/* * System Trace Module (STM) infrastructure * Copyright (c) 2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * STM class implements generic infrastructure for System Trace Module devices * as defined in MIPI STPv2 specification. */ #include #include #include #include #include #include #include #include #include #include #include #include "stm.h" #include static unsigned int stm_core_up; /* * The SRCU here makes sure that STM device doesn't disappear from under a * stm_source_write() caller, which may want to have as little overhead as * possible. */ static struct srcu_struct stm_source_srcu; static ssize_t masters_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stm_device *stm = to_stm_device(dev); int ret; ret = sprintf(buf, "%u %u\n", stm->data->sw_start, stm->data->sw_end); return ret; } static DEVICE_ATTR_RO(masters); static ssize_t channels_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stm_device *stm = to_stm_device(dev); int ret; ret = sprintf(buf, "%u\n", stm->data->sw_nchannels); return ret; } static DEVICE_ATTR_RO(channels); static struct attribute *stm_attrs[] = { &dev_attr_masters.attr, &dev_attr_channels.attr, NULL, }; ATTRIBUTE_GROUPS(stm); static struct class stm_class = { .name = "stm", .dev_groups = stm_groups, }; static int stm_dev_match(struct device *dev, const void *data) { const char *name = data; return sysfs_streq(name, dev_name(dev)); } /** * stm_find_device() - find stm device by name * @buf: character buffer containing the name * * This is called when either policy gets assigned to an stm device or an * stm_source device gets linked to an stm device. * * This grabs device's reference (get_device()) and module reference, both * of which the calling path needs to make sure to drop with stm_put_device(). * * Return: stm device pointer or null if lookup failed. */ struct stm_device *stm_find_device(const char *buf) { struct stm_device *stm; struct device *dev; if (!stm_core_up) return NULL; dev = class_find_device(&stm_class, NULL, buf, stm_dev_match); if (!dev) return NULL; stm = to_stm_device(dev); if (!try_module_get(stm->owner)) { /* matches class_find_device() above */ put_device(dev); return NULL; } return stm; } /** * stm_put_device() - drop references on the stm device * @stm: stm device, previously acquired by stm_find_device() * * This drops the module reference and device reference taken by * stm_find_device() or stm_char_open(). */ void stm_put_device(struct stm_device *stm) { module_put(stm->owner); put_device(&stm->dev); } /* * Internally we only care about software-writable masters here, that is the * ones in the range [stm_data->sw_start..stm_data..sw_end], however we need * original master numbers to be visible externally, since they are the ones * that will appear in the STP stream. Thus, the internal bookkeeping uses * $master - stm_data->sw_start to reference master descriptors and such. */ #define __stm_master(_s, _m) \ ((_s)->masters[(_m) - (_s)->data->sw_start]) static inline struct stp_master * stm_master(struct stm_device *stm, unsigned int idx) { if (idx < stm->data->sw_start || idx > stm->data->sw_end) return NULL; return __stm_master(stm, idx); } static int stp_master_alloc(struct stm_device *stm, unsigned int idx) { struct stp_master *master; size_t size; size = ALIGN(stm->data->sw_nchannels, 8) / 8; size += sizeof(struct stp_master); master = kzalloc(size, GFP_ATOMIC); if (!master) return -ENOMEM; master->nr_free = stm->data->sw_nchannels; __stm_master(stm, idx) = master; return 0; } static void stp_master_free(struct stm_device *stm, unsigned int idx) { struct stp_master *master = stm_master(stm, idx); if (!master) return; __stm_master(stm, idx) = NULL; kfree(master); } static void stm_output_claim(struct stm_device *stm, struct stm_output *output) { struct stp_master *master = stm_master(stm, output->master); lockdep_assert_held(&stm->mc_lock); lockdep_assert_held(&output->lock); if (WARN_ON_ONCE(master->nr_free < output->nr_chans)) return; bitmap_allocate_region(&master->chan_map[0], output->channel, ilog2(output->nr_chans)); master->nr_free -= output->nr_chans; } static void stm_output_disclaim(struct stm_device *stm, struct stm_output *output) { struct stp_master *master = stm_master(stm, output->master); lockdep_assert_held(&stm->mc_lock); lockdep_assert_held(&output->lock); bitmap_release_region(&master->chan_map[0], output->channel, ilog2(output->nr_chans)); output->nr_chans = 0; master->nr_free += output->nr_chans; } /* * This is like bitmap_find_free_region(), except it can ignore @start bits * at the beginning. */ static int find_free_channels(unsigned long *bitmap, unsigned int start, unsigned int end, unsigned int width) { unsigned int pos; int i; for (pos = start; pos < end + 1; pos = ALIGN(pos, width)) { pos = find_next_zero_bit(bitmap, end + 1, pos); if (pos + width > end + 1) break; if (pos & (width - 1)) continue; for (i = 1; i < width && !test_bit(pos + i, bitmap); i++) ; if (i == width) return pos; } return -1; } static int stm_find_master_chan(struct stm_device *stm, unsigned int width, unsigned int *mstart, unsigned int mend, unsigned int *cstart, unsigned int cend) { struct stp_master *master; unsigned int midx; int pos, err; for (midx = *mstart; midx <= mend; midx++) { if (!stm_master(stm, midx)) { err = stp_master_alloc(stm, midx); if (err) return err; } master = stm_master(stm, midx); if (!master->nr_free) continue; pos = find_free_channels(master->chan_map, *cstart, cend, width); if (pos < 0) continue; *mstart = midx; *cstart = pos; return 0; } return -ENOSPC; } static int stm_output_assign(struct stm_device *stm, unsigned int width, struct stp_policy_node *policy_node, struct stm_output *output) { unsigned int midx, cidx, mend, cend; int ret = -EINVAL; if (width > stm->data->sw_nchannels) return -EINVAL; if (policy_node) { stp_policy_node_get_ranges(policy_node, &midx, &mend, &cidx, &cend); } else { midx = stm->data->sw_start; cidx = 0; mend = stm->data->sw_end; cend = stm->data->sw_nchannels - 1; } spin_lock(&stm->mc_lock); spin_lock(&output->lock); /* output is already assigned -- shouldn't happen */ if (WARN_ON_ONCE(output->nr_chans)) goto unlock; ret = stm_find_master_chan(stm, width, &midx, mend, &cidx, cend); if (ret < 0) goto unlock; output->master = midx; output->channel = cidx; output->nr_chans = width; stm_output_claim(stm, output); dev_dbg(&stm->dev, "assigned %u:%u (+%u)\n", midx, cidx, width); ret = 0; unlock: spin_unlock(&output->lock); spin_unlock(&stm->mc_lock); return ret; } static void stm_output_free(struct stm_device *stm, struct stm_output *output) { spin_lock(&stm->mc_lock); spin_lock(&output->lock); if (output->nr_chans) stm_output_disclaim(stm, output); spin_unlock(&output->lock); spin_unlock(&stm->mc_lock); } static void stm_output_init(struct stm_output *output) { spin_lock_init(&output->lock); } static int major_match(struct device *dev, const void *data) { unsigned int major = *(unsigned int *)data; return MAJOR(dev->devt) == major; } static int stm_char_open(struct inode *inode, struct file *file) { struct stm_file *stmf; struct device *dev; unsigned int major = imajor(inode); int err = -ENODEV; dev = class_find_device(&stm_class, NULL, &major, major_match); if (!dev) return -ENODEV; stmf = kzalloc(sizeof(*stmf), GFP_KERNEL); if (!stmf) return -ENOMEM; stm_output_init(&stmf->output); stmf->stm = to_stm_device(dev); if (!try_module_get(stmf->stm->owner)) goto err_free; file->private_data = stmf; return nonseekable_open(inode, file); err_free: /* matches class_find_device() above */ put_device(dev); kfree(stmf); return err; } static int stm_char_release(struct inode *inode, struct file *file) { struct stm_file *stmf = file->private_data; struct stm_device *stm = stmf->stm; if (stm->data->unlink) stm->data->unlink(stm->data, stmf->output.master, stmf->output.channel); stm_output_free(stm, &stmf->output); /* * matches