/* * Copyright(c) 2015-2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include "hfi.h" #include "trace.h" #include "qp.h" #include "sdma.h" #include "debugfs.h" #include "vnic.h" #undef pr_fmt #define pr_fmt(fmt) DRIVER_NAME ": " fmt /* * The size has to be longer than this string, so we can append * board/chip information to it in the initialization code. */ const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; DEFINE_SPINLOCK(hfi1_devs_lock); LIST_HEAD(hfi1_dev_list); DEFINE_MUTEX(hfi1_mutex); /* general driver use */ unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( HFI1_DEFAULT_MAX_MTU)); unsigned int hfi1_cu = 1; module_param_named(cu, hfi1_cu, uint, S_IRUGO); MODULE_PARM_DESC(cu, "Credit return units"); unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; static int hfi1_caps_set(const char *val, const struct kernel_param *kp); static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); static const struct kernel_param_ops cap_ops = { .set = hfi1_caps_set, .get = hfi1_caps_get }; module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); /* * MAX_PKT_RCV is the max # if packets processed per receive interrupt. */ #define MAX_PKT_RECV 64 /* * MAX_PKT_THREAD_RCV is the max # of packets processed before * the qp_wait_list queue is flushed. */ #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) #define EGR_HEAD_UPDATE_THRESHOLD 16 struct hfi1_ib_stats hfi1_stats; static int hfi1_caps_set(const char *val, const struct kernel_param *kp) { int ret = 0; unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, cap_mask = *cap_mask_ptr, value, diff, write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | HFI1_CAP_WRITABLE_MASK); ret = kstrtoul(val, 0, &value); if (ret) { pr_warn("Invalid module parameter value for 'cap_mask'\n"); goto done; } /* Get the changed bits (except the locked bit) */ diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); /* Remove any bits that are not allowed to change after driver load */ if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { pr_warn("Ignoring non-writable capability bits %#lx\n", diff & ~write_mask); diff &= write_mask; } /* Mask off any reserved bits */ diff &= ~HFI1_CAP_RESERVED_MASK; /* Clear any previously set and changing bits */ cap_mask &= ~diff; /* Update the bits with the new capability */ cap_mask |= (value & diff); /* Check for any kernel/user restrictions */ diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); cap_mask &= ~diff; /* Set the bitmask to the final set */ *cap_mask_ptr = cap_mask; done: return ret; } static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) { unsigned long cap_mask = *(unsigned long *)kp->arg; cap_mask &= ~HFI1_CAP_LOCKED_SMASK; cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); } const char *get_unit_name(int unit) { static char iname[16]; snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit); return iname; } const char *get_card_name(struct rvt_dev_info *rdi) { struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); struct hfi1_devdata *dd = container_of(ibdev, struct hfi1_devdata, verbs_dev); return get_unit_name(dd->unit); } struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) { struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); struct hfi1_devdata *dd = container_of(ibdev, struct hfi1_devdata, verbs_dev); return dd->pcidev; } /* * Return count of units with at least one port ACTIVE. */ int hfi1_count_active_units(void) { struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; unsigned long flags; int pidx, nunits_active = 0; spin_lock_irqsave(&hfi1_devs_lock, flags); list_for_each_entry(dd, &hfi1_dev_list, list) { if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase) continue; for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (ppd->lid && ppd->linkup) { nunits_active++; break; } } } spin_unlock_irqrestore(&hfi1_devs_lock, flags); return nunits_active; } /* * Get address of eager buffer from it's index (allocated in chunks, not * contiguous). */ static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, u8 *update) { u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + (offset * RCV_BUF_BLOCK_SIZE)); } static inline void *hfi1_get_header(struct hfi1_devdata *dd, __le32 *rhf_addr) { u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); return (void *)(rhf_addr - dd->rhf_offset + offset); } static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd, __le32 *rhf_addr) { return (struct ib_header *)hfi1_get_header(dd, rhf_addr); } /* * Validate and encode the a given RcvArray Buffer size. * The function will check whether the given size falls within * allowed size ranges for the respective type and, optionally, * return the proper encoding. */ int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) { if (unlikely(!PAGE_ALIGNED(size))) return 0; if (unlikely(size < MIN_EAGER_BUFFER)) return 0; if (size > (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) return 0; if (encoded) *encoded = ilog2(size / PAGE_SIZE) + 1; return 1; } static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, struct hfi1_packet *packet) { struct ib_header *rhdr = packet->hdr; u32 rte = rhf_rcv_type_err(packet->rhf); u8 lnh = ib_get_lnh(rhdr); bool has_grh = false; struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct hfi1_devdata *dd = ppd->dd; struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) return; if (lnh == HFI1_LRH_BTH) { packet->ohdr = &rhdr->u.oth; } else if (lnh == HFI1_LRH_GRH) { has_grh = true; packet->ohdr = &rhdr->u.l.oth; packet->grh = &rhdr->u.l.grh; } else { goto drop; } if (packet->rhf & RHF_TID_ERR) { /* For TIDERR and RC QPs preemptively schedule a NAK */ u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ u32 dlid = ib_get_dlid(rhdr); u32 qp_num; u32 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); /* Sanity check packet */ if (tlen < 24) goto drop; /* Check for GRH */ if (has_grh) { u32 vtf; struct ib_grh *grh = packet->grh; if (grh->next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(grh->version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; } /* Get the destination QP number. */ qp_num = ib_bth_get_qpn(packet->ohdr); if (dlid < mlid_base) { struct rvt_qp *qp; unsigned long flags; rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!qp) { rcu_read_unlock(); goto drop; } /* * Handle only RC QPs - for other QP types drop error * packet. */ spin_lock_irqsave(&qp->r_lock, flags); /* Check for valid receive state. */ if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { ibp->rvp.n_pkt_drops++; } switch (qp->ibqp.qp_type) { case IB_QPT_RC: hfi1_rc_hdrerr(rcd, packet, qp); break; default: /* For now don't handle any other QP types */ break; } spin_unlock_irqrestore(&qp->r_lock, flags); rcu_read_unlock(); } /* Unicast QP */ } /* Valid packet with TIDErr */ /* handle "RcvTypeErr" flags */ switch (rte) { case RHF_RTE_ERROR_OP_CODE_ERR: { void *ebuf = NULL; u8 opcode; if (rhf_use_egr_bfr(packet->rhf)) ebuf = packet->ebuf; if (!ebuf) goto drop; /* this should never happen */ opcode = ib_bth_get_opcode(packet->ohdr); if (opcode == IB_OPCODE_CNP) { /* * Only in pre-B0 h/w is the CNP_OPCODE handled * via this code path. */ struct rvt_qp *qp = NULL; u32 lqpn, rqpn; u16 rlid; u8 svc_type, sl, sc5; sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); sl = ibp->sc_to_sl[sc5]; lqpn = ib_bth_get_qpn(packet->ohdr); rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); if (!qp) { rcu_read_unlock(); goto drop; } switch (qp->ibqp.qp_type) { case IB_QPT_UD: rlid = 0; rqpn = 0; svc_type = IB_CC_SVCTYPE_UD; break; case IB_QPT_UC: rlid = ib_get_slid(rhdr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; default: goto drop; } process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); rcu_read_unlock(); } packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; break; } default: break; } drop: return; } static inline void init_packet(struct hfi1_ctxtdata *rcd, struct hfi1_packet *packet) { packet->rsize = rcd->rcvhdrqentsize; /* words */ packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ packet->rcd = rcd; packet->updegr = 0; packet->etail = -1; packet->rhf_addr = get_rhf_addr(rcd); packet->rhf = rhf_to_cpu(packet->rhf_addr); packet->rhqoff = rcd->head; packet->numpkt = 0; } void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, bool do_cnp) { struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); struct ib_header *hdr = pkt->hdr; struct ib_other_headers *ohdr = pkt->ohdr; struct