/* adm1031.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Based on lm75.c and lm85.c Supports adm1030 / adm1031 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org> Reworked by Jean Delvare <khali@linux-fr.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Following macros takes channel parameter starting from 0 to 2 */ #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr)) #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr)) #define ADM1031_REG_PWM (0x22) #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr)) #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr)) #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr)) #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr)) #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr)) #define ADM1031_REG_TEMP(nr) (0x0a + (nr)) #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr)) #define ADM1031_REG_STATUS(nr) (0x2 + (nr)) #define ADM1031_REG_CONF1 0x00 #define ADM1031_REG_CONF2 0x01 #define ADM1031_REG_EXT_TEMP 0x06 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */ #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */ #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */ #define ADM1031_CONF2_PWM1_ENABLE 0x01 #define ADM1031_CONF2_PWM2_ENABLE 0x02 #define ADM1031_CONF2_TACH1_ENABLE 0x04 #define ADM1031_CONF2_TACH2_ENABLE 0x08 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan)) /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_2(adm1030, adm1031); typedef u8 auto_chan_table_t[8][2]; /* Each client has this additional data */ struct adm1031_data { struct device *hwmon_dev; struct mutex update_lock; int chip_type; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ /* The chan_select_table contains the possible configurations for * auto fan control. */ const auto_chan_table_t *chan_select_table; u16 alarm; u8 conf1; u8 conf2; u8 fan[2]; u8 fan_div[2]; u8 fan_min[2]; u8 pwm[2]; u8 old_pwm[2]; s8 temp[3]; u8 ext_temp[3]; u8 auto_temp[3]; u8 auto_temp_min[3]; u8 auto_temp_off[3]; u8 auto_temp_max[3]; s8 temp_offset[3]; s8 temp_min[3]; s8 temp_max[3]; s8 temp_crit[3]; }; static int adm1031_probe(struct i2c_client *client, const struct i2c_device_id *id); static int adm1031_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); static void adm1031_init_client(struct i2c_client *client); static int adm1031_remove(struct i2c_client *client); static struct adm1031_data *adm1031_update_device(struct device *dev); static const struct i2c_device_id adm1031_id[] = { { "adm1030", adm1030 }, { "adm1031", adm1031 }, { } }; MODULE_DEVICE_TABLE(i2c, adm1031_id); /* This is the driver that will be inserted */ static struct i2c_driver adm1031_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1031", }, .probe = adm1031_probe, .remove = adm1031_remove, .id_table = adm1031_id, .detect = adm1031_detect, .address_data = &addr_data, }; static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static inline int adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value) { return i2c_smbus_write_byte_data(client, reg, value); } #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \ ((val + 500) / 1000))) #define TEMP_FROM_REG(val) ((val) * 1000) #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125) #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f) #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \ (val) | 0x70 : (val)) #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0) static int FAN_TO_REG(int reg, int div) { int tmp; tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div); return tmp > 255 ? 255 : tmp; } #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6)) #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4) #define PWM_FROM_REG(val) ((val) << 4) #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7) #define FAN_CHAN_TO_REG(val, reg) \ (((reg) & 0x1F) | (((val) << 5) & 0xe0)) #define AUTO_TEMP_MIN_TO_REG(val, reg) \ ((((val)/500) & 0xf8)|((reg) & 0x7)) #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7))) #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2)) #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2) #define AUTO_TEMP_OFF_FROM_REG(reg) \ (AUTO_TEMP_MIN_FROM_REG(reg) - 5000) #define AUTO_TEMP_MAX_FROM_REG(reg) \ (AUTO_TEMP_RANGE_FROM_REG(reg) + \ AUTO_TEMP_MIN_FROM_REG(reg)) static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm) { int ret; int range = val - AUTO_TEMP_MIN_FROM_REG(reg); range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm); ret = ((reg & 0xf8) | (range < 10000 ? 0 : range < 20000 ? 1 : range < 40000 ? 2 : range < 80000 ? 