator_common_set_pull_down, }; static struct regulator_ops spmi_ult_lo_smps_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_ult_lo_smps_set_voltage, .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, .get_voltage_sel = spmi_regulator_ult_lo_smps_get_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_pull_down = spmi_regulator_common_set_pull_down, }; static struct regulator_ops spmi_ult_ho_smps_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_single_range_set_voltage, .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, .get_voltage_sel = spmi_regulator_single_range_get_voltage, .map_voltage = spmi_regulator_single_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_pull_down = spmi_regulator_common_set_pull_down, }; static struct regulator_ops spmi_ult_ldo_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_single_range_set_voltage, .get_voltage_sel = spmi_regulator_single_range_get_voltage, .map_voltage = spmi_regulator_single_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_common_set_mode, .get_mode = spmi_regulator_common_get_mode, .set_load = spmi_regulator_common_set_load, .set_bypass = spmi_regulator_common_set_bypass, .get_bypass = spmi_regulator_common_get_bypass, .set_pull_down = spmi_regulator_common_set_pull_down, .set_soft_start = spmi_regulator_common_set_soft_start, }; static struct regulator_ops spmi_ftsmps426_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage, .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage, .map_voltage = spmi_regulator_single_map_voltage, .list_voltage = spmi_regulator_common_list_voltage, .set_mode = spmi_regulator_ftsmps426_set_mode, .get_mode = spmi_regulator_ftsmps426_get_mode, .set_load = spmi_regulator_common_set_load, .set_pull_down = spmi_regulator_common_set_pull_down, }; /* Maximum possible digital major revision value */ #define INF 0xFF static const struct spmi_regulator_mapping supported_regulators[] = { /* type subtype dig_min dig_max ltype ops setpoints hpm_min */ SPMI_VREG(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000), SPMI_VREG(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000), SPMI_VREG(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000), SPMI_VREG(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000), SPMI_VREG(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000), SPMI_VREG(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000), SPMI_VREG(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000), SPMI_VREG(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000), SPMI_VREG(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000), SPMI_VREG(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000), SPMI_VREG(LDO, P50, 0, INF, LDO, ldo, pldo, 5000), SPMI_VREG(LDO, P150, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, P300, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, P600, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0), SPMI_VREG(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000), SPMI_VREG(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000), SPMI_VREG_VS(LV100, 0, INF), SPMI_VREG_VS(LV300, 0, INF), SPMI_VREG_VS(MV300, 0, INF), SPMI_VREG_VS(MV500, 0, INF), SPMI_VREG_VS(HDMI, 0, INF), SPMI_VREG_VS(OTG, 0, INF), SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0), SPMI_VREG(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000), SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000), SPMI_VREG(FTS, FTS426_CTL, 0, INF, FTSMPS426, ftsmps426, ftsmps426, 100000), SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0), SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps, ult_ho_smps, 100000), SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), SPMI_VREG(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), SPMI_VREG(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), SPMI_VREG(ULT_LDO, LV_P450, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), SPMI_VREG(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), SPMI_VREG(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), SPMI_VREG(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000), }; static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points) { unsigned int n; struct spmi_voltage_range *range = points->range; for (; range < points->range + points->count; range++) { n = 0; if (range->set_point_max_uV) { n = range->set_point_max_uV - range->set_point_min_uV; n = (n / range->step_uV) + 1; } range->n_voltages = n; points->n_voltages += n; } } static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type) { const struct spmi_regulator_mapping *mapping; int ret, i; u32 dig_major_rev; u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1]; u8 type, subtype; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version, ARRAY_SIZE(version)); if (ret) { dev_dbg(vreg->dev, "could not read version registers\n"); return ret; } dig_major_rev = version[SPMI_COMMON_REG_DIG_MAJOR_REV - SPMI_COMMON_REG_DIG_MAJOR_REV]; if (!force_type) { type = version[SPMI_COMMON_REG_TYPE - SPMI_COMMON_REG_DIG_MAJOR_REV]; subtype = version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV]; } else { type = force_type >> 8; subtype = force_type; } for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) { mapping = &supported_regulators[i]; if (mapping->type == type && mapping->subtype == subtype && mapping->revision_min <= dig_major_rev && mapping->revision_max >= dig_major_rev) goto found; } dev_err(vreg->dev, "unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n", vreg->desc.name, type, subtype, dig_major_rev); return -ENODEV; found: vreg->logical_type = mapping->logical_type; vreg->set_points = mapping->set_points; vreg->hpm_min_load = mapping->hpm_min_load; vreg->desc.ops = mapping->ops; if (mapping->set_points) { if (!mapping->set_points->n_voltages) spmi_calculate_num_voltages(mapping->set_points); vreg->desc.n_voltages = mapping->set_points->n_voltages; } return 0; } static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg) { int ret; u8 reg = 0; int step, delay, slew_rate, step_delay; const struct spmi_voltage_range *range; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1); if (ret) { dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret); return ret; } range = spmi_regulator_find_range(vreg); if (!range) return -EINVAL; switch (vreg->logical_type) { case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS: step_delay = SPMI_FTSMPS_STEP_DELAY; break; default: step_delay = SPMI_DEFAULT_STEP_DELAY; break; } step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK; step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT; delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK; delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT; /* slew_rate has units of uV/us */ slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step); slew_rate /= 1000 * (step_delay << delay); slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM; slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN; /* Ensure that the slew rate is greater than 0 */ vreg->slew_rate = max(slew_rate, 1); return ret; } static int spmi_regulator_init_slew_rate_ftsmps426(struct spmi_regulator *vreg) { int ret; u8 reg = 0; int delay, slew_rate; const struct spmi_voltage_range *range = &vreg->set_points->range[0]; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1); if (ret) { dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret); return ret; } delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK; delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT; /* slew_rate has units of uV/us */ slew_rate = SPMI_FTSMPS426_CLOCK_RATE * range->step_uV; slew_rate /= 1000 * (SPMI_FTSMPS426_STEP_DELAY << delay); slew_rate *= SPMI_FTSMPS426_STEP_MARGIN_NUM; slew_rate /= SPMI_FTSMPS426_STEP_MARGIN_DEN; /* Ensure that the slew rate is greater than 0 */ vreg->slew_rate = max(slew_rate, 1); return ret; } static int spmi_regulator_init_registers(struct spmi_regulator *vreg, const struct spmi_regulator_init_data *data) { int ret; enum spmi_regulator_logical_type type; u8 ctrl_reg[8], reg, mask; type = vreg->logical_type; ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8); if (ret) return ret; /* Set up enable pin control. */ if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO || type == SPMI_REGULATOR_LOGICAL_TYPE_VS) && !