the stm_char_open()'s * class_find_device() + try_module_get() */ stm_put_device(stm); kfree(stmf); return 0; } static int stm_file_assign(struct stm_file *stmf, char *id, unsigned int width) { struct stm_device *stm = stmf->stm; int ret; stmf->policy_node = stp_policy_node_lookup(stm, id); ret = stm_output_assign(stm, width, stmf->policy_node, &stmf->output); if (stmf->policy_node) stp_policy_node_put(stmf->policy_node); return ret; } static ssize_t stm_write(struct stm_data *data, unsigned int master, unsigned int channel, const char *buf, size_t count) { unsigned int flags = STP_PACKET_TIMESTAMPED; const unsigned char *p = buf, nil = 0; size_t pos; ssize_t sz; for (pos = 0, p = buf; count > pos; pos += sz, p += sz) { sz = min_t(unsigned int, count - pos, 8); sz = data->packet(data, master, channel, STP_PACKET_DATA, flags, sz, p); flags = 0; if (sz < 0) break; } data->packet(data, master, channel, STP_PACKET_FLAG, 0, 0, &nil); return pos; } static ssize_t stm_char_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct stm_file *stmf = file->private_data; struct stm_device *stm = stmf->stm; char *kbuf; int err; if (count + 1 > PAGE_SIZE) count = PAGE_SIZE - 1; /* * if no m/c have been assigned to this writer up to this * point, use "default" policy entry */ if (!stmf->output.nr_chans) { err = stm_file_assign(stmf, "default", 1); /* * EBUSY means that somebody else just assigned this * output, which is just fine for write() */ if (err && err != -EBUSY) return err; } kbuf = kmalloc(count + 1, GFP_KERNEL); if (!kbuf) return -ENOMEM; err = copy_from_user(kbuf, buf, count); if (err) { kfree(kbuf); return -EFAULT; } count = stm_write(stm->data, stmf->output.master, stmf->output.channel, kbuf, count); kfree(kbuf); return count; } static int stm_char_mmap(struct file *file, struct vm_area_struct *vma) { struct stm_file *stmf = file->private_data; struct stm_device *stm = stmf->stm; unsigned long size, phys; if (!stm->data->mmio_addr) return -EOPNOTSUPP; if (vma->vm_pgoff) return -EINVAL; size = vma->vm_end - vma->vm_start; if (stmf->output.nr_chans * stm->data->sw_mmiosz != size) return -EINVAL; phys = stm->data->mmio_addr(stm->data, stmf->output.master, stmf->output.channel, stmf->output.nr_chans); if (!phys) return -EINVAL; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP; vm_iomap_memory(vma, phys, size); return 0; } static int stm_char_policy_set_ioctl(struct stm_file *stmf, void __user *arg) { struct stm_device *stm = stmf->stm; struct stp_policy_id *id; int ret = -EINVAL; u32 size; if (stmf->output.nr_chans) return -EBUSY; if (copy_from_user(&size, arg, sizeof(size))) return -EFAULT; if (size >= PATH_MAX + sizeof(*id)) return -EINVAL; /* * size + 1 to make sure the .id string at the bottom is terminated, * which is also why memdup_user() is not useful here */ id = kzalloc(size + 1, GFP_KERNEL); if (!id) return -ENOMEM; if (copy_from_user(id, arg, size)) { ret = -EFAULT; goto err_free; } if (id->__reserved_0 || id->__reserved_1) goto err_free; if (id->width < 1 || id->width > PAGE_SIZE / stm->data->sw_mmiosz) goto err_free; ret = stm_file_assign(stmf, id->id, id->width); if (ret) goto err_free; if (stm->data->link) ret = stm->data->link(stm->data, stmf->output.master, stmf->output.channel); if (ret) stm_output_free(stmf->stm, &stmf->output); err_free: kfree(id); return ret; } static int stm_char_policy_get_ioctl(struct stm_file *stmf, void __user *arg) { struct stp_policy_id id = { .size = sizeof(id), .master = stmf->output.master, .channel = stmf->output.channel, .width = stmf->output.nr_chans, .__reserved_0 = 0, .