// SPDX-License-Identifier: GPL-2.0-only /* * Designware SPI core controller driver (refer pxa2xx_spi.c) * * Copyright (c) 2009, Intel Corporation. */ #include #include #include #include #include #include #include #include #include "spi-dw.h" #ifdef CONFIG_DEBUG_FS #include #endif /* Slave spi_device related */ struct chip_data { u32 cr0; u32 rx_sample_dly; /* RX sample delay */ }; #ifdef CONFIG_DEBUG_FS #define DW_SPI_DBGFS_REG(_name, _off) \ { \ .name = _name, \ .offset = _off, \ } static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = { DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0), DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1), DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR), DW_SPI_DBGFS_REG("SER", DW_SPI_SER), DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR), DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR), DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR), DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR), DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR), DW_SPI_DBGFS_REG("SR", DW_SPI_SR), DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR), DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR), DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR), DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR), DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR), DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY), }; static int dw_spi_debugfs_init(struct dw_spi *dws) { char name[32]; snprintf(name, 32, "dw_spi%d", dws->master->bus_num); dws->debugfs = debugfs_create_dir(name, NULL); if (!dws->debugfs) return -ENOMEM; dws->regset.regs = dw_spi_dbgfs_regs; dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs); dws->regset.base = dws->regs; debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset); return 0; } static void dw_spi_debugfs_remove(struct dw_spi *dws) { debugfs_remove_recursive(dws->debugfs); } #else static inline int dw_spi_debugfs_init(struct dw_spi *dws) { return 0; } static inline void dw_spi_debugfs_remove(struct dw_spi *dws) { } #endif /* CONFIG_DEBUG_FS */ void dw_spi_set_cs(struct spi_device *spi, bool enable) { struct dw_spi *dws = spi_controller_get_devdata(spi->controller); bool cs_high = !!(spi->mode & SPI_CS_HIGH); /* * DW SPI controller demands any native CS being set in order to * proceed with data transfer. So in order to activate the SPI * communications we must set a corresponding bit in the Slave * Enable register no matter whether the SPI core is configured to * support active-high or active-low CS level. */ if (cs_high == enable) dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select)); else dw_writel(dws, DW_SPI_SER, 0); } EXPORT_SYMBOL_GPL(dw_spi_set_cs); /* Return the max entries we can fill into tx fifo */ static inline u32 tx_max(struct dw_spi *dws) { u32 tx_room, rxtx_gap; tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); /* * Another concern is about the tx/rx mismatch, we * though to use (dws->fifo_len - rxflr - txflr) as * one maximum value for tx, but it doesn't cover the * data which is out of tx/rx fifo and inside the * shift registers. So a control from sw point of * view is taken. */ rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len); return min3((u32)dws->tx_len, tx_room, rxtx_gap); } /* Return the max entries we should read out of rx fifo */ static inline u32 rx_max(struct dw_spi *dws) { return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR)); } static void dw_writer(struct dw_spi *dws) { u32 max = tx_max(dws); u16 txw = 0; while (max--) { if (dws->tx) { if (dws->n_bytes == 1) txw = *(u8 *)(dws->tx); else txw = *(u16 *)(dws->tx); dws->tx += dws->n_bytes; } dw_write_io_reg(dws, DW_SPI_DR, txw); --dws->tx_len; } } static void dw_reader(struct dw_spi *dws) { u32 max = rx_max(dws); u16 rxw; while (max--) { rxw = dw_read_io_reg(dws, DW_SPI_DR); if (dws->rx) { if (dws->n_bytes == 1) *(u8 *)(dws->rx) = rxw; else *(u16 *)(dws->rx) = rxw; dws->rx += dws->n_bytes; } --dws->rx_len; } } static void int_error_stop(struct dw_spi *dws, const char *msg) { spi_reset_chip(dws); dev_err(&dws->master->dev, "%s\n", msg); dws->master->cur_msg->status = -EIO; spi_finalize_current_transfer(dws->master); } static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws) { u16 irq_status = dw_readl(dws, DW_SPI_ISR); /* Error handling */ if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) { dw_readl(dws, DW_SPI_ICR); int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun"); return IRQ_HANDLED; } /* * Read data from the Rx FIFO every time we've got a chance executing * this method. If there is nothing left to receive, terminate the * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a * final stage of the transfer. By doing so we'll get the next IRQ * right when the leftover incoming data is received. */ dw_reader(dws); if (!dws->rx_len) { spi_mask_intr(dws, 0xff); spi_finalize_current_transfer(dws->master); } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) { dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1); } /* * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be * disabled after the data transmission is finished so not to * have the TXE IRQ flood at the final stage of the transfer. */ if (irq_status & SPI_INT_TXEI) { dw_writer(dws); if (!dws->tx_len) spi_mask_intr(dws, SPI_INT_TXEI); } return IRQ_HANDLED; } static irqreturn_t dw_spi_irq(int irq, void *dev_id) { struct spi_controller *master = dev_id; struct dw_spi *dws = spi_controller_get_devdata(master); u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f; if (!irq_status) return IRQ_NONE; if (!master->cur_msg) { spi_mask_intr(dws, 0xff); return IRQ_HANDLED; } return dws->transfer_handler(dws); } static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi) { u32 cr0 = 0; if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) { /* CTRLR0[ 5: 4] Frame Format */ cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET; /* * SPI mode (SCPOL|SCPH) * CTRLR0[ 6] Serial Clock Phase * CTRLR0[ 7] Serial Clock Polarity */ cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET; cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET; /* CTRLR0[11] Shift Register Loop */ cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET; } else { /* CTRLR0[ 7: 6] Frame Format */ cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET; /* * SPI mode (SCPOL|SCPH) * CTRLR0[ 8] Serial Clock Phase * CTRLR0[ 9] Serial Clock Polarity */ cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET; cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET; /* CTRLR0[13] Shift Register Loop */ cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET; if (dws->caps & DW_SPI_CAP_KEEMBAY_MST) cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST; } return cr0; } void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi, struct dw_spi_cfg *cfg) { struct chip_data *chip = spi_get_ctldata(spi); u32 cr0 = chip->cr0; u32 speed_hz; u16 clk_div; /* CTRLR0[ 4/3: 0] Data Frame Size */ cr0 |= (cfg->dfs - 1); if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) /* CTRLR0[ 9:8] Transfer Mode */ cr0 |= cfg->tmode << SPI_TMOD_OFFSET; else /* CTRLR0[11:10] Transfer Mode */ cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET; dw_writel(dws, DW_SPI_CTRLR0, cr0); if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO) dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0); /* Note DW APB SSI clock divider doesn't support odd numbers */ clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe; speed_hz = dws->max_freq / clk_div; if (dws->current_freq != speed_hz) { spi_set_clk(dws, clk_div); dws->current_freq = speed_hz; } /* Update RX sample delay if required */ if (dws->cur_rx_sample_dly != chip->rx_sample_dly) { dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly); dws->cur_rx_sample_dly = chip->rx_sample_dly; } } EXPORT_SYMBOL_GPL(dw_spi_update_config); static void dw_spi_irq_setup(struct dw_spi *dws) { u16 level; u8 imask; /* * Originally Tx and Rx data lengths match. Rx FIFO Threshold level * will be adjusted at the final stage of the IRQ-based SPI transfer * execution so not to lose the leftover of the incoming data. */ level = min_t(u16, dws->fifo_len / 2, dws->tx_len); dw_writel(dws, DW_SPI_TXFTLR, level); dw_writel(dws, DW_SPI_RXFTLR, level - 1); imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI | SPI_INT_RXFI; spi_umask_intr(dws, imask); dws->transfer_handler = dw_spi_transfer_handler; } static int dw_spi_transfer_one(struct spi_controller *master, struct spi_device *spi, struct spi_transfer *transfer) { struct dw_spi *dws = spi_controller_get_devdata(master); struct dw_spi_cfg cfg = { .tmode = SPI_TMOD_TR, .dfs = transfer->bits_per_word, .freq = transfer->speed_hz, }; int ret; dws->dma_mapped = 0; dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE); dws->tx = (void *)transfer->tx_buf; dws->tx_len = transfer->len / dws->n_bytes; dws->rx = transfer->rx_buf; dws->rx_len = dws->tx_len; /* Ensure the data above is visible for all CPUs */ smp_mb(); spi_enable_chip(dws, 0); dw_spi_update_config(dws, spi, &cfg); transfer->effective_speed_hz = dws->current_freq; /* Check if current transfer is a DMA transaction */ if (master->can_dma && master->can_dma(master, spi, transfer)) dws->dma_mapped = master->cur_msg_mapped; /* For poll mode just disable all interrupts */ spi_mask_intr(dws, 0xff); if (dws->dma_mapped) { ret = dws->dma_ops->dma_setup(dws, transfer); if (ret) return ret; } spi_enable_chip(dws, 1); if (dws->dma_mapped) return dws->dma_ops->dma_transfer(dws, transfer); dw_spi_irq_setup(dws); return 1; } static void dw_spi_handle_err(struct spi_controller *master, struct spi_message *msg) { struct dw_spi *dws = spi_controller_get_devdata(master); if (dws->dma_mapped) dws->dma_ops->dma_stop(dws); spi_reset_chip(dws); } /* This may be called twice for each spi dev */ static int dw_spi_setup(struct spi_device *spi) { struct dw_spi *dws = spi_controller_get_devdata(spi->controller); struct chip_data *chip; /* Only alloc on first setup */ chip = spi_get_ctldata(spi); if (!chip) { struct dw_spi *dws = spi_controller_get_devdata(spi->controller); u32 rx_sample_dly_ns; chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; spi_set_ctldata(spi, chip); /* Get specific / default rx-sample-delay */ if (device_property_read_u32(&spi->dev, "rx-sample-delay-ns", &rx_sample_dly_ns) != 0) /* Use default controller value */ rx_sample_dly_ns = dws->def_rx_sample_dly_ns; chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns, NSEC_PER_SEC / dws->max_freq); } /* * Update CR0 data each time the setup callback is invoked since * the device parameters could have been changed, for instance, by * the MMC SPI driver or something else. */ chip->cr0 = dw_spi_prepare_cr0(dws, spi); return 0; } static void dw_spi_cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata(spi); kfree(chip); spi_set_ctldata(spi, NULL); } /* Restart the controller, disable all interrupts, clean rx fifo */ static void spi_hw_init(struct device *dev, struct dw_spi *dws) { spi_reset_chip(dws); /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec */ if (!dws->fifo_len) { u32 fifo; for (fifo = 1; fifo < 256; fifo++) { dw_writel(dws, DW_SPI_TXFTLR, fifo); if (fifo != dw_readl(dws, DW_SPI_TXFTLR)) break; } dw_writel(dws, DW_SPI_TXFTLR, 0); dws->fifo_len = (fifo == 1) ? 0 : fifo; dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); } /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */ if (dws->caps & DW_SPI_CAP_CS_OVERRIDE) dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF); } int dw_spi_add_host(struct device *dev, struct dw_spi *dws) { struct spi_controller *master; int ret; if (!dws) return -EINVAL; master = spi_alloc_master(dev, 0); if (!master) return -ENOMEM; dws->master = master; dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); spi_controller_set_devdata(master, dws); /* Basic HW init */ spi_hw_init(dev, dws); ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev), master); if (ret < 0) { dev_err(dev, "can not get IRQ\n"); goto err_free_master; } master->use_gpio_descriptors = true; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); master->bus_num = dws->bus_num; master->num_chipselect = dws->num_cs; master->setup = dw_spi_setup; master->cleanup = dw_spi_cleanup; if (dws->set_cs) master->set_cs = dws->set_cs; else master->set_cs = dw_spi_set_cs; master->transfer_one = dw_spi_transfer_one; master->handle_err = dw_spi_handle_err; master->max_speed_hz = dws->max_freq; master->dev.of_node = dev->of_node; master->dev.fwnode = dev->fwnode; master->flags = SPI_MASTER_GPIO_SS; master->auto_runtime_pm = true; /* Get default rx sample delay */ device_property_read_u32(dev, "rx-sample-delay-ns", &dws->def_rx_sample_dly_ns); if (dws->dma_ops && dws->dma_ops->dma_init) { ret = dws->dma_ops->dma_init(dev, dws); if (ret) { dev_warn(dev, "DMA init failed\n"); } else { master->can_dma = dws->dma_ops->can_dma; master->flags |= SPI_CONTROLLER_MUST_TX; } } ret = spi_register_controller(master); if (ret) { dev_err(&master->dev, "problem registering spi master\n"); goto err_dma_exit; } dw_spi_debugfs_init(dws); return 0; err_dma_exit: if (dws->dma_ops && dws->dma_ops->dma_exit) dws->dma_ops->dma_exit(dws); spi_enable_chip(dws, 0); free_irq(dws->irq, master); err_free_master: spi_controller_put(master); return ret; } EXPORT_SYMBOL_GPL(dw_spi_add_host); void dw_spi_remove_host(struct dw_spi *dws) { dw_spi_debugfs_remove(dws); spi_unregister_controller(dws->master); if (dws->dma_ops && dws->dma_ops->dma_exit) dws->dma_ops->dma_exit(dws); spi_shutdown_chip(dws); free_irq(dws->irq, dws->master); } EXPORT_SYMBOL_GPL(dw_spi_remove_host); int dw_spi_suspend_host(struct dw_spi *dws) { int ret; ret = spi_controller_suspend(dws->master); if (ret) return ret; spi_shutdown_chip(dws); return 0; } EXPORT_SYMBOL_GPL(dw_spi_suspend_host); int dw_spi_resume_host(struct dw_spi *dws) { spi_hw_init(&dws->master->dev, dws); return spi_controller_resume(dws->master); } EXPORT_SYMBOL_GPL(dw_spi_resume_host); MODULE_AUTHOR("Feng Tang "); MODULE_DESCRIPTION("Driver for DesignWare SPI controller core"); MODULE_LICENSE("GPL v2");