/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_bios.h" #include "nouveau_pm.h" #include "nouveau_hw.h" #define min2(a,b) ((a) < (b) ? (a) : (b)) static u32 read_pll_1(struct drm_device *dev, u32 reg) { u32 ctrl = nv_rd32(dev, reg + 0x00); int P = (ctrl & 0x00070000) >> 16; int N = (ctrl & 0x0000ff00) >> 8; int M = (ctrl & 0x000000ff) >> 0; u32 ref = 27000, clk = 0; if (ctrl & 0x80000000) clk = ref * N / M; return clk >> P; } static u32 read_pll_2(struct drm_device *dev, u32 reg) { u32 ctrl = nv_rd32(dev, reg + 0x00); u32 coef = nv_rd32(dev, reg + 0x04); int N2 = (coef & 0xff000000) >> 24; int M2 = (coef & 0x00ff0000) >> 16; int N1 = (coef & 0x0000ff00) >> 8; int M1 = (coef & 0x000000ff) >> 0; int P = (ctrl & 0x00070000) >> 16; u32 ref = 27000, clk = 0; if ((ctrl & 0x80000000) && M1) { clk = ref * N1 / M1; if ((ctrl & 0x40000100) == 0x40000000) { if (M2) clk = clk * N2 / M2; else clk = 0; } } return clk >> P; } static u32 read_clk(struct drm_device *dev, u32 src) { switch (src) { case 3: return read_pll_2(dev, 0x004000); case 2: return read_pll_1(dev, 0x004008); default: break; } return 0; } int nv40_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) { u32 ctrl = nv_rd32(dev, 0x00c040); perflvl->core = read_clk(dev, (ctrl & 0x00000003) >> 0); perflvl->shader = read_clk(dev, (ctrl & 0x00000030) >> 4); perflvl->memory = read_pll_2(dev, 0x4020); return 0; } struct nv40_pm_state { u32 ctrl; u32 npll_ctrl; u32 npll_coef; u32 spll; u32 mpll_ctrl; u32 mpll_coef; }; static int nv40_calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll, u32 clk, int *N1, int *M1, int *N2, int *M2, int *log2P) { struct nouveau_pll_vals coef; int ret; ret = get_pll_limits(dev, reg, pll); if (ret) return ret; if (clk < pll->vco1.maxfreq) pll->vco2.maxfreq = 0; ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef); if (ret == 0) return -ERANGE; *N1 = coef.N1; *M1 = coef.M1; if (N2 && M2) { if (pll->vco2.maxfreq) { *N2 = coef.N2; *M2 = coef.M2; } else { *N2 = 1; *M2 = 1; } } *log2P = coef.log2P; return 0; } void * nv40_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct nv40_pm_state *info; struct pll_lims pll; int N1, N2, M1, M2, log2P; int ret; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); /* core/geometric clock */ ret = nv40_calc_pll(dev, 0x004000, &pll, perflvl->core, &N1, &M1, &N2, &M2, &log2P); if (ret < 0) goto out; if (N2 == M2) { info->npll_ctrl = 0x80000100 | (log2P << 16); info->npll_coef = (N1 << 8) | M1; } else { info->npll_ctrl = 0xc0000000 | (log2P << 16); info->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1; } /* use the second PLL for shader/rop clock, if it differs from core */ if (perflvl->shader && perflvl->shader != perflvl->core) { ret = nv40_calc_pll(dev, 0x004008, &pll, perflvl->shader, &N1, &M1, NULL, NULL, &log2P); if (ret < 0) goto out; info->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1; info->ctrl = 0x00000223; } else { info->spll = 0x00000000; info->ctrl = 0x00000333; } /* memory clock */ if (!perflvl->memory) { info->mpll_ctrl = 0x00000000; goto out; } ret = nv40_calc_pll(dev, 0x004020, &pll, perflvl->memory, &N1, &M1, &N2, &M2, &log2P); if (ret < 0) goto out; info->mpll_ctrl = 0x80000000 | (log2P << 16); info->mpll_ctrl |= min2(pll.log2p_bias + log2P, pll.max_log2p) << 20; if (N2 == M2) { info->mpll_ctrl |= 0x00000100; info->mpll_coef = (N1 << 8) | M1; } else { info->mpll_ctrl |= 0x40000000; info->mpll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1; } out: if (ret < 0) { kfree(info); info = ERR_PTR(ret); } return info; } static bool nv40_pm_gr_idle(void *data) { struct drm_device *dev = data; if ((nv_rd32(dev, 0x400760) & 0x000000f0) >> 4 != (nv_rd32(dev, 0x400760) & 0x0000000f)) return false; if (nv_rd32(dev, 0x400700)) return false; return true; } int nv40_pm_clocks_set(struct drm_device *dev, void *pre_state) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv40_pm_state *info = pre_state; unsigned long flags; struct bit_entry M; u32 crtc_mask = 0; u8 sr1[2]; int i, ret = -EAGAIN; /* determine which CRTCs are active, fetch VGA_SR1 for each */ for (i = 0; i < 2; i++) { u32 vbl = nv_rd32(dev, 0x600808 + (i * 0x2000)); u32 cnt = 0; do { if (vbl != nv_rd32(dev, 0x600808 + (i * 0x2000))) { nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01); sr1[i] = nv_rd08(dev, 0x0c03c5 + (i * 0x2000)); if (!