__reserved_1 = 0, }; return copy_to_user(arg, &id, id.size) ? -EFAULT : 0; } static long stm_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct stm_file *stmf = file->private_data; struct stm_data *stm_data = stmf->stm->data; int err = -ENOTTY; u64 options; switch (cmd) { case STP_POLICY_ID_SET: err = stm_char_policy_set_ioctl(stmf, (void __user *)arg); if (err) return err; return stm_char_policy_get_ioctl(stmf, (void __user *)arg); case STP_POLICY_ID_GET: return stm_char_policy_get_ioctl(stmf, (void __user *)arg); case STP_SET_OPTIONS: if (copy_from_user(&options, (u64 __user *)arg, sizeof(u64))) return -EFAULT; if (stm_data->set_options) err = stm_data->set_options(stm_data, stmf->output.master, stmf->output.channel, stmf->output.nr_chans, options); break; default: break; } return err; } #ifdef CONFIG_COMPAT static long stm_char_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return stm_char_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); } #else #define stm_char_compat_ioctl NULL #endif static const struct file_operations stm_fops = { .open = stm_char_open, .release = stm_char_release, .write = stm_char_write, .mmap = stm_char_mmap, .unlocked_ioctl = stm_char_ioctl, .compat_ioctl = stm_char_compat_ioctl, .llseek = no_llseek, }; static void stm_device_release(struct device *dev) { struct stm_device *stm = to_stm_device(dev); kfree(stm); } int stm_register_device(struct device *parent, struct stm_data *stm_data, struct module *owner) { struct stm_device *stm; unsigned int nmasters; int err = -ENOMEM; if (!stm_core_up) return -EPROBE_DEFER; if (!stm_data->packet || !stm_data->sw_nchannels) return -EINVAL; nmasters = stm_data->sw_end - stm_data->sw_start + 1; stm = kzalloc(sizeof(*stm) + nmasters * sizeof(void *), GFP_KERNEL); if (!stm) return -ENOMEM; stm->major = register_chrdev(0, stm_data->name, &stm_fops); if (stm->major < 0) goto err_free; device_initialize(&stm->dev); stm->dev.devt = MKDEV(stm->major, 0); stm->dev.class = &stm_class; stm->dev.parent = parent; stm->dev.release = stm_device_release; err = kobject_set_name(&stm->dev.kobj, "%s", stm_data->name); if (err) goto err_device; err = device_add(&stm->dev); if (err) goto err_device; mutex_init(&stm->link_mutex); spin_lock_init(&stm->link_lock); INIT_LIST_HEAD(&stm->link_list); spin_lock_init(&stm->mc_lock); mutex_init(&stm->policy_mutex); stm->sw_nmasters = nmasters; stm->owner = owner; stm->data = stm_data; stm_data->stm = stm; return 0; err_device: unregister_chrdev(stm->major, stm_data->name); /* matches device_initialize() above */ put_device(&stm->dev); err_free: kfree(stm); return err; } EXPORT_SYMBOL_GPL(stm_register_device); static int __stm_source_link_drop(struct stm_source_device *src, struct stm_device *stm); void stm_unregister_device(struct stm_data *stm_data) { struct stm_device *stm = stm_data->stm; struct stm_source_device *src, *iter; int i, ret; mutex_lock(&stm->link_mutex); list_for_each_entry_safe(src, iter, &stm->link_list, link_entry) { ret = __stm_source_link_drop(src, stm); /* * src <-> stm link must not change under the same * stm::link_mutex, so complain loudly if it has; * also in this situation ret!=0 means this src is * not connected to this stm and it should be otherwise * safe to proceed with the tear-down of stm. */ WARN_ON_ONCE(ret); } mutex_unlock(&stm->link_mutex); synchronize_srcu(&stm_source_srcu); unregister_chrdev(stm->major, stm_data->name); mutex_lock(&stm->policy_mutex); if (stm->policy) stp_policy_unbind(stm->policy); mutex_unlock(&stm->policy_mutex); for (i = stm->data->sw_start; i <= stm->data->sw_end; i++) stp_master_free(stm, i); device_unregister(&stm->dev); stm_data->stm = NULL; } EXPORT_SYMBOL_GPL(stm_unregister_device); /* * stm::link_list access serialization uses a spinlock and a mutex; holding * either of them guarantees that the list is stable; modification requires * holding both of them. * * Lock ordering is as follows: * stm::link_mutex * stm::link_lock * src::link_lock */ /** * stm_source_link_add() - connect an stm_source device to an stm device * @src: stm_source device * @stm: stm device * * This function establishes a link from stm_source to an stm