3 : 4)); return ret; } /* FAN auto control */ #define GET_FAN_AUTO_BITFIELD(data, idx) \ (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2] /* The tables below contains the possible values for the auto fan * control bitfields. the index in the table is the register value. * MSb is the auto fan control enable bit, so the four first entries * in the table disables auto fan control when both bitfields are zero. */ static const auto_chan_table_t auto_channel_select_table_adm1031 = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 2 /* 0b010 */ , 4 /* 0b100 */ }, { 2 /* 0b010 */ , 2 /* 0b010 */ }, { 4 /* 0b100 */ , 4 /* 0b100 */ }, { 7 /* 0b111 */ , 7 /* 0b111 */ }, }; static const auto_chan_table_t auto_channel_select_table_adm1030 = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 2 /* 0b10 */ , 0 }, { 0xff /* invalid */ , 0 }, { 0xff /* invalid */ , 0 }, { 3 /* 0b11 */ , 0 }, }; /* That function checks if a bitfield is valid and returns the other bitfield * nearest match if no exact match where found. */ static int get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg, u8 * new_reg) { int i; int first_match = -1, exact_match = -1; u8 other_reg_val = (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1]; if (val == 0) { *new_reg = 0; return 0; } for (i = 0; i < 8; i++) { if ((val == (*data->chan_select_table)[i][chan]) && ((*data->chan_select_table)[i][chan ? 0 : 1] == other_reg_val)) { /* We found an exact match */ exact_match = i; break; } else if (val == (*data->chan_select_table)[i][chan] && first_match == -1) { /* Save the first match in case of an exact match has * not been found */ first_match = i; } } if (exact_match >= 0) { *new_reg = exact_match; } else if (first_match >= 0) { *new_reg = first_match; } else { return -EINVAL; } return 0; } static ssize_t show_fan_auto_channel(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr)); } static ssize_t set_fan_auto_channel(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); u8 reg; int ret; u8 old_fan_mode; old_fan_mode = data->conf1; mutex_lock(&data->update_lock); if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, ®))) { mutex_unlock(&data->update_lock); return ret; } data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^ (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) { if (data->conf1 & ADM1031_CONF1_AUTO_MODE){ /* Switch to Auto Fan Mode * Save PWM registers * Set PWM registers to 33% Both */ data->old_pwm[0] = data->pwm[0]; data->old_pwm[1] = data->pwm[1]; adm1031_write_value(client, ADM1031_REG_PWM, 0x55); } else { /* Switch to Manual Mode */ data->pwm[0] = data->old_pwm[0]; data->pwm[1] = data->old_pwm[1]; /* Restore PWM registers */ adm1031_write_value(client, ADM1031_REG_PWM, data->pwm[0] | (data->pwm[1] << 4)); } } data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR, show_fan_auto_channel, set_fan_auto_channel, 0); static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR, show_fan_auto_channel, set_fan_auto_channel, 1); /* Auto Temps */ static ssize_t show_auto_temp_off(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr])); } static ssize_t show_auto_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr])); } static ssize_t set_auto_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]); adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), data->auto_temp[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_auto_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr])); } static ssize_t set_auto_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]); adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } #define auto_temp_reg(offset) \ static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \ show_auto_temp_off, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \ show_auto_temp_min, set_auto_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \ show_auto_temp_max, set_auto_temp_max, offset - 1) auto_temp_reg(1); auto_temp_reg(2); auto_temp_reg(3); /* pwm */ static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); } static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); int reg; mutex_lock(&data->update_lock); if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) && (((val>>4) & 0xf) != 5)) { /* In automatic mode, the only PWM accepted is 33% */ mutex_unlock(&data->update_lock); return -EINVAL; } data->pwm[nr] = PWM_TO_REG(val); reg = adm1031_read_value(client, ADM1031_REG_PWM); adm1031_write_value(client, ADM1031_REG_PWM, nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf) : (data->pwm[nr] & 0xf) | (reg & 0xf0)); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1); static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0); static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1); /* Fans */ /* * That function checks the cases where the fan reading is not * relevant. It is used to provide 0 as fan reading when the fan is * not supposed to run */ static int trust_fan_readings(struct adm1031_data *data, int chan) { int res = 0; if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { switch (data->conf1 & 0x60) { case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */ res = data->temp[chan+1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]); break; case 0x20: /* remote temp1 controls both fans */ res = data->temp[1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]); break; case 0x40: /* remote temp2 controls both fans */ res = data->temp[2] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]); break; case 0x60: /* max controls both fans */ res = data->temp[0] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0]) || data->temp[1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]) || (data->chip_type == adm1031 && data->temp[2] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2])); break; } } else { res = data->pwm[chan] > 0; } return res; } static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); int value; value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr], FAN_DIV_FROM_REG(data->fan_div[nr])) : 0; return sprintf(buf, "%d\n", value); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr])); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], FAN_DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); if (val) { data->fan_min[nr] = FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr])); } else { data->fan_min[nr] = 0xff; } adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val = simple_strtol(buf, NULL, 10); u8 tmp; int old_div; int new_min; tmp = val == 8 ? 0xc0 : val == 4 ? 0x80 : val == 2 ? 0x40 : val == 1 ? 0x00 : 0xff; if (tmp == 0xff) return -EINVAL; mutex_lock(&data->update_lock); /* Get fresh readings */ data->fan_div[nr] = adm1031_read_value(client, ADM1031_REG_FAN_DIV(nr)); data->fan_min[nr] = adm1031_read_value(client, ADM1031_REG_FAN_MIN(nr)); /* Write the new clock divider and fan min */ old_div = FAN_DIV_FROM_REG(data->fan_div[nr]); data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]); new_min = data->fan_min[nr] * old_div / val; data->fan_min[nr] = new_min > 0xff ? 0xff : new_min; adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr), data->fan_div[nr]); adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); /* Invalidate the cache: fan speed is no longer valid */ data->valid = 0; mutex_unlock(&data->update_lock); return count; } #define fan_offset(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1) fan_offset(1); fan_offset(2); /* Temps */ static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); int ext; ext = nr == 0 ? ((data->ext_temp[nr] >> 6) & 0x3) * 2 : (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7)); return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext)); } static ssize_t show_temp_offset(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_OFFSET_FROM_REG(data->temp_offset[nr])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); } static ssize_t show_temp_crit(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr])); } static ssize_t set_temp_offset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val; val = simple_strtol(buf, NULL, 10); val = SENSORS_LIMIT(val, -15000, 15000); mutex_lock(&data->update_lock); data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr), data->temp_offset[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val; val = simple_strtol(buf, NULL, 10); val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875); mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr), data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val; val = simple_strtol(buf, NULL, 10); val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875); mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; int val; val = simple_strtol(buf, NULL, 10); val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875); mutex_lock(&data->update_lock); data->temp_crit[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr), data->temp_crit[nr]); mutex_unlock(&data->update_lock); return count; } #define temp_reg(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \ show_temp_offset, set_temp_offset, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ show_temp_min, set_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \ show_temp_crit, set_temp_crit, offset - 1) temp_reg(1); temp_reg(2); temp_reg(3); /* Alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", data->alarm); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12); static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13); static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14); static struct attribute *adm1031_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan1_fault.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_auto_fan1_channel.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_offset.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_auto_temp1_off.dev_attr.attr, &sensor_dev_attr_auto_temp1_min.dev_attr.attr, &sensor_dev_attr_auto_temp1_max.dev_attr.attr, &sensor_dev_attr_auto_temp2_off.dev_attr.attr, &sensor_dev_attr_auto_temp2_min.dev_attr.attr, &sensor_dev_attr_auto_temp2_max.dev_attr.attr, &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group adm1031_group = { .attrs = adm1031_attributes, }; static struct attribute *adm1031_attributes_opt[] = { &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan2_fault.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_auto_fan2_channel.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_offset.