ib_grh *grh = pkt->grh; u32 rqpn = 0, bth1; u16 rlid, dlid = ib_get_dlid(hdr); u8 sc, svc_type; bool is_mcast = false; switch (qp->ibqp.qp_type) { case IB_QPT_SMI: case IB_QPT_GSI: case IB_QPT_UD: rlid = ib_get_slid(hdr); rqpn = ib_get_sqpn(ohdr); svc_type = IB_CC_SVCTYPE_UD; is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); break; case IB_QPT_UC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; case IB_QPT_RC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_RC; break; default: return; } sc = hfi1_9B_get_sc5(hdr, pkt->rhf); bth1 = be32_to_cpu(ohdr->bth[1]); if (do_cnp && (bth1 & IB_FECN_SMASK)) { u16 pkey = ib_bth_get_pkey(ohdr); return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh); } if (!is_mcast && (bth1 & IB_BECN_SMASK)) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u32 lqpn = bth1 & RVT_QPN_MASK; u8 sl = ibp->sc_to_sl[sc]; process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); } } struct ps_mdata { struct hfi1_ctxtdata *rcd; u32 rsize; u32 maxcnt; u32 ps_head; u32 ps_tail; u32 ps_seq; }; static inline void init_ps_mdata(struct ps_mdata *mdata, struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; mdata->rcd = rcd; mdata->rsize = packet->rsize; mdata->maxcnt = packet->maxcnt; mdata->ps_head = packet->rhqoff; if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { mdata->ps_tail = get_rcvhdrtail(rcd); if (rcd->ctxt == HFI1_CTRL_CTXT) mdata->ps_seq = rcd->seq_cnt; else mdata->ps_seq = 0; /* not used with DMA_RTAIL */ } else { mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ mdata->ps_seq = rcd->seq_cnt; } } static inline int ps_done(struct ps_mdata *mdata, u64 rhf, struct hfi1_ctxtdata *rcd) { if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) return mdata->ps_head == mdata->ps_tail; return mdata->ps_seq != rhf_rcv_seq(rhf); } static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, struct hfi1_ctxtdata *rcd) { /* * Control context can potentially receive an invalid rhf. * Drop such packets. */ if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) return mdata->ps_seq != rhf_rcv_seq(rhf); return 0; } static inline void update_ps_mdata(struct ps_mdata *mdata, struct hfi1_ctxtdata *rcd) { mdata->ps_head += mdata->rsize; if (mdata->ps_head >= mdata->maxcnt) mdata->ps_head = 0; /* Control context must do seq counting */ if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || (rcd->ctxt == HFI1_CTRL_CTXT)) { if (++mdata->ps_seq > 13) mdata->ps_seq = 1; } } /* * prescan_rxq - search through the receive queue looking for packets * containing Excplicit Congestion Notifications (FECNs, or BECNs). * When an ECN is found, process the Congestion Notification, and toggle * it off. * This is declared as a macro to allow quick checking of the port to avoid * the overhead of a function call if not enabled. */ #define prescan_rxq(rcd, packet) \ do { \ if (rcd->ppd->cc_prescan) \ __prescan_rxq(packet); \ } while (0) static void __prescan_rxq(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct ps_mdata mdata; init_ps_mdata(&mdata, packet); while (1) { struct hfi1_devdata *dd = rcd->dd; struct hfi1_ibport *ibp = rcd_to_iport(rcd); __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + dd->rhf_offset; struct rvt_qp *qp; struct ib_header *hdr; struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; u64 rhf = rhf_to_cpu(rhf_addr); u32 etype = rhf_rcv_type(rhf), qpn, bth1; int is_ecn = 0; u8 lnh; if (ps_done(&mdata, rhf, rcd)) break; if (ps_skip(&mdata, rhf, rcd)) goto next; if (etype != RHF_RCV_TYPE_IB) goto next; packet->hdr = hfi1_get_msgheader(dd, rhf_addr); hdr = packet->hdr; lnh = ib_get_lnh(hdr); if (lnh == HFI1_LRH_BTH) { packet->ohdr = &hdr->u.oth; packet->grh = NULL; } else if (lnh == HFI1_LRH_GRH) { packet->ohdr = &hdr->u.l.oth; packet->grh = &hdr->u.l.grh; } else { goto next; /* just in case */ } bth1 = be32_to_cpu(packet->ohdr->bth[1]); is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK)); if (!is_ecn) goto next; qpn = bth1 & RVT_QPN_MASK; rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); if (!qp) { rcu_read_unlock(); goto next; } process_ecn(qp, packet, true); rcu_read_unlock(); /* turn off BECN, FECN */ bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); packet->ohdr->bth[1] = cpu_to_be32(bth1); next: