#define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include "session.h" #include "sort.h" #include "util.h" static int perf_session__open(struct perf_session *self, bool force) { struct stat input_stat; if (!strcmp(self->filename, "-")) { self->fd_pipe = true; self->fd = STDIN_FILENO; if (perf_header__read(self, self->fd) < 0) pr_err("incompatible file format"); return 0; } self->fd = open(self->filename, O_RDONLY); if (self->fd < 0) { int err = errno; pr_err("failed to open %s: %s", self->filename, strerror(err)); if (err == ENOENT && !strcmp(self->filename, "perf.data")) pr_err(" (try 'perf record' first)"); pr_err("\n"); return -errno; } if (fstat(self->fd, &input_stat) < 0) goto out_close; if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) { pr_err("file %s not owned by current user or root\n", self->filename); goto out_close; } if (!input_stat.st_size) { pr_info("zero-sized file (%s), nothing to do!\n", self->filename); goto out_close; } if (perf_header__read(self, self->fd) < 0) { pr_err("incompatible file format"); goto out_close; } self->size = input_stat.st_size; return 0; out_close: close(self->fd); self->fd = -1; return -1; } void perf_session__update_sample_type(struct perf_session *self) { self->sample_type = perf_header__sample_type(&self->header); } int perf_session__create_kernel_maps(struct perf_session *self) { int ret = machine__create_kernel_maps(&self->host_machine); if (ret >= 0) ret = machines__create_guest_kernel_maps(&self->machines); return ret; } static void perf_session__destroy_kernel_maps(struct perf_session *self) { machine__destroy_kernel_maps(&self->host_machine); machines__destroy_guest_kernel_maps(&self->machines); } struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe) { size_t len = filename ? strlen(filename) + 1 : 0; struct perf_session *self = zalloc(sizeof(*self) + len); if (self == NULL) goto out; if (perf_header__init(&self->header) < 0) goto out_free; memcpy(self->filename, filename, len); self->threads = RB_ROOT; INIT_LIST_HEAD(&self->dead_threads); self->hists_tree = RB_ROOT; self->last_match = NULL; self->mmap_window = 32; self->machines = RB_ROOT; self->repipe = repipe; INIT_LIST_HEAD(&self->ordered_samples.samples); machine__init(&self->host_machine, "", HOST_KERNEL_ID); if (mode == O_RDONLY) { if (perf_session__open(self, force) < 0) goto out_delete; } else if (mode == O_WRONLY) { /* * In O_RDONLY mode this will be performed when reading the * kernel MMAP event, in event__process_mmap(). */ if (perf_session__create_kernel_maps(self) < 0) goto out_delete; } perf_session__update_sample_type(self); out: return self; out_free: free(self); return NULL; out_delete: perf_session__delete(self); return NULL; } static void perf_session__delete_dead_threads(struct perf_session *self) { struct thread *n, *t; list_for_each_entry_safe(t, n, &self->dead_threads, node) { list_del(&t->node); thread__delete(t); } } static void perf_session__delete_threads(struct perf_session *self) { struct rb_node *nd = rb_first(&self->threads); while (nd) { struct thread *t = rb_entry(nd, struct thread, rb_node); rb_erase(&t->rb_node, &self->threads); nd = rb_next(nd); thread__delete(t); } } void perf_session__delete(struct perf_session *self) { perf_header__exit(&self->header); perf_session__destroy_kernel_maps(self); perf_session__delete_dead_threads(self); perf_session__delete_threads(self); machine__exit(&self->host_machine); close(self->fd); free(self); } void perf_session__remove_thread(struct perf_session *self, struct thread *th) { self->last_match = NULL; rb_erase(&th->rb_node, &self->threads); /* * We may have references to this thread, for instance in some hist_entry * instances, so just move them to a separate list. */ list_add_tail(&th->node, &self->dead_threads); } static bool symbol__match_parent_regex(struct symbol *sym) { if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0)) return 1; return 0; } struct map_symbol *perf_session__resolve_callchain(struct perf_session *self, struct thread *thread, struct ip_callchain *chain, struct symbol **parent) { u8 cpumode = PERF_RECORD_MISC_USER; unsigned int i; struct map_symbol *syms = calloc(chain->nr, sizeof(*syms)); if (!syms) return NULL; for (i = 0; i < chain->nr; i++) { u64 ip = chain->ips[i]; struct addr_location al; if (ip >= PERF_CONTEXT_MAX) { switch (ip) { case PERF_CONTEXT_HV: cpumode = PERF_RECORD_MISC_HYPERVISOR; break; case PERF_CONTEXT_KERNEL: cpumode = PERF_RECORD_MISC_KERNEL; break; case PERF_CONTEXT_USER: cpumode = PERF_RECORD_MISC_USER; break; default: break; } continue; } al.filtered = false; thread__find_addr_location(thread, self, cpumode, MAP__FUNCTION, thread->pid, ip, &al, NULL); if (al.sym != NULL) { if (sort__has_parent && !