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_auto_temp3_off.dev_attr.attr, &sensor_dev_attr_auto_temp3_min.dev_attr.attr, &sensor_dev_attr_auto_temp3_max.dev_attr.attr, &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr, NULL }; static const struct attribute_group adm1031_group_opt = { .attrs = adm1031_attributes_opt, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1031_detect(struct i2c_client *client, int kind, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *name = ""; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; if (kind < 0) { int id, co; id = i2c_smbus_read_byte_data(client, 0x3d); co = i2c_smbus_read_byte_data(client, 0x3e); if (!((id == 0x31 || id == 0x30) && co == 0x41)) return -ENODEV; kind = (id == 0x30) ? adm1030 : adm1031; } if (kind <= 0) kind = adm1031; /* Given the detected chip type, set the chip name and the * auto fan control helper table. */ if (kind == adm1030) { name = "adm1030"; } else if (kind == adm1031) { name = "adm1031"; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static int adm1031_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adm1031_data *data; int err; data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto exit; } i2c_set_clientdata(client, data); data->chip_type = id->driver_data; mutex_init(&data->update_lock); if (data->chip_type == adm1030) data->chan_select_table = &auto_channel_select_table_adm1030; else data->chan_select_table = &auto_channel_select_table_adm1031; /* Initialize the ADM1031 chip */ adm1031_init_client(client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group))) goto exit_free; if (data->chip_type == adm1031) { if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt))) goto exit_remove; } data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove; } return 0; exit_remove: sysfs_remove_group(&client->dev.kobj, &adm1031_group); sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt); exit_free: kfree(data); exit: return err; } static int adm1031_remove(struct i2c_client *client) { struct adm1031_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &adm1031_group); sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt); kfree(data); return 0; } static void adm1031_init_client(struct i2c_client *client) { unsigned int read_val; unsigned int mask; struct adm1031_data *data = i2c_get_clientdata(client); mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE); if (data->chip_type == adm1031) { mask |= (ADM1031_CONF2_PWM2_ENABLE | ADM1031_CONF2_TACH2_ENABLE); } /* Initialize the ADM1031 chip (enables fan speed reading ) */ read_val = adm1031_read_value(client, ADM1031_REG_CONF2); if ((read_val | mask) != read_val) { adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask); } read_val = adm1031_read_value(client, ADM1031_REG_CONF1); if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) { adm1031_write_value(client, ADM1031_REG_CONF1, read_val | ADM1031_CONF1_MONITOR_ENABLE); } } static struct adm1031_data *adm1031_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adm1031_data *data = i2c_get_clientdata(client); int chan; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { dev_dbg(&client->dev, "Starting adm1031 update\n"); for (chan = 0; chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) { u8 oldh, newh; oldh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); data->ext_temp[chan] = adm1031_read_value(client, ADM1031_REG_EXT_TEMP); newh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); if (newh != oldh) { data->ext_temp[chan] = adm1031_read_value(client, ADM1031_REG_EXT_TEMP); #ifdef DEBUG oldh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); /* oldh is actually newer */ if (newh != oldh) dev_warn(&client->dev, "Remote temperature may be " "wrong.\n"); #endif } data->temp[chan] = newh; data->temp_offset[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_OFFSET(chan)); data->temp_min[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_MIN(chan)); data->temp_max[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_MAX(chan)); data->temp_crit[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_CRIT(chan)); data->auto_temp[chan] = adm1031_read_value(client, ADM1031_REG_AUTO_TEMP(chan)); } data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1); data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2); data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0)) | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8); if (data->chip_type == adm1030) { data->alarm &= 0xc0ff; } for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) { data->fan_div[chan] = adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan)); data->fan_min[chan] = adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan)); data->fan[chan] = adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan)); data->pwm[chan] = 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >> (4*chan)); } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_adm1031_init(void) { return i2c_add_driver(&adm1031_driver); } static void __exit sensors_adm1031_exit(void) { i2c_del_driver(&adm1031_driver); } MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>"); MODULE_DESCRIPTION("ADM1031/ADM1030 driver"); MODULE_LICENSE("GPL"); module_init(sensors_adm1031_init); module_exit(sensors_adm1031_exit);