update_ps_mdata(&mdata, rcd); } } static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd) { struct rvt_qp *qp, *nqp; /* * Iterate over all QPs waiting to respond. * The list won't change since the IRQ is only run on one CPU. */ list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { list_del_init(&qp->rspwait); if (qp->r_flags & RVT_R_RSP_NAK) { qp->r_flags &= ~RVT_R_RSP_NAK; hfi1_send_rc_ack(rcd, qp, 0); } if (qp->r_flags & RVT_R_RSP_SEND) { unsigned long flags; qp->r_flags &= ~RVT_R_RSP_SEND; spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND) hfi1_schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, flags); } rvt_put_qp(qp); } } static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) { if (thread) { if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) /* allow defered processing */ process_rcv_qp_work(packet->rcd); cond_resched(); return RCV_PKT_OK; } else { this_cpu_inc(*packet->rcd->dd->rcv_limit); return RCV_PKT_LIMIT; } } static inline int check_max_packet(struct hfi1_packet *packet, int thread) { int ret = RCV_PKT_OK; if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) ret = max_packet_exceeded(packet, thread); return ret; } static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) { int ret; /* Set up for the next packet */ packet->rhqoff += packet->rsize; if (packet->rhqoff >= packet->maxcnt) packet->rhqoff = 0; packet->numpkt++; ret = check_max_packet(packet, thread); packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + packet->rcd->dd->rhf_offset; packet->rhf = rhf_to_cpu(packet->rhf_addr); return ret; } static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) { int ret; packet->etype = rhf_rcv_type(packet->rhf); /* total length */ packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ /* retrieve eager buffer details */ packet->ebuf = NULL; if (rhf_use_egr_bfr(packet->rhf)) { packet->etail = rhf_egr_index(packet->rhf); packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, &packet->updegr); /* * Prefetch the contents of the eager buffer. It is * OK to send a negative length to prefetch_range(). * The +2 is the size of the RHF. */ prefetch_range(packet->ebuf, packet->tlen - ((packet->rcd->rcvhdrqentsize - (rhf_hdrq_offset(packet->rhf) + 2)) * 4)); } /* * Call a type specific handler for the packet. We * should be able to trust that etype won't be beyond * the range of valid indexes. If so something is really * wrong and we can probably just let things come * crashing down. There is no need to eat another * comparison in this performance critical code. */ packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); packet->numpkt++; /* Set up for the next packet */ packet->rhqoff += packet->rsize; if (packet->rhqoff >= packet->maxcnt) packet->rhqoff = 0; ret = check_max_packet(packet, thread); packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + packet->rcd->dd->rhf_offset; packet->rhf = rhf_to_cpu(packet->rhf_addr); return ret; } static inline void process_rcv_update(int last, struct hfi1_packet *packet) { /* * Update head regs etc., every 16 packets, if not last pkt, * to help prevent rcvhdrq overflows, when many packets * are processed and queue is nearly full. * Don't request an interrupt for intermediate updates. */ if (!last && !(packet->numpkt & 0xf)) { update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, packet->etail, 0, 0); packet->updegr = 0; } packet->grh = NULL; } static inline void finish_packet(struct hfi1_packet *packet) { /* * Nothing we need to free for the packet. * * The only thing we need to do is a final update and call for an * interrupt */ update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, packet->etail, rcv_intr_dynamic, packet->numpkt); } /* * Handle receive interrupts when using the no dma rtail option. */ int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) { u32 seq; int last = RCV_PKT_OK; struct hfi1_packet packet; init_packet(rcd, &packet); seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) { last = RCV_PKT_DONE; goto bail; } prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { last = process_rcv_packet(&packet, thread); seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (seq != rcd->seq_cnt) last = RCV_PKT_DONE; process_rcv_update(last, &packet); } process_rcv_qp_work(rcd); rcd->head = packet.rhqoff; bail: finish_packet(&packet); return last; } int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) { u32 hdrqtail; int last = RCV_PKT_OK; struct hfi1_packet packet; init_packet(rcd, &packet); hdrqtail = get_rcvhdrtail(rcd); if (packet.rhqoff == hdrqtail) { last = RCV_PKT_DONE; goto bail; } smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { last = process_rcv_packet(&packet, thread); if (packet.rhqoff == hdrqtail) last = RCV_PKT_DONE; process_rcv_update(last, &packet); } process_rcv_qp_work(rcd); rcd->head = packet.rhqoff; bail: finish_packet(&packet); return last; } static inline void set_nodma_rtail(struct hfi1_devdata *dd, u8 ctxt) { int i; /* * For dynamically allocated kernel contexts (like vnic) switch * interrupt handler only for that context. Otherwise, switch * interrupt handler for all statically allocated kernel contexts. */ if (ctxt >= dd->first_dyn_alloc_ctxt) { dd->rcd[ctxt]->do_interrupt = &handle_receive_interrupt_nodma_rtail; return; } for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) dd->rcd[i]->do_interrupt = &handle_receive_interrupt_nodma_rtail; } static inline void set_dma_rtail(struct hfi1_devdata *dd, u8 ctxt) { int i; /* * For dynamically allocated kernel contexts (like vnic) switch * interrupt handler only for that context. Otherwise, switch * interrupt handler for all statically allocated kernel contexts. */ if (ctxt >= dd->first_dyn_alloc_ctxt) { dd->rcd[ctxt]->do_interrupt = &handle_receive_interrupt_dma_rtail; return; } for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) dd->rcd[i]->do_interrupt = &handle_receive_interrupt_dma_rtail; } void set_all_slowpath(struct hfi1_devdata *dd) { int i; /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { struct hfi1_ctxtdata *rcd = dd->rcd[i]; if ((i < dd->first_dyn_alloc_ctxt) || (rcd && rcd->sc && (rcd->sc->type == SC_KERNEL))) rcd->do_interrupt = &handle_receive_interrupt; } } static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, struct hfi1_packet *packet, struct hfi1_devdata *dd) { struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; u8 etype = rhf_rcv_type(packet->rhf); u8 sc = SC15_PACKET; if (etype == RHF_RCV_TYPE_IB) { struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, packet->rhf_addr); sc = hfi1_9B_get_sc5(hdr, packet->rhf); } if (sc != SC15_PACKET) { int hwstate = driver_lstate(rcd->ppd); if (hwstate != IB_PORT_ACTIVE) { dd_dev_info(dd, "Unexpected link state %s\n", opa_lstate_name(hwstate)); return 0; } queue_work(rcd->ppd->hfi1_wq, lsaw); return 1; } return 0; } /* * handle_receive_interrupt - receive a packet * @rcd: the context * * Called from interrupt handler for errors or receive interrupt. * This is the slow path interrupt handler. */ int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) { struct hfi1_devdata *dd = rcd->dd; u32 hdrqtail; int needset, last = RCV_PKT_OK; struct hfi1_packet packet; int skip_pkt = 0; /* Control context will always use the slow path interrupt handler */ needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; init_packet(rcd, &packet); if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { u32 seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) { last = RCV_PKT_DONE; goto bail; } hdrqtail = 0; } else { hdrqtail = get_rcvhdrtail(rcd); if (packet.rhqoff == hdrqtail) { last = RCV_PKT_DONE; goto bail; } smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ /* * Control context can potentially receive an invalid * rhf. Drop such packets. */ if (rcd->ctxt == HFI1_CTRL_CTXT) { u32 seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) skip_pkt = 1; } } prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == DROP_PACKET_ON)) { dd->do_drop = 0; /* On to the next packet */ packet.rhqoff += packet.rsize; packet.rhf_addr = (__le32 *)rcd->rcvhdrq + packet.rhqoff + dd->rhf_offset; packet.rhf = rhf_to_cpu(packet.rhf_addr); } else if (skip_pkt) { last = skip_rcv_packet(&packet, thread); skip_pkt = 0; } else { /* Auto activate link on non-SC15 packet receive */ if (unlikely(rcd->ppd->host_link_state == HLS_UP_ARMED) && set_armed_to_active(rcd, &packet, dd)) goto bail; last = process_rcv_packet(&packet, thread); } if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { u32 seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (seq != rcd->seq_cnt) last = RCV_PKT_DONE; if (needset) { dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); set_nodma_rtail(dd, rcd->ctxt); needset = 0; } } else { if (packet.rhqoff == hdrqtail) last = RCV_PKT_DONE; /* * Control context can potentially receive an invalid * rhf. Drop such packets. */ if (rcd->ctxt == HFI1_CTRL_CTXT) { u32 seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (!last && (seq != rcd->seq_cnt)) skip_pkt = 1; } if (needset) { dd_dev_info(dd, "Switching to DMA_RTAIL\n"); set_dma_rtail(dd, rcd->ctxt); needset = 0; } } process_rcv_update(last, &packet); } process_rcv_qp_work(rcd); rcd->head = packet.rhqoff; bail: /* * Always write head at end, and setup rcv interrupt, even * if no packets were processed. */ finish_packet(&packet); return last; } /* * We may discover in the interrupt that the hardware link state has * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), * and we need to update the driver's notion of the link state. We cannot * run set_link_state from interrupt context, so we queue this function on * a workqueue. * * We delay the regular interrupt processing until after the state changes * so that the link will be in the correct state by the time any application * we wake up attempts to send a reply to any message it received. * (Subsequent receive interrupts may possibly force the wakeup before we * update the link state.) * * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, * so we're safe from use-after-free of the rcd. */ void receive_interrupt_work(struct work_struct *work) { struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, linkstate_active_work); struct hfi1_devdata *dd = ppd->dd; int i; /* Received non-SC15 packet implies neighbor_normal */ ppd->neighbor_normal = 1; set_link_state(ppd, HLS_UP_ACTIVE); /* * Interrupt all statically allocated kernel contexts that could * have had an interrupt during auto activation. */ for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) force_recv_intr(dd->rcd[i]); } /* * Convert a given MTU size to the on-wire MAD packet enumeration. * Return -1 if the size is invalid. */ int mtu_to_enum(u32 mtu, int default_if_bad) { switch (mtu) { case 0: return OPA_MTU_0; case 256: return OPA_MTU_256; case 512: return OPA_MTU_512; case 1024: return OPA_MTU_1024; case 2048: return OPA_MTU_2048; case 4096: return OPA_MTU_4096; case 8192: return OPA_MTU_8192; case 10240: return OPA_MTU_10240; } return default_if_bad; } u16 enum_to_mtu(int mtu) { switch (mtu) { case OPA_MTU_0: return 0; case OPA_MTU_256: return 256; case OPA_MTU_512: return 512; case OPA_MTU_1024: return 1024; case OPA_MTU_2048: return 2048; case OPA_MTU_4096: return 4096; case OPA_MTU_8192: return 8192; case OPA_MTU_10240: return 10240; default: return 0xffff; } } /* * set_mtu - set the MTU * @ppd: the per port data * * We can handle "any" incoming size, the issue here is whether we * need to restrict our outgoing size. We do not deal with what happens * to programs that are already running when the size changes. */ int set_mtu(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; int i, drain, ret = 0, is_up = 0; ppd->ibmtu = 0; for (i = 0; i < ppd->vls_supported; i++) if (ppd->ibmtu < dd->vld[i].mtu) ppd->ibmtu = dd->vld[i].mtu; ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); mutex_lock(&ppd->hls_lock); if (ppd->host_link_state == HLS_UP_INIT || ppd->host_link_state == HLS_UP_ARMED || ppd->host_link_state == HLS_UP_ACTIVE) is_up = 1; drain = !is_ax(dd) && is_up; if (drain) /* * MTU is specified per-VL. To ensure that no packet gets * stuck (due, e.g., to the MTU for the packet's VL being * reduced), empty the per-VL FIFOs before adjusting MTU. */ ret = stop_drain_data_vls(dd); if (ret) { dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", __func__); goto err; } hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); if (drain) open_fill_data_vls(dd); /* reopen all VLs */ err: mutex_unlock(&ppd->hls_lock); return ret; } int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) { struct hfi1_devdata *dd = ppd->dd; ppd->lid = lid; ppd->lmc = lmc; hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); return 0; } void shutdown_led_override(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; /* * This pairs with the memory barrier in hfi1_start_led_override to * ensure that we read the correct state of LED beaconing represented * by led_override_timer_active */ smp_rmb(); if (atomic_read(&ppd->led_override_timer_active)) { del_timer_sync(&ppd->led_override_timer); atomic_set(&ppd->led_override_timer_active, 0); /* Ensure the atomic_set is visible to all CPUs */ smp_wmb(); } /* Hand control of the LED to the DC for normal operation */ write_csr(dd, DCC_CFG_LED_CNTRL, 0); } static void run_led_override(unsigned long opaque) { struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque; struct hfi1_devdata *dd = ppd->dd; unsigned long timeout; int phase_idx; if (!(dd->flags & HFI1_INITTED)) return; phase_idx = ppd->led_override_phase & 1; setextled(dd, phase_idx); timeout = ppd->led_override_vals[phase_idx]; /* Set up for next phase */ ppd->led_override_phase = !ppd->led_override_phase; mod_timer(&ppd->led_override_timer, jiffies + timeout); } /* * To have the LED blink in a particular pattern, provide timeon and timeoff * in milliseconds. * To turn off custom blinking and return to normal operation, use * shutdown_led_override() */ void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, unsigned int timeoff) { if (!(ppd->dd->flags & HFI1_INITTED)) return; /* Convert to jiffies for direct use in timer */ ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); ppd->led_override_vals[1] = msecs_to_jiffies(timeon); /* Arbitrarily start from LED on phase */ ppd->led_override_phase = 1; /* * If the timer has not already been started, do so. Use a "quick" * timeout so the handler will be called soon to look at our request. */ if (!timer_pending(&ppd->led_override_timer)) { setup_timer(&ppd->led_override_timer, run_led_override, (unsigned long)ppd); ppd->led_override_timer.expires = jiffies + 1; add_timer(&ppd->led_override_timer); atomic_set(&ppd->led_override_timer_active, 1); /* Ensure the atomic_set is visible to all CPUs */ smp_wmb(); } } /** * hfi1_reset_device - reset the chip if possible * @unit: the device to reset * * Whether or not reset is successful, we attempt to re-initialize the chip * (that is, much like a driver unload/reload). We clear the INITTED flag * so that the various entry points will fail until we reinitialize. For * now, we only allow this if no user contexts are open that use chip resources */ int hfi1_reset_device(int unit) { int ret, i; struct hfi1_devdata *dd = hfi1_lookup(unit); struct hfi1_pportdata *ppd; unsigned long flags; int pidx; if (!dd) { ret = -ENODEV; goto bail; } dd_dev_info(dd, "Reset on unit %u requested\n", unit); if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) { dd_dev_info(dd, "Invalid unit number %u or not initialized or not present\n", unit); ret = -ENXIO; goto bail; } spin_lock_irqsave(&dd->uctxt_lock, flags); if (dd->rcd) for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { if (!dd->rcd[i]) continue; spin_unlock_irqrestore(&dd->uctxt_lock, flags); ret = -EBUSY; goto bail; } spin_unlock_irqrestore(&dd->uctxt_lock, flags); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; shutdown_led_override(ppd); } if (dd->flags & HFI1_HAS_SEND_DMA) sdma_exit(dd); hfi1_reset_cpu_counters(dd); ret = hfi1_init(dd, 1); if (ret) dd_dev_err(dd, "Reinitialize unit %u after reset failed with %d\n", unit, ret); else dd_dev_info(dd, "Reinitialized unit %u after resetting\n", unit); bail: return ret; } static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) { packet->hdr = (struct hfi1_ib_message_header *) hfi1_get_msgheader(packet->rcd->dd, packet->rhf_addr); packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; } static int hfi1_setup_9B_packet(struct hfi1_packet *packet) { struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct ib_header *hdr; u8 lnh; hfi1_setup_ib_header(packet); hdr = packet->hdr; lnh = ib_get_lnh(hdr); if (lnh == HFI1_LRH_BTH) { packet->ohdr = &hdr->u.oth; packet->grh = NULL; } else if (lnh == HFI1_LRH_GRH) { u32 vtf; packet->ohdr = &hdr->u.l.oth; packet->grh = &hdr->u.l.grh; if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(packet->grh->version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; } else { goto drop; } /* Query commonly used fields from packet header */ packet->opcode = ib_bth_get_opcode(packet->ohdr); packet->slid = ib_get_slid(hdr); packet->dlid = ib_get_dlid(hdr); packet->sl = ib_get_sl(hdr); packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); packet->pad = ib_bth_get_pad(packet->ohdr); packet->extra_byte = 0; packet->fecn = ib_bth_get_fecn(packet->ohdr); packet->becn = ib_bth_get_becn(packet->ohdr); return 0; drop: ibp->rvp.n_pkt_drops++; return -EINVAL; } void handle_eflags(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; u32 rte = rhf_rcv_type_err(packet->rhf); rcv_hdrerr(rcd, rcd->ppd, packet); if (rhf_err_flags(packet->rhf)) dd_dev_err(rcd->dd, "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", rcd->ctxt, packet->rhf, packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", packet->rhf & RHF_DC_ERR ? "dc " : "", packet->rhf & RHF_TID_ERR ? "tid " : "", packet->rhf & RHF_LEN_ERR ? "len " : "", packet->rhf & RHF_ECC_ERR ? "ecc " : "", packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", packet->rhf & RHF_ICRC_ERR ? "icrc " : "", rte); } /* * The following functions are called by the interrupt handler. They are type * specific handlers for each packet type. */ int process_receive_ib(struct hfi1_packet *packet) { if (unlikely(hfi1_dbg_fault_packet(packet))) return RHF_RCV_CONTINUE; if (hfi1_setup_9B_packet(packet)) return RHF_RCV_CONTINUE; trace_hfi1_rcvhdr(packet->rcd->ppd->dd, packet->rcd->ctxt, rhf_err_flags(packet->rhf), RHF_RCV_TYPE_IB, packet->hlen, packet->tlen, packet->updegr, rhf_egr_index(packet->rhf)); if (unlikely( (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && (packet->rhf & RHF_DC_ERR)))) return RHF_RCV_CONTINUE; if (unlikely(rhf_err_flags(packet->rhf))) { handle_eflags(packet); return RHF_RCV_CONTINUE; } hfi1_ib_rcv(packet); return RHF_RCV_CONTINUE; } static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) { /* Packet received in VNIC context via RSM */ if (packet->rcd->is_vnic) return true; if ((HFI1_GET_L2_TYPE(packet->ebuf) == OPA_VNIC_L2_TYPE) && (HFI1_GET_L4_TYPE(packet->ebuf) == OPA_VNIC_L4_ETHR)) return true; return false; } int process_receive_bypass(struct hfi1_packet *packet) { struct hfi1_devdata *dd = packet->rcd->dd; if (unlikely(rhf_err_flags(packet->rhf))) { handle_eflags(packet); } else if (hfi1_is_vnic_packet(packet)) { hfi1_vnic_bypass_rcv(packet); return RHF_RCV_CONTINUE; } dd_dev_err(dd, "Unsupported bypass packet. Dropping\n"); incr_cntr64(&dd->sw_rcv_bypass_packet_errors); if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) { u64 *flits = packet->ebuf; if (flits && !(packet->rhf & RHF_LEN_ERR)) { dd->err_info_rcvport.packet_flit1 = flits[0]; dd->err_info_rcvport.packet_flit2 = packet->tlen > sizeof(flits[0]) ? flits[1] : 0; } dd->err_info_rcvport.status_and_code |= (OPA_EI_STATUS_SMASK | BAD_L2_ERR); } return RHF_RCV_CONTINUE; } int process_receive_error(struct hfi1_packet *packet) { /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ if (unlikely( hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && rhf_rcv_type_err(packet->rhf) == 3)) return RHF_RCV_CONTINUE; hfi1_setup_ib_header(packet); handle_eflags(packet); if (unlikely(rhf_err_flags(packet->rhf))) dd_dev_err(packet->rcd->dd, "Unhandled error packet received. Dropping.\n"); return RHF_RCV_CONTINUE; } int kdeth_process_expected(struct hfi1_packet *packet) { if (unlikely(hfi1_dbg_fault_packet(packet))) return RHF_RCV_CONTINUE; hfi1_setup_ib_header(packet); if (unlikely(rhf_err_flags(packet->rhf))) handle_eflags(packet); dd_dev_err(packet->rcd->dd, "Unhandled expected packet received. Dropping.\n"); return RHF_RCV_CONTINUE; } int kdeth_process_eager(struct hfi1_packet *packet) { hfi1_setup_ib_header(packet); if (unlikely(rhf_err_flags(packet->rhf))) handle_eflags(packet); if (unlikely(hfi1_dbg_fault_packet(packet))) return RHF_RCV_CONTINUE; dd_dev_err(packet->rcd->dd, "Unhandled eager packet received. Dropping.\n"); return RHF_RCV_CONTINUE; } int process_receive_invalid(struct hfi1_packet *packet) { dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", rhf_rcv_type(packet->rhf)); return RHF_RCV_CONTINUE; }