(sr1[i] & 0x20)) crtc_mask |= (1 << i); break; } udelay(1); } while (cnt++ < 32); } /* halt and idle engines */ spin_lock_irqsave(&dev_priv->context_switch_lock, flags); nv_mask(dev, 0x002500, 0x00000001, 0x00000000); if (!nv_wait(dev, 0x002500, 0x00000010, 0x00000000)) goto resume; nv_mask(dev, 0x003220, 0x00000001, 0x00000000); if (!nv_wait(dev, 0x003220, 0x00000010, 0x00000000)) goto resume; nv_mask(dev, 0x003200, 0x00000001, 0x00000000); nv04_fifo_cache_pull(dev, false); if (!nv_wait_cb(dev, nv40_pm_gr_idle, dev)) goto resume; ret = 0; /* set engine clocks */ nv_mask(dev, 0x00c040, 0x00000333, 0x00000000); nv_wr32(dev, 0x004004, info->npll_coef); nv_mask(dev, 0x004000, 0xc0070100, info->npll_ctrl); nv_mask(dev, 0x004008, 0xc007ffff, info->spll); mdelay(5); nv_mask(dev, 0x00c040, 0x00000333, info->ctrl); if (!info->mpll_ctrl) goto resume; /* wait for vblank start on active crtcs, disable memory access */ for (i = 0; i < 2; i++) { if (!(crtc_mask & (1 << i))) continue; nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000); nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000); nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01); nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20); } /* prepare ram for reclocking */ nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */ nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */ nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */ nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */ nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */ /* change the PLL of each memory partition */ nv_mask(dev, 0x00c040, 0x0000c000, 0x00000000); switch (dev_priv->chipset) { case 0x40: case 0x45: case 0x41: case 0x42: case 0x47: nv_mask(dev, 0x004044, 0xc0771100, info->mpll_ctrl); nv_mask(dev, 0x00402c, 0xc0771100, info->mpll_ctrl); nv_wr32(dev, 0x004048, info->mpll_coef); nv_wr32(dev, 0x004030, info->mpll_coef); case 0x43: case 0x49: case 0x4b: nv_mask(dev, 0x004038, 0xc0771100, info->mpll_ctrl); nv_wr32(dev, 0x00403c, info->mpll_coef); default: nv_mask(dev, 0x004020, 0xc0771100, info->mpll_ctrl); nv_wr32(dev, 0x004024, info->mpll_coef); break; } udelay(100); nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000); /* re-enable normal operation of memory controller */ nv_wr32(dev, 0x1002dc, 0x00000000); nv_mask(dev, 0x100210, 0x80000000, 0x80000000); udelay(100); /* execute memory reset script from vbios */ if (!bit_table(dev, 'M', &M)) nouveau_bios_init_exec(dev, ROM16(M.data[0])); /* make sure we're in vblank (hopefully the same one as before), and * then re-enable crtc memory access */ for (i = 0; i < 2; i++) { if (!(crtc_mask & (1 << i))) continue; nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000); nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01); nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i]); } /* resume engines */ resume: nv_wr32(dev, 0x003250, 0x00000001); nv_mask(dev, 0x003220, 0x00000001, 0x00000001); nv_wr32(dev, 0x003200, 0x00000001); nv_wr32(dev, 0x002500, 0x00000001); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); kfree(info); return ret; } int nv40_pm_pwm_get(struct drm_device *dev, struct dcb_gpio_entry *gpio, u32 *divs, u32 *duty) { if (gpio->line == 2) { u32 reg = nv_rd32(dev, 0x0010f0); if (reg & 0x80000000) { *duty = (reg & 0x7fff0000) >> 16; *divs = (reg & 0x00007fff); return 0; } } else if (gpio->line == 9) { u32 reg = nv_rd32(dev, 0x0015f4); if (reg & 0x80000000) { *divs = nv_rd32(dev, 0x0015f8); *duty = (reg & 0x7fffffff); return 0; } } else { NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", gpio->line); return -ENODEV; } return -EINVAL; } int nv40_pm_pwm_set(struct drm_device *dev, struct dcb_gpio_entry *gpio, u32 divs, u32 duty) { if (gpio->line == 2) { nv_wr32(dev, 0x0010f0, 0x80000000 | (duty << 16) | divs); } else if (gpio->line == 9) { nv_wr32(dev, 0x0015f8, divs); nv_wr32(dev, 0x0015f4, duty | 0x80000000); } else { NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", gpio->line); return -ENODEV; } return 0; }