device so that * the former can send out trace data to the latter. * * Return: 0 on success, -errno otherwise. */ static int stm_source_link_add(struct stm_source_device *src, struct stm_device *stm) { char *id; int err; mutex_lock(&stm->link_mutex); spin_lock(&stm->link_lock); spin_lock(&src->link_lock); /* src->link is dereferenced under stm_source_srcu but not the list */ rcu_assign_pointer(src->link, stm); list_add_tail(&src->link_entry, &stm->link_list); spin_unlock(&src->link_lock); spin_unlock(&stm->link_lock); mutex_unlock(&stm->link_mutex); id = kstrdup(src->data->name, GFP_KERNEL); if (id) { src->policy_node = stp_policy_node_lookup(stm, id); kfree(id); } err = stm_output_assign(stm, src->data->nr_chans, src->policy_node, &src->output); if (src->policy_node) stp_policy_node_put(src->policy_node); if (err) goto fail_detach; /* this is to notify the STM device that a new link has been made */ if (stm->data->link) err = stm->data->link(stm->data, src->output.master, src->output.channel); if (err) goto fail_free_output; /* this is to let the source carry out all necessary preparations */ if (src->data->link) src->data->link(src->data); return 0; fail_free_output: stm_output_free(stm, &src->output); fail_detach: mutex_lock(&stm->link_mutex); spin_lock(&stm->link_lock); spin_lock(&src->link_lock); rcu_assign_pointer(src->link, NULL); list_del_init(&src->link_entry); spin_unlock(&src->link_lock); spin_unlock(&stm->link_lock); mutex_unlock(&stm->link_mutex); return err; } /** * __stm_source_link_drop() - detach stm_source from an stm device * @src: stm_source device * @stm: stm device * * If @stm is @src::link, disconnect them from one another and put the * reference on the @stm device. * * Caller must hold stm::link_mutex. */ static int __stm_source_link_drop(struct stm_source_device *src, struct stm_device *stm) { struct stm_device *link; int ret = 0; lockdep_assert_held(&stm->link_mutex); /* for stm::link_list modification, we hold both mutex and spinlock */ spin_lock(&stm->link_lock); spin_lock(&src->link_lock); link = srcu_dereference_check(src->link, &stm_source_srcu, 1); /* * The linked device may have changed since we last looked, because * we weren't holding the src::link_lock back then; if this is the * case, tell the caller to retry. */ if (link != stm) { ret = -EAGAIN; goto unlock; } stm_output_free(link, &src->output); list_del_init(&src->link_entry); /* matches stm_find_device() from stm_source_link_store() */ stm_put_device(link); rcu_assign_pointer(src->link, NULL); unlock: spin_unlock(&src->link_lock); spin_unlock(&stm->link_lock); /* * Call the unlink callbacks for both source and stm, when we know * that we have actually performed the unlinking. */ if (!ret) { if (src->data->unlink) src->data->unlink(src->data); if (stm->data->unlink) stm->data->unlink(stm->data, src->output.master, src->output.channel); } return ret; } /** * stm_source_link_drop() - detach stm_source from its stm device * @src: stm_source device * * Unlinking means disconnecting from source's STM device; after this * writes will be unsuccessful until it is linked to a new STM device. * * This will happen on "stm_source_link" sysfs attribute write to undo * the existing link (if any), or on linked STM device's de-registration. */ static void stm_source_link_drop(struct stm_source_device *src) { struct stm_device *stm; int idx, ret; retry: idx = srcu_read_lock(&stm_source_srcu); /* * The stm device will be valid for the duration of this * read section, but the link may change before we grab * the src::link_lock in __stm_source_link_drop(). */ stm = srcu_dereference(src->link, &stm_source_srcu); ret = 0; if (stm) { mutex_lock(&stm->link_mutex); ret = __stm_source_link_drop(src, stm); mutex_unlock(&stm->link_mutex); } srcu_read_unlock(&stm_source_srcu, idx); /* if it did change, retry */ if (ret == -EAGAIN) goto retry; } static ssize_t