/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * BSD LICENSE * * Copyright(c) 2004-2009 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Support routines for v3+ hardware */ #include #include #include #include "registers.h" #include "hw.h" #include "dma.h" #include "dma_v2.h" /* ioat hardware assumes at least two sources for raid operations */ #define src_cnt_to_sw(x) ((x) + 2) #define src_cnt_to_hw(x) ((x) - 2) /* provide a lookup table for setting the source address in the base or * extended descriptor of an xor or pq descriptor */ static const u8 xor_idx_to_desc __read_mostly = 0xd0; static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 }; static const u8 pq_idx_to_desc __read_mostly = 0xf8; static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 }; static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx) { struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1]; return raw->field[xor_idx_to_field[idx]]; } static void xor_set_src(struct ioat_raw_descriptor *descs[2], dma_addr_t addr, u32 offset, int idx) { struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1]; raw->field[xor_idx_to_field[idx]] = addr + offset; } static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx) { struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1]; return raw->field[pq_idx_to_field[idx]]; } static void pq_set_src(struct ioat_raw_descriptor *descs[2], dma_addr_t addr, u32 offset, u8 coef, int idx) { struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0]; struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1]; raw->field[pq_idx_to_field[idx]] = addr + offset; pq->coef[idx] = coef; } static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, int idx) { struct ioat_chan_common *chan = &ioat->base; struct pci_dev *pdev = chan->device->pdev; size_t len = desc->len; size_t offset = len - desc->hw->size; struct dma_async_tx_descriptor *tx = &desc->txd; enum dma_ctrl_flags flags = tx->flags; switch (desc->hw->ctl_f.op) { case IOAT_OP_COPY: if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */ ioat_dma_unmap(chan, flags, len, desc->hw); break; case IOAT_OP_FILL: { struct ioat_fill_descriptor *hw = desc->fill; if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) ioat_unmap(pdev, hw->dst_addr - offset, len, PCI_DMA_FROMDEVICE, flags, 1); break; } case IOAT_OP_XOR_VAL: case IOAT_OP_XOR: { struct ioat_xor_descriptor *xor = desc->xor; struct ioat_ring_ent *ext; struct ioat_xor_ext_descriptor *xor_ex = NULL; int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt); struct ioat_raw_descriptor *descs[2]; int i; if (src_cnt > 5) { ext = ioat2_get_ring_ent(ioat, idx + 1); xor_ex = ext->xor_ex; } if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { descs[0] = (struct ioat_raw_descriptor *) xor; descs[1] = (struct ioat_raw_descriptor *) xor_ex; for (i = 0; i < src_cnt; i++) { dma_addr_t src = xor_get_src(descs, i); ioat_unmap(pdev, src - offset, len, PCI_DMA_TODEVICE, flags, 0); } /* dest is a source in xor validate operations */ if (xor->ctl_f.op == IOAT_OP_XOR_VAL) { ioat_unmap(pdev, xor->dst_addr - offset, len, PCI_DMA_TODEVICE, flags, 1); break; } } if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) ioat_unmap(pdev, xor->dst_addr - offset, len, PCI_DMA_FROMDEVICE, flags, 1); break; } case IOAT_OP_PQ_VAL: case IOAT_OP_PQ: { struct ioat_pq_descriptor *pq = desc->pq; struct ioat_ring_ent *ext; struct ioat_pq_ext_descriptor *pq_ex = NULL; int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt); struct ioat_raw_descriptor *descs[2]; int i; if (src_cnt > 3) { ext = ioat2_get_ring_ent(ioat, idx + 1); pq_ex = ext->pq_ex; } /* in the 'continue' case don't unmap the dests as sources */ if (dmaf_p_disabled_continue(flags)) src_cnt--; else if (dmaf_continue(flags)) src_cnt -= 3; if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { descs[0] = (struct ioat_raw_descriptor *) pq; descs[1] = (struct ioat_raw_descriptor *) pq_ex; for (i = 0; i < src_cnt; i++) { dma_addr_t src = pq_get_src(descs, i); ioat_unmap(pdev, src - offset, len, PCI_DMA_TODEVICE, flags, 0); } /* the dests are sources in pq validate operations */ if (pq->ctl_f.op == IOAT_OP_XOR_VAL) { if (!