*parent && symbol__match_parent_regex(al.sym)) *parent = al.sym; if (!symbol_conf.use_callchain) break; syms[i].map = al.map; syms[i].sym = al.sym; } } return syms; } static int process_event_stub(event_t *event __used, struct perf_session *session __used) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round_stub(event_t *event __used, struct perf_session *session __used, struct perf_event_ops *ops __used) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round(event_t *event, struct perf_session *session, struct perf_event_ops *ops); static void perf_event_ops__fill_defaults(struct perf_event_ops *handler) { if (handler->sample == NULL) handler->sample = process_event_stub; if (handler->mmap == NULL) handler->mmap = process_event_stub; if (handler->comm == NULL) handler->comm = process_event_stub; if (handler->fork == NULL) handler->fork = process_event_stub; if (handler->exit == NULL) handler->exit = process_event_stub; if (handler->lost == NULL) handler->lost = event__process_lost; if (handler->read == NULL) handler->read = process_event_stub; if (handler->throttle == NULL) handler->throttle = process_event_stub; if (handler->unthrottle == NULL) handler->unthrottle = process_event_stub; if (handler->attr == NULL) handler->attr = process_event_stub; if (handler->event_type == NULL) handler->event_type = process_event_stub; if (handler->tracing_data == NULL) handler->tracing_data = process_event_stub; if (handler->build_id == NULL) handler->build_id = process_event_stub; if (handler->finished_round == NULL) { if (handler->ordered_samples) handler->finished_round = process_finished_round; else handler->finished_round = process_finished_round_stub; } } void mem_bswap_64(void *src, int byte_size) { u64 *m = src; while (byte_size > 0) { *m = bswap_64(*m); byte_size -= sizeof(u64); ++m; } } static void event__all64_swap(event_t *self) { struct perf_event_header *hdr = &self->header; mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr)); } static void event__comm_swap(event_t *self) { self->comm.pid = bswap_32(self->comm.pid); self->comm.tid = bswap_32(self->comm.tid); } static void event__mmap_swap(event_t *self) { self->mmap.pid = bswap_32(self->mmap.pid); self->mmap.tid = bswap_32(self->mmap.tid); self->mmap.start = bswap_64(self->mmap.start); self->mmap.len = bswap_64(self->mmap.len); self->mmap.pgoff = bswap_64(self->mmap.pgoff); } static void event__task_swap(event_t *self) { self->fork.pid = bswap_32(self->fork.pid); self->fork.tid = bswap_32(self->fork.tid); self->fork.ppid = bswap_32(self->fork.ppid); self->fork.ptid = bswap_32(self->fork.ptid); self->fork.time = bswap_64(self->fork.time); } static void event__read_swap(event_t *self) { self->read.pid = bswap_32(self->read.pid); self->read.tid = bswap_32(self->read.tid); self->read.value = bswap_64(self->read.value); self->read.time_enabled = bswap_64(self->read.time_enabled); self->read.time_running = bswap_64(self->read.time_running); self->read.id = bswap_64(self->read.id); } static void event__attr_swap(event_t *self) { size_t size; self->attr.attr.type = bswap_32(self->attr.attr.type); self->attr.attr.size = bswap_32(self->attr.attr.size); self->attr.attr.config = bswap_64(self->attr.attr.config); self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period); self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type); self->attr.attr.read_format = bswap_64(self->attr.attr.read_format); self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events); self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type); self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr); self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len); size = self->header.size; size -= (void *)&self->attr.id - (void *)self; mem_bswap_64(self->attr.id, size); } static void event__event_type_swap(event_t *self) { self->event_type.event_type.event_id = bswap_64(self->event_type.event_type.event_id); } static void event__tracing_data_swap(event_t *self) { self->tracing_data.size = bswap_32(self->tracing_data.size); } typedef void (*event__swap_op)(event_t *self); static event__swap_op event__swap_ops[] = { [PERF_RECORD_MMAP] = event__mmap_swap, [PERF_RECORD_COMM] = event__comm_swap, [PERF_RECORD_FORK] = event__task_swap, [PERF_RECORD_EXIT] = event__task_swap, [PERF_RECORD_LOST] = event__all64_swap, [PERF_RECORD_READ] = event__read_swap, [PERF_RECORD_SAMPLE] = event__all64_swap, [PERF_RECORD_HEADER_ATTR] = event__attr_swap, [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap, [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap, [PERF_RECORD_HEADER_BUILD_ID] = NULL, [PERF_RECORD_HEADER_MAX] = NULL, }; struct sample_queue { u64 timestamp; event_t *event; struct list_head list; }; static void flush_sample_queue(struct perf_session *s, struct perf_event_ops *ops) { struct ordered_samples *os = &s->ordered_samples; struct list_head *head = &os->samples; struct sample_queue *tmp, *iter; u64 limit = os->next_flush; u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL; if (!ops->ordered_samples || !limit) return; list_for_each_entry_safe(iter, tmp, head, list) { if (iter->timestamp > limit) break; ops->sample(iter->event, s); os->last_flush = iter->timestamp; list_del(&iter->list); free(iter->event); free(iter); } if (list_empty(head)) { os->last_sample = NULL; } else if (last_ts <= limit) { os->last_sample = list_entry(head->prev, struct sample_queue, list); } } /* * When perf record finishes a pass on every buffers, it records this pseudo * event. * We record the max timestamp t found in the pass n. * Assuming these timestamps are monotonic across cpus, we know that if * a buffer still has events with timestamps below t, they will be all * available and then read in the pass n + 1. * Hence when we start to read the pass n + 2, we can safely flush every * events with timestamps below t. * * ============ PASS n ================= * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 1 | 2 * 2 | 3 * - | 4 <--- max recorded * * ============ PASS n + 1 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 3 | 5 * 4 | 6 * 5 | 7 <---- max recorded * * Flush every events below timestamp 4 * * ============ PASS n + 2 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 6 | 8 * 7 | 9 * - | 10 * * Flush every events below timestamp 7 * etc... */ static int process_finished_round(event_t *event __used, struct perf_session *session, struct perf_event_ops *ops) { flush_sample_queue(session, ops); session->ordered_samples.next_flush = session->ordered_samples.max_timestamp; return 0; } /* The queue is ordered by time */ static void __queue_sample_event(struct sample_queue *new, struct perf_session *s) { struct ordered_samples *os = &s->ordered_samples; struct sample_queue *sample = os->last_sample; u64 timestamp = new->timestamp; struct list_head *p; os->last_sample = new; if (!sample) { list_add(&new->list, &os->samples); os->max_timestamp = timestamp; return; } /* * last_sample might point to some random place in the list as it's * the last queued event. We expect that the new event is close to * this. */ if (sample->timestamp <= timestamp) { while (sample->timestamp <= timestamp) { p = sample->list.next; if (p == &os->samples) { list_add_tail(&new->list, &os->samples); os->max_timestamp = timestamp; return; } sample = list_entry(p, struct sample_queue, list); } list_add_tail(&new->list, &sample->list); } else { while (sample->timestamp > timestamp) { p = sample->list.prev; if (p == &os->samples) { list_add(&new->list, &os->samples); return; } sample = list_entry(p, struct sample_queue, list); } list_add(&new->list, &sample->list); } } static int queue_sample_event(event_t *event, struct sample_data *data, struct perf_session *s) { u64 timestamp = data->time; struct sample_queue *new; if (timestamp < s->ordered_samples.last_flush) { printf("Warning: Timestamp below last timeslice flush\n"); return -EINVAL; } new = malloc(sizeof(*new)); if (!new) return -ENOMEM; new->timestamp = timestamp; new->event = malloc(event->header.size); if (!new->event) { free(new); return -ENOMEM; } memcpy(new->event, event, event->header.size); __queue_sample_event(new, s); return 0; } static int perf_session__process_sample(event_t *event, struct perf_session *s, struct perf_event_ops *ops) { struct sample_data data; if (!ops->ordered_samples) return ops->sample(event, s); bzero(&data, sizeof(struct sample_data)); event__parse_sample(event, s->sample_type, &data); queue_sample_event(event, &data, s); return 0; } static int perf_session__process_event(struct perf_session *self, event_t *event, struct perf_event_ops *ops, u64 file_offset) { trace_event(event); if (event->header.type < PERF_RECORD_HEADER_MAX) { dump_printf("%#Lx [%#x]: PERF_RECORD_%s", file_offset, event->header.size, event__name[event->header.type]); hists__inc_nr_events(&self->hists, event->header.type); } if (self->header.needs_swap && event__swap_ops[event->header.type]) event__swap_ops[event->header.type](event); switch (event->header.type) { case PERF_RECORD_SAMPLE: return perf_session__process_sample(event, self, ops); case PERF_RECORD_MMAP: return ops->mmap(event, self); case PERF_RECORD_COMM: return ops->comm(event, self); case PERF_RECORD_FORK: return ops->fork(event, self); case PERF_RECORD_EXIT: return ops->exit(event, self); case PERF_RECORD_LOST: return ops->lost(event, self); case PERF_RECORD_READ: return ops->read(event, self); case PERF_RECORD_THROTTLE: return ops->throttle(event, self); case PERF_RECORD_UNTHROTTLE: return ops->unthrottle(event, self); case PERF_RECORD_HEADER_ATTR: return ops->attr(event, self); case PERF_RECORD_HEADER_EVENT_TYPE: return ops->event_type(event, self); case PERF_RECORD_HEADER_TRACING_DATA: /* setup for reading amidst mmap */ lseek(self->fd, file_offset, SEEK_SET); return ops->tracing_data(event, self); case PERF_RECORD_HEADER_BUILD_ID: return ops->build_id(event, self); case PERF_RECORD_FINISHED_ROUND: return ops->finished_round(event, self, ops); default: ++self->hists.stats.nr_unknown_events; return -1; } } void perf_event_header__bswap(struct perf_event_header *self) { self->type = bswap_32(self->type); self->misc = bswap_16(self->misc); self->size = bswap_16(self->size); } static struct thread *perf_session__register_idle_thread(struct perf_session *self) { struct thread *thread = perf_session__findnew(self, 0); if (thread == NULL || thread__set_comm(thread, "swapper")) { pr_err("problem inserting idle task.\n"); thread = NULL; } return thread; } int do_read(int fd, void *buf, size_t size) { void *buf_start = buf; while (size) { int ret = read(fd, buf, size); if (ret <= 0) return ret; size -= ret; buf += ret; } return buf - buf_start; } #define session_done() (*(volatile int *)(&session_done)) volatile int session_done; static int __perf_session__process_pipe_events(struct perf_session *self, struct perf_event_ops *ops) { event_t event; uint32_t size; int skip = 0; u64 head; int err; void *p; perf_event_ops__fill_defaults(ops); head = 0; more: err = do_read(self->fd, &event, sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) goto done; pr_err("failed to read event header\n"); goto out_err; } if (self->header.needs_swap) perf_event_header__bswap(&event.header); size = event.header.size; if (size == 0) size = 8; p = &event; p += sizeof(struct perf_event_header); if (size - sizeof(struct perf_event_header)) { err = do_read(self->fd, p, size - sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) { pr_err("unexpected end of event stream\n"); goto done; } pr_err("failed to read event data\n"); goto out_err; } } if (size == 0 || (skip = perf_session__process_event(self, &event, ops, head)) < 0) { dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n", head, event.header.size, event.header.type); /* * assume we lost track of the stream, check alignment, and * increment a single u64 in the hope to catch on again 'soon'. */ if (unlikely(head & 7)) head &= ~7ULL; size = 8; } head += size; dump_printf("\n%#Lx [%#x]: event: %d\n", head, event.header.size, event.header.type); if (skip > 0) head += skip; if (!session_done()) goto more; done: err = 0; out_err: return err; } int __perf_session__process_events(struct perf_session *session, u64 data_offset, u64 data_size, u64 file_size, struct