(data->pin_ctrl_enable & SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) { ctrl_reg[SPMI_COMMON_IDX_ENABLE] &= ~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK; ctrl_reg[SPMI_COMMON_IDX_ENABLE] |= data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK; } /* Set up mode pin control. */ if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO) && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[SPMI_COMMON_IDX_MODE] &= ~SPMI_COMMON_MODE_FOLLOW_ALL_MASK; ctrl_reg[SPMI_COMMON_IDX_MODE] |= data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK; } if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[SPMI_COMMON_IDX_MODE] &= ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; ctrl_reg[SPMI_COMMON_IDX_MODE] |= data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; } if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS || type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS || type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO) && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[SPMI_COMMON_IDX_MODE] &= ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; ctrl_reg[SPMI_COMMON_IDX_MODE] |= data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; } /* Write back any control register values that were modified. */ ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8); if (ret) return ret; /* Set soft start strength and over current protection for VS. */ if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) { if (data->vs_soft_start_strength != SPMI_VS_SOFT_START_STR_HW_DEFAULT) { reg = data->vs_soft_start_strength & SPMI_VS_SOFT_START_SEL_MASK; mask = SPMI_VS_SOFT_START_SEL_MASK; return spmi_vreg_update_bits(vreg, SPMI_VS_REG_SOFT_START, reg, mask); } } return 0; } static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg, struct device_node *node, struct spmi_regulator_init_data *data) { /* * Initialize configuration parameters to use hardware default in case * no value is specified via device tree. */ data->pin_ctrl_enable = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT; data->pin_ctrl_hpm = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT; data->vs_soft_start_strength = SPMI_VS_SOFT_START_STR_HW_DEFAULT; /* These bindings are optional, so it is okay if they aren't found. */ of_property_read_u32(node, "qcom,ocp-max-retries", &vreg->ocp_max_retries); of_property_read_u32(node, "qcom,ocp-retry-delay", &vreg->ocp_retry_delay_ms); of_property_read_u32(node, "qcom,pin-ctrl-enable", &data->pin_ctrl_enable); of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm); of_property_read_u32(node, "qcom,vs-soft-start-strength", &data->vs_soft_start_strength); } static unsigned int spmi_regulator_of_map_mode(unsigned int mode) { if (mode == 1) return REGULATOR_MODE_NORMAL; if (mode == 2) return REGULATOR_MODE_FAST; return REGULATOR_MODE_IDLE; } static int spmi_regulator_of_parse(struct device_node *node, const struct regulator_desc *desc, struct regulator_config *config) { struct spmi_regulator_init_data data = { }; struct spmi_regulator *vreg = config->driver_data; struct device *dev = config->dev; int ret; spmi_regulator_get_dt_config(vreg, node, &data); if (!vreg->ocp_max_retries) vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES; if (!vreg->ocp_retry_delay_ms) vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS; ret = spmi_regulator_init_registers(vreg, &data); if (ret) { dev_err(dev, "common initialization failed, ret=%d\n", ret); return ret; } switch (vreg->logical_type) { case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS: case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS: case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS: case SPMI_REGULATOR_LOGICAL_TYPE_SMPS: ret = spmi_regulator_init_slew_rate(vreg); if (ret) return ret; break; case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426: ret = spmi_regulator_init_slew_rate_ftsmps426(vreg); if (ret) return ret; break; default: break; } if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS) vreg->ocp_irq = 0; if (vreg->ocp_irq) { ret = devm_request_irq(dev, vreg->ocp_irq, spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp", vreg); if (ret < 0) { dev_err(dev, "failed to request irq %d, ret=%d\n", vreg->ocp_irq, ret); return ret; } INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work); } return 0; } static const struct spmi_regulator_data pm8941_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", }, { "s3", 0x1a00, "vdd_s3", }, { "s4", 0xa000, }, { "l1", 0x4000, "vdd_l1_l3", }, { "l2", 0x4100, "vdd_l2_lvs_1_2_3", }, { "l3", 0x4200, "vdd_l1_l3", }, { "l4", 0x4300, "vdd_l4_l11", }, { "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 }, { "l6", 