(flags & DMA_PREP_PQ_DISABLE_P)) ioat_unmap(pdev, pq->p_addr - offset, len, PCI_DMA_TODEVICE, flags, 0); if (!(flags & DMA_PREP_PQ_DISABLE_Q)) ioat_unmap(pdev, pq->q_addr - offset, len, PCI_DMA_TODEVICE, flags, 0); break; } } if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { if (!(flags & DMA_PREP_PQ_DISABLE_P)) ioat_unmap(pdev, pq->p_addr - offset, len, PCI_DMA_BIDIRECTIONAL, flags, 1); if (!(flags & DMA_PREP_PQ_DISABLE_Q)) ioat_unmap(pdev, pq->q_addr - offset, len, PCI_DMA_BIDIRECTIONAL, flags, 1); } break; } default: dev_err(&pdev->dev, "%s: unknown op type: %#x\n", __func__, desc->hw->ctl_f.op); } } static bool desc_has_ext(struct ioat_ring_ent *desc) { struct ioat_dma_descriptor *hw = desc->hw; if (hw->ctl_f.op == IOAT_OP_XOR || hw->ctl_f.op == IOAT_OP_XOR_VAL) { struct ioat_xor_descriptor *xor = desc->xor; if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5) return true; } else if (hw->ctl_f.op == IOAT_OP_PQ || hw->ctl_f.op == IOAT_OP_PQ_VAL) { struct ioat_pq_descriptor *pq = desc->pq; if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3) return true; } return false; } /** * __cleanup - reclaim used descriptors * @ioat: channel (ring) to clean * * The difference from the dma_v2.c __cleanup() is that this routine * handles extended descriptors and dma-unmapping raid operations. */ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete) { struct ioat_chan_common *chan = &ioat->base; struct ioat_ring_ent *desc; bool seen_current = false; u16 active; int i; dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n", __func__, ioat->head, ioat->tail, ioat->issued); active = ioat2_ring_active(ioat); for (i = 0; i < active && !seen_current; i++) { struct dma_async_tx_descriptor *tx; prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1)); desc = ioat2_get_ring_ent(ioat, ioat->tail + i); dump_desc_dbg(ioat, desc); tx = &desc->txd; if (tx->cookie) { chan->completed_cookie = tx->cookie; ioat3_dma_unmap(ioat, desc, ioat->tail + i); tx->cookie = 0; if (tx->callback) { tx->callback(tx->callback_param); tx->callback = NULL; } } if (tx->phys == phys_complete) seen_current = true; /* skip extended descriptors */ if (desc_has_ext(desc)) { BUG_ON(i + 1 >= active); i++; } } ioat->tail += i; BUG_ON(!seen_current); /* no active descs have written a completion? */ chan->last_completion = phys_complete; if (ioat->head == ioat->tail) { dev_dbg(to_dev(chan), "%s: cancel completion timeout\n", __func__); clear_bit(IOAT_COMPLETION_PENDING, &chan->state); mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); } } static void ioat3_cleanup(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; unsigned long phys_complete; prefetch(chan->completion); if (!spin_trylock_bh(&chan->cleanup_lock)) return; if (!ioat_cleanup_preamble(chan, &phys_complete)) { spin_unlock_bh(&chan->cleanup_lock); return; } if (!spin_trylock_bh(&ioat->ring_lock)) { spin_unlock_bh(&chan->cleanup_lock); return; } __cleanup(ioat, phys_complete); spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&chan->cleanup_lock); } static void ioat3_cleanup_tasklet(unsigned long data) { struct ioat2_dma_chan *ioat = (void *) data; ioat3_cleanup(ioat); writew(IOAT_CHANCTRL_RUN | IOAT3_CHANCTRL_COMPL_DCA_EN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET); } static void ioat3_restart_channel(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; unsigned long phys_complete; u32 status; status = ioat_chansts(chan); if (is_ioat_active(status) || is_ioat_idle(status)) ioat_suspend(chan); while (is_ioat_active(status) || is_ioat_idle(status)) { status = ioat_chansts(chan); cpu_relax(); } if (ioat_cleanup_preamble(chan, &phys_complete)) __cleanup(ioat, phys_complete); __ioat2_restart_chan(ioat); } static void ioat3_timer_event(unsigned long data) { struct ioat2_dma_chan *ioat = (void *) data; struct