perf_event_ops *ops) { u64 head, page_offset, file_offset, file_pos; int err, mmap_prot, mmap_flags; struct ui_progress *progress; size_t page_size; event_t *event; uint32_t size; char *buf; progress = ui_progress__new("Processing events...", session->size); if (progress == NULL) return -1; perf_event_ops__fill_defaults(ops); page_size = sysconf(_SC_PAGESIZE); page_offset = page_size * (data_offset / page_size); file_offset = page_offset; head = data_offset - page_offset; if (data_offset + data_size < file_size) file_size = data_offset + data_size; mmap_prot = PROT_READ; mmap_flags = MAP_SHARED; if (session->header.needs_swap) { mmap_prot |= PROT_WRITE; mmap_flags = MAP_PRIVATE; } remap: buf = mmap(NULL, page_size * session->mmap_window, mmap_prot, mmap_flags, session->fd, file_offset); if (buf == MAP_FAILED) { pr_err("failed to mmap file\n"); err = -errno; goto out_err; } file_pos = file_offset + head; ui_progress__update(progress, file_offset); more: event = (event_t *)(buf + head); if (session->header.needs_swap) perf_event_header__bswap(&event->header); size = event->header.size; if (size == 0) size = 8; if (head + event->header.size >= page_size * session->mmap_window) { int munmap_ret; munmap_ret = munmap(buf, page_size * session->mmap_window); assert(munmap_ret == 0); page_offset = page_size * (head / page_size); file_offset += page_offset; head -= page_offset; goto remap; } size = event->header.size; dump_printf("\n%#Lx [%#x]: event: %d\n", file_pos, event->header.size, event->header.type); if (size == 0 || perf_session__process_event(session, event, ops, file_pos) < 0) { dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n", file_offset + head, event->header.size, event->header.type); /* * assume we lost track of the stream, check alignment, and * increment a single u64 in the hope to catch on again 'soon'. */ if (unlikely(head & 7)) head &= ~7ULL; size = 8; } head += size; file_pos += size; if (file_pos < file_size) goto more; err = 0; /* do the final flush for ordered samples */ session->ordered_samples.next_flush = ULLONG_MAX; flush_sample_queue(session, ops); out_err: ui_progress__delete(progress); if (ops->lost == event__process_lost && session->hists.stats.total_lost != 0) { ui__warning("Processed %Lu events and LOST %Lu!\n\n" "Check IO/CPU overload!\n\n", session->hists.stats.total_period, session->hists.stats.total_lost); } if (session->hists.stats.nr_unknown_events != 0) { ui__warning("Found %u unknown events!\n\n" "Is this an older tool processing a perf.data " "file generated by a more recent tool?\n\n" "If that is not the case, consider " "reporting to linux-kernel@vger.kernel.org.\n\n", session->hists.stats.nr_unknown_events); } return err; } int perf_session__process_events(struct perf_session *self, struct perf_event_ops *ops) { int err; if (perf_session__register_idle_thread(self) == NULL) return -ENOMEM; if (!self->fd_pipe) err = __perf_session__process_events(self, self->header.data_offset, self->header.data_size, self->size, ops); else err = __perf_session__process_pipe_events(self, ops); return err; } bool perf_session__has_traces(struct perf_session *self, const char *msg) { if (!(self->sample_type & PERF_SAMPLE_RAW)) { pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg); return false; } return true; } int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps, const char *symbol_name, u64 addr) { char *bracket; enum map_type i; struct ref_reloc_sym *ref; ref = zalloc(sizeof(struct ref_reloc_sym)); if (ref == NULL) return -ENOMEM; ref->name = strdup(symbol_name); if (ref->name == NULL) { free(ref); return -ENOMEM; } bracket = strchr(ref->name, ']'); if (bracket) *bracket = '\0'; ref->addr = addr; for (i = 0; i < MAP__NR_TYPES; ++i) { struct kmap *kmap = map__kmap(maps[i]); kmap->ref_reloc_sym = ref; } return 0; } size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp) { return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) + __dsos__fprintf(&self->host_machine.user_dsos, fp) + machines__fprintf_dsos(&self->machines, fp); } size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp, bool with_hits) { size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits); return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits); }