0x4500, "vdd_l6_l12_l14_l15", }, { "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 }, { "l8", 0x4700, "vdd_l8_l16_l18_19", }, { "l9", 0x4800, "vdd_l9_l10_l17_l22", }, { "l10", 0x4900, "vdd_l9_l10_l17_l22", }, { "l11", 0x4a00, "vdd_l4_l11", }, { "l12", 0x4b00, "vdd_l6_l12_l14_l15", }, { "l13", 0x4c00, "vdd_l13_l20_l23_l24", }, { "l14", 0x4d00, "vdd_l6_l12_l14_l15", }, { "l15", 0x4e00, "vdd_l6_l12_l14_l15", }, { "l16", 0x4f00, "vdd_l8_l16_l18_19", }, { "l17", 0x5000, "vdd_l9_l10_l17_l22", }, { "l18", 0x5100, "vdd_l8_l16_l18_19", }, { "l19", 0x5200, "vdd_l8_l16_l18_19", }, { "l20", 0x5300, "vdd_l13_l20_l23_l24", }, { "l21", 0x5400, "vdd_l21", }, { "l22", 0x5500, "vdd_l9_l10_l17_l22", }, { "l23", 0x5600, "vdd_l13_l20_l23_l24", }, { "l24", 0x5700, "vdd_l13_l20_l23_l24", }, { "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", }, { "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", }, { "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", }, { "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", }, { "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", }, { } }; static const struct spmi_regulator_data pm8841_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", NULL, 0x1c08 }, { "s3", 0x1a00, "vdd_s3", }, { "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 }, { "s5", 0x2000, "vdd_s5", NULL, 0x1c08 }, { "s6", 0x2300, "vdd_s6", NULL, 0x1c08 }, { "s7", 0x2600, "vdd_s7", NULL, 0x1c08 }, { "s8", 0x2900, "vdd_s8", NULL, 0x1c08 }, { } }; static const struct spmi_regulator_data pm8916_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", }, { "s3", 0x1a00, "vdd_s3", }, { "s4", 0x1d00, "vdd_s4", }, { "l1", 0x4000, "vdd_l1_l3", }, { "l2", 0x4100, "vdd_l2", }, { "l3", 0x4200, "vdd_l1_l3", }, { "l4", 0x4300, "vdd_l4_l5_l6", }, { "l5", 0x4400, "vdd_l4_l5_l6", }, { "l6", 0x4500, "vdd_l4_l5_l6", }, { "l7", 0x4600, "vdd_l7", }, { "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", }, { "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", }, { "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", }, { "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", }, { "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", }, { "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", }, { "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", }, { "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", }, { "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", }, { "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", }, { "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", }, { } }; static const struct spmi_regulator_data pm8994_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", }, { "s3", 0x1a00, "vdd_s3", }, { "s4", 0x1d00, "vdd_s4", }, { "s5", 0x2000, "vdd_s5", }, { "s6", 0x2300, "vdd_s6", }, { "s7", 0x2600, "vdd_s7", }, { "s8", 0x2900, "vdd_s8", }, { "s9", 0x2c00, "vdd_s9", }, { "s10", 0x2f00, "vdd_s10", }, { "s11", 0x3200, "vdd_s11", }, { "s12", 0x3500, "vdd_s12", }, { "l1", 0x4000, "vdd_l1", }, { "l2", 0x4100, "vdd_l2_l26_l28", }, { "l3", 0x4200, "vdd_l3_l11", }, { "l4", 0x4300, "vdd_l4_l27_l31", }, { "l5", 0x4400, "vdd_l5_l7", }, { "l6", 0x4500, "vdd_l6_l12_l32", }, { "l7", 0x4600, "vdd_l5_l7", }, { "l8", 0x4700, "vdd_l8_l16_l30", }, { "l9", 0x4800, "vdd_l9_l10_l18_l22", }, { "l10", 0x4900, "vdd_l9_l10_l18_l22", }, { "l11", 0x4a00, "vdd_l3_l11", }, { "l12", 0x4b00, "vdd_l6_l12_l32", }, { "l13", 0x4c00, "vdd_l13_l19_l23_l24", }, { "l14", 0x4d00, "vdd_l14_l15", }, { "l15", 0x4e00, "vdd_l14_l15", }, { "l16", 0x4f00, "vdd_l8_l16_l30", }, { "l17", 0x5000, "vdd_l17_l29", }, { "l18", 0x5100, "vdd_l9_l10_l18_l22", }, { "l19", 0x5200, "vdd_l13_l19_l23_l24", }, { "l20", 0x5300, "vdd_l20_l21", }, { "l21", 0x5400, "vdd_l20_l21", }, { "l22", 0x5500, "vdd_l9_l10_l18_l22", }, { "l23", 0x5600, "vdd_l13_l19_l23_l24", }, { "l24", 0x5700, "vdd_l13_l19_l23_l24", }, { "l25", 0x5800, "vdd_l25", }, { "l26", 0x5900, "vdd_l2_l26_l28", }, { "l27", 0x5a00, "vdd_l4_l27_l31", }, { "l28", 0x5b00, "vdd_l2_l26_l28", }, { "l29", 0x5c00, "vdd_l17_l29", }, { "l30", 0x5d00, "vdd_l8_l16_l30", }, { "l31", 0x5e00, "vdd_l4_l27_l31", }, { "l32", 0x5f00, "vdd_l6_l12_l32", }, { "lvs1", 0x8000, "vdd_lvs_1_2", }, { "lvs2", 0x8100, "vdd_lvs_1_2", }, { } }; static const struct spmi_regulator_data pmi8994_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", }, { "s3", 0x1a00, "vdd_s3", }, { "l1", 0x4000, "vdd_l1", }, { } }; static const struct spmi_regulator_data pm8005_regulators[] = { { "s1", 0x1400, "vdd_s1", }, { "s2", 0x1700, "vdd_s2", }, { "s3", 0x1a00, "vdd_s3", }, { "s4", 0x1d00, "vdd_s4", }, { } }; static const struct of_device_id qcom_spmi_regulator_match[] = { { .compatible = "qcom,pm8005-regulators", .data = &pm8005_regulators }, { .