stm_source_link_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stm_source_device *src = to_stm_source_device(dev); struct stm_device *stm; int idx, ret; idx = srcu_read_lock(&stm_source_srcu); stm = srcu_dereference(src->link, &stm_source_srcu); ret = sprintf(buf, "%s\n", stm ? dev_name(&stm->dev) : ""); srcu_read_unlock(&stm_source_srcu, idx); return ret; } static ssize_t stm_source_link_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct stm_source_device *src = to_stm_source_device(dev); struct stm_device *link; int err; stm_source_link_drop(src); link = stm_find_device(buf); if (!link) return -EINVAL; err = stm_source_link_add(src, link); if (err) { /* matches the stm_find_device() above */ stm_put_device(link); } return err ? : count; } static DEVICE_ATTR_RW(stm_source_link); static struct attribute *stm_source_attrs[] = { &dev_attr_stm_source_link.attr, NULL, }; ATTRIBUTE_GROUPS(stm_source); static struct class stm_source_class = { .name = "stm_source", .dev_groups = stm_source_groups, }; static void stm_source_device_release(struct device *dev) { struct stm_source_device *src = to_stm_source_device(dev); kfree(src); } /** * stm_source_register_device() - register an stm_source device * @parent: parent device * @data: device description structure * * This will create a device of stm_source class that can write * data to an stm device once linked. * * Return: 0 on success, -errno otherwise. */ int stm_source_register_device(struct device *parent, struct stm_source_data *data) { struct stm_source_device *src; int err; if (!stm_core_up) return -EPROBE_DEFER; src = kzalloc(sizeof(*src), GFP_KERNEL); if (!src) return -ENOMEM; device_initialize(&src->dev); src->dev.class = &stm_source_class; src->dev.parent = parent; src->dev.release = stm_source_device_release; err = kobject_set_name(&src->dev.kobj, "%s", data->name); if (err) goto err; err = device_add(&src->dev); if (err) goto err; stm_output_init(&src->output); spin_lock_init(&src->link_lock); INIT_LIST_HEAD(&src->link_entry); src->data = data; data->src = src; return 0; err: put_device(&src->dev); kfree(src); return err; } EXPORT_SYMBOL_GPL(stm_source_register_device); /** * stm_source_unregister_device() - unregister an stm_source device * @data: device description that was used to register the device * * This will remove a previously created stm_source device from the system. */ void stm_source_unregister_device(struct stm_source_data *data) { struct stm_source_device *src = data->src; stm_source_link_drop(src); device_destroy(&stm_source_class, src->dev.devt); } EXPORT_SYMBOL_GPL(stm_source_unregister_device); int stm_source_write(struct stm_source_data *data, unsigned int chan, const char *buf, size_t count) { struct stm_source_device *src = data->src; struct stm_device *stm; int idx; if (!src->output.nr_chans) return -ENODEV; if (chan >= src->output.nr_chans) return -EINVAL; idx = srcu_read_lock(&stm_source_srcu); stm = srcu_dereference(src->link, &stm_source_srcu); if (stm) count = stm_write(stm->data, src->output.master, src->output.channel + chan, buf, count); else count = -ENODEV; srcu_read_unlock(&stm_source_srcu, idx); return count; } EXPORT_SYMBOL_GPL(stm_source_write); static int __init stm_core_init(void) { int err; err = class_register(&stm_class); if (err) return err; err = class_register(&stm_source_class); if (err) goto err_stm; err = stp_configfs_init(); if (err) goto err_src; init_srcu_struct(&stm_source_srcu); stm_core_up++; return 0; err_src: class_unregister(&stm_source_class); err_stm: class_unregister(&stm_class); return err; } module_init(stm_core_init); static void __exit stm_core_exit(void) { cleanup_srcu_struct(&stm_source_srcu); class_unregister(&stm_source_class); class_unregister(&stm_class); stp_configfs_exit(); } module_exit(stm_core_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("System Trace Module device class"); MODULE_AUTHOR("Alexander Shishkin ");