ioat_chan_common *chan = &ioat->base; spin_lock_bh(&chan->cleanup_lock); if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) { unsigned long phys_complete; u64 status; spin_lock_bh(&ioat->ring_lock); status = ioat_chansts(chan); /* when halted due to errors check for channel * programming errors before advancing the completion state */ if (is_ioat_halted(status)) { u32 chanerr; chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); dev_err(to_dev(chan), "%s: Channel halted (%x)\n", __func__, chanerr); BUG_ON(is_ioat_bug(chanerr)); } /* if we haven't made progress and we have already * acknowledged a pending completion once, then be more * forceful with a restart */ if (ioat_cleanup_preamble(chan, &phys_complete)) __cleanup(ioat, phys_complete); else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) ioat3_restart_channel(ioat); else { set_bit(IOAT_COMPLETION_ACK, &chan->state); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); } spin_unlock_bh(&ioat->ring_lock); } else { u16 active; /* if the ring is idle, empty, and oversized try to step * down the size */ spin_lock_bh(&ioat->ring_lock); active = ioat2_ring_active(ioat); if (active == 0 && ioat->alloc_order > ioat_get_alloc_order()) reshape_ring(ioat, ioat->alloc_order-1); spin_unlock_bh(&ioat->ring_lock); /* keep shrinking until we get back to our minimum * default size */ if (ioat->alloc_order > ioat_get_alloc_order()) mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); } spin_unlock_bh(&chan->cleanup_lock); } static enum dma_status ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS) return DMA_SUCCESS; ioat3_cleanup(ioat); return ioat_is_complete(c, cookie, done, used); } static struct dma_async_tx_descriptor * ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value, size_t len, unsigned long flags) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_ring_ent *desc; size_t total_len = len; struct ioat_fill_descriptor *fill; int num_descs; u64 src_data = (0x0101010101010101ULL) * (value & 0xff); u16 idx; int i; num_descs = ioat2_xferlen_to_descs(ioat, len); if (likely(num_descs) && ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0) /* pass */; else return NULL; i = 0; do { size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); desc = ioat2_get_ring_ent(ioat, idx + i); fill = desc->fill; fill->size = xfer_size; fill->src_data = src_data; fill->dst_addr = dest; fill->ctl = 0; fill->ctl_f.op = IOAT_OP_FILL; len -= xfer_size; dest += xfer_size; dump_desc_dbg(ioat, desc); } while (++i < num_descs); desc->txd.flags = flags; desc->len = total_len; fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE); fill->ctl_f.compl_write = 1; dump_desc_dbg(ioat, desc); /* we leave the channel locked to ensure in order submission */ return &desc->txd; } static struct dma_async_tx_descriptor * __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_ring_ent *compl_desc; struct ioat_ring_ent *desc; struct ioat_ring_ent *ext; size_t total_len = len; struct ioat_xor_descriptor *xor; struct ioat_xor_ext_descriptor *xor_ex = NULL; struct ioat_dma_descriptor *hw; u32 offset = 0; int num_descs; int with_ext; int i; u16 idx; u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR; BUG_ON(src_cnt < 2); num_descs = ioat2_xferlen_to_descs(ioat, len); /* we need 2x the number of descriptors to cover greater than 5 * sources */ if (src_cnt > 5) { with_ext = 1; num_descs *= 2; } else with_ext = 0; /* completion writes from the raid engine may pass completion * writes from the legacy engine, so we need one extra null * (legacy) descriptor to ensure all completion writes arrive in * order. */ if (likely(num_descs) && ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) /* pass */; else return NULL; i = 0; do { struct ioat_raw_descriptor *descs[2]; size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); int s; desc = ioat2_get_ring_ent(ioat, idx + i); xor = desc->xor; /* save a branch by unconditionally retrieving the * extended descriptor xor_set_src() knows to not write * to it in the single descriptor case */ ext = ioat2_get_ring_ent(ioat, idx + i + 1); xor_ex = ext->xor_ex; descs[0] = (struct ioat_raw_descriptor *) xor; descs[1] = (struct ioat_raw_descriptor *) xor_ex; for (s = 0; s < src_cnt; s++) xor_set_src(descs, src[s], offset, s); xor->size = xfer_size; xor->dst_addr = dest + offset; xor->ctl = 0; xor->ctl_f.op = op; xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt); len -= xfer_size; offset += xfer_size; dump_desc_dbg(ioat, desc); } while ((i += 1 + with_ext) < num_descs); /* last xor descriptor carries the unmap parameters and fence bit */ desc->txd.flags = flags; desc->len = total_len; if (result) desc->result = result; xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE); /* completion descriptor carries interrupt bit */ compl_desc = ioat2_get_ring_ent(ioat, idx + i); compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT; hw = compl_desc->hw; hw->ctl = 0; hw->ctl_f.null = 1; hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); hw->ctl_f.compl_write = 1; hw->size = NULL_DESC_BUFFER_SIZE; dump_desc_dbg(ioat, compl_desc); /* we leave the channel locked to ensure in order submission */ return &compl_desc->txd; } static struct dma_async_tx_descriptor * ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags); } struct dma_async_tx_descriptor * ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, size_t len, enum sum_check_flags *result, unsigned long flags) { /* the cleanup routine only sets bits on validate failure, it * does not clear bits on validate success... so clear it here */ *result = 0; return __ioat3_prep_xor_lock(chan, result, src[0], &src[1], src_cnt - 1, len, flags); } static void dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext) { struct device *dev = to_dev(&ioat->base); struct ioat_pq_descriptor *pq = desc->pq; struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL; struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex }; int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt); int i; dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x" " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n", desc_id(desc), (unsigned long long) desc->txd.phys, (unsigned long long) (pq_ex ? pq_ex->next : pq->next), desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en, pq->ctl_f.compl_write, pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q", pq->ctl_f.src_cnt); for (i = 0; i < src_cnt; i++) dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i, (unsigned long long) pq_get_src(descs, i), pq->coef[i]); dev_dbg(dev, "\tP: %#llx\n", pq->p_addr); dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr); } static struct dma_async_tx_descriptor * __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result, const dma_addr_t *dst, const dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_chan_common *chan = &ioat->base; struct ioat_ring_ent *compl_desc; struct ioat_ring_ent *desc; struct ioat_ring_ent *ext; size_t total_len = len; struct ioat_pq_descriptor *pq; struct ioat_pq_ext_descriptor *pq_ex = NULL; struct ioat_dma_descriptor *hw; u32 offset = 0; int num_descs; int with_ext; int i, s; u16 idx; u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ; dev_dbg(to_dev(chan), "%s\n", __func__); /* the engine requires at least two sources (we provide * at least 1 implied source in the DMA_PREP_CONTINUE case) */ BUG_ON(src_cnt + dmaf_continue(flags) < 2); num_descs = ioat2_xferlen_to_descs(ioat, len); /* we need 2x the number of descriptors to cover greater than 3 * sources (we need 1 extra source in the q-only continuation * case and 3 extra sources in the p+q continuation case. */ if (src_cnt + dmaf_p_disabled_continue(flags) > 3 || (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) { with_ext = 1; num_descs *= 2; } else with_ext = 0; /* completion writes from the raid engine may pass completion * writes from the legacy engine, so we need one extra null * (legacy) descriptor to ensure all completion writes arrive in * order. */ if (likely(num_descs) && ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) /* pass */; else return NULL; i = 0; do { struct ioat_raw_descriptor *descs[2]; size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log); desc = ioat2_get_ring_ent(ioat, idx + i); pq = desc->pq; /* save a branch by unconditionally retrieving the * extended descriptor pq_set_src() knows to not write * to it in the single descriptor case */ ext = ioat2_get_ring_ent(ioat, idx + i + with_ext); pq_ex = ext->pq_ex; descs[0] = (struct ioat_raw_descriptor *) pq; descs[1] = (struct ioat_raw_descriptor *) pq_ex; for (s = 0; s < src_cnt; s++) pq_set_src(descs, src[s], offset, scf[s], s); /* see the comment for dma_maxpq in include/linux/dmaengine.h */ if (dmaf_p_disabled_continue(flags)) pq_set_src(descs, dst[1], offset, 1, s++); else if (dmaf_continue(flags)) { pq_set_src(descs, dst[0], offset, 0, s++); pq_set_src(descs, dst[1], offset, 1, s++); pq_set_src(descs, dst[1], offset, 0, s++); } pq->size = xfer_size; pq->p_addr = dst[0] + offset; pq->q_addr = dst[1] + offset; pq->ctl = 0; pq->ctl_f.op = op; pq->ctl_f.src_cnt = src_cnt_to_hw(s); pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P); pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q); len -= xfer_size; offset += xfer_size; } while ((i += 1 + with_ext) < num_descs); /* last pq descriptor carries the unmap parameters and fence bit */ desc->txd.flags = flags; desc->len = total_len; if (result) desc->result = result; pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE); dump_pq_desc_dbg(ioat, desc, ext); /* completion descriptor carries interrupt bit */ compl_desc = ioat2_get_ring_ent(ioat, idx + i); compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT; hw = compl_desc->hw; hw->ctl = 0; hw->ctl_f.null = 1; hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); hw->ctl_f.compl_write = 1; hw->size = NULL_DESC_BUFFER_SIZE; dump_desc_dbg(ioat, compl_desc); /* we leave the channel locked to ensure in order submission */ return &compl_desc->txd; } static struct dma_async_tx_descriptor * ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { /* specify valid address for disabled result */ if (flags & DMA_PREP_PQ_DISABLE_P) dst[0] = dst[1]; if (flags & DMA_PREP_PQ_DISABLE_Q) dst[1] = dst[0]; /* handle the single source multiply case from the raid6 * recovery path */ if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) { dma_addr_t single_source[2]; unsigned char single_source_coef[2]; BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q); single_source[0] = src[0]; single_source[1] = src[0]; single_source_coef[0] = scf[0]; single_source_coef[1] = 0; return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2, single_source_coef, len, flags); } else return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf, len, flags); } struct dma_async_tx_descriptor * ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, enum sum_check_flags *pqres, unsigned long flags) { /* specify valid address for disabled result */ if (flags & DMA_PREP_PQ_DISABLE_P) pq[0] = pq[1]; if (flags & DMA_PREP_PQ_DISABLE_Q) pq[1] = pq[0]; /* the cleanup routine only sets bits on validate failure, it * does not clear bits on validate success... so clear it here */ *pqres = 0; return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len, flags); } static struct dma_async_tx_descriptor * ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { unsigned char scf[src_cnt]; dma_addr_t pq[2]; memset(scf, 0, src_cnt); pq[0] = dst; flags |= DMA_PREP_PQ_DISABLE_Q; pq[1] = dst; /* specify valid address for disabled result */ return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len, flags); } struct dma_async_tx_descriptor * ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, size_t len, enum sum_check_flags *result, unsigned long flags) { unsigned char scf[src_cnt]; dma_addr_t pq[2]; /* the cleanup routine only sets bits on validate failure, it * does not clear bits on validate success... so clear it here */ *result = 0; memset(scf, 0, src_cnt); pq[0] = src[0]; flags |= DMA_PREP_PQ_DISABLE_Q; pq[1] = pq[0]; /* specify valid address for disabled result */ return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf, len, flags); } static struct dma_async_tx_descriptor * ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_ring_ent *desc; struct ioat_dma_descriptor *hw; u16 idx; if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0) desc = ioat2_get_ring_ent(ioat, idx); else return NULL; hw = desc->hw; hw->ctl = 0; hw->ctl_f.null = 1; hw->ctl_f.int_en = 1; hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE); hw->ctl_f.compl_write = 1; hw->size = NULL_DESC_BUFFER_SIZE; hw->src_addr = 0; hw->dst_addr = 0; desc->txd.flags = flags; desc->len = 1; dump_desc_dbg(ioat, desc); /* we leave the channel locked to ensure in order submission */ return &desc->txd; } static void __devinit ioat3_dma_test_callback(void *dma_async_param) { struct completion *cmp = dma_async_param; complete(cmp); } #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */ static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device) { int i, src_idx; struct page *dest; struct page *xor_srcs[IOAT_NUM_SRC_TEST]; struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1]; dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1]; dma_addr_t dma_addr, dest_dma; struct dma_async_tx_descriptor *tx; struct dma_chan *dma_chan; dma_cookie_t cookie; u8 cmp_byte = 0; u32 cmp_word; u32 xor_val_result; int err = 0; struct completion cmp; unsigned long tmo; struct device *dev = &device->pdev->dev; struct dma_device *dma = &device->common; dev_dbg(dev, "%s\n", __func__); if (!dma_has_cap(DMA_XOR, dma->cap_mask)) return 0; for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { xor_srcs[src_idx] = alloc_page(GFP_KERNEL); if (!xor_srcs[src_idx]) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } } dest = alloc_page(GFP_KERNEL); if (!dest) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } /* Fill in src buffers */ for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { u8 *ptr = page_address(xor_srcs[src_idx]); for (i = 0; i < PAGE_SIZE; i++) ptr[i] = (1 << src_idx); } for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) cmp_byte ^= (u8) (1 << src_idx); cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | (cmp_byte << 8) | cmp_byte; memset(page_address(dest), 0, PAGE_SIZE); dma_chan = container_of(dma->channels.next, struct dma_chan, device_node); if (dma->device_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } /* test xor */ dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < IOAT_NUM_SRC_TEST; i++) dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs, IOAT_NUM_SRC_TEST, PAGE_SIZE, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test xor prep failed\n"); err = -ENODEV; goto free_resources; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat3_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test xor setup failed\n"); err = -ENODEV; goto free_resources; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_err(dev, "Self-test xor timed out\n"); err = -ENODEV; goto free_resources; } dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { u32 *ptr = page_address(dest); if (ptr[i] != cmp_word) { dev_err(dev, "Self-test xor failed compare\n"); err = -ENODEV; goto free_resources; } } dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE); /* skip validate if the capability is not present */ if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask)) goto free_resources; /* validate the sources with the destintation page */ for (i = 0; i < IOAT_NUM_SRC_TEST; i++) xor_val_srcs[i] = xor_srcs[i]; xor_val_srcs[i] = dest; xor_val_result = 1; for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, &xor_val_result, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test zero prep failed\n"); err = -ENODEV; goto free_resources; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat3_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test