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators }, { .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators }, { .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators }, { .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators }, { .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators }, { } }; MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match); static int qcom_spmi_regulator_probe(struct platform_device *pdev) { const struct spmi_regulator_data *reg; const struct spmi_voltage_range *range; const struct of_device_id *match; struct regulator_config config = { }; struct regulator_dev *rdev; struct spmi_regulator *vreg; struct regmap *regmap; const char *name; struct device *dev = &pdev->dev; struct device_node *node = pdev->dev.of_node; struct device_node *syscon, *reg_node; struct property *reg_prop; int ret, lenp; struct list_head *vreg_list; vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL); if (!vreg_list) return -ENOMEM; INIT_LIST_HEAD(vreg_list); platform_set_drvdata(pdev, vreg_list); regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) return -ENODEV; match = of_match_device(qcom_spmi_regulator_match, &pdev->dev); if (!match) return -ENODEV; if (of_find_property(node, "qcom,saw-reg", &lenp)) { syscon = of_parse_phandle(node, "qcom,saw-reg", 0); saw_regmap = syscon_node_to_regmap(syscon); of_node_put(syscon); if (IS_ERR(saw_regmap)) dev_err(dev, "ERROR reading SAW regmap\n"); } for (reg = match->data; reg->name; reg++) { if (saw_regmap) { reg_node = of_get_child_by_name(node, reg->name); reg_prop = of_find_property(reg_node, "qcom,saw-slave", &lenp); of_node_put(reg_node); if (reg_prop) continue; } vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL); if (!vreg) return -ENOMEM; vreg->dev = dev; vreg->base = reg->base; vreg->regmap = regmap; if (reg->ocp) { vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp); if (vreg->ocp_irq < 0) { ret = vreg->ocp_irq; goto err; } } vreg->desc.id = -1; vreg->desc.owner = THIS_MODULE; vreg->desc.type = REGULATOR_VOLTAGE; vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE; vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK; vreg->desc.enable_val = SPMI_COMMON_ENABLE; vreg->desc.name = name = reg->name; vreg->desc.supply_name = reg->supply; vreg->desc.of_match = reg->name; vreg->desc.of_parse_cb = spmi_regulator_of_parse; vreg->desc.of_map_mode = spmi_regulator_of_map_mode; ret = spmi_regulator_match(vreg, reg->force_type); if (ret) continue; if (saw_regmap) { reg_node = of_get_child_by_name(node, reg->name); reg_prop = of_find_property(reg_node, "qcom,saw-leader", &lenp); of_node_put(reg_node); if (reg_prop) { spmi_saw_ops = *(vreg->desc.ops); spmi_saw_ops.set_voltage_sel = spmi_regulator_saw_set_voltage; vreg->desc.ops = &spmi_saw_ops; } } if (vreg->set_points->count == 1) { /* since there is only one range */ range = vreg->set_points->range; vreg->desc.uV_step = range->step_uV; } config.dev = dev; config.driver_data = vreg; config.regmap = regmap; rdev = devm_regulator_register(dev, &vreg->desc, &config); if (IS_ERR(rdev)) { dev_err(dev, "failed to register %s\n", name); ret = PTR_ERR(rdev); goto err; } INIT_LIST_HEAD(&vreg->node); list_add(&vreg->node, vreg_list); } return 0; err: list_for_each_entry(vreg, vreg_list, node) if (vreg->ocp_irq) cancel_delayed_work_sync(&vreg->ocp_work); return ret; } static int qcom_spmi_regulator_remove(struct platform_device *pdev) { struct spmi_regulator *vreg; struct list_head *vreg_list = platform_get_drvdata(pdev); list_for_each_entry(vreg, vreg_list, node) if (vreg->ocp_irq) cancel_delayed_work_sync(&vreg->ocp_work); return 0; } static struct platform_driver qcom_spmi_regulator_driver = { .driver = { .name = "qcom-spmi-regulator", .of_match_table = qcom_spmi_regulator_match, }, .probe = qcom_spmi_regulator_probe, .remove = qcom_spmi_regulator_remove, }; module_platform_driver(qcom_spmi_regulator_driver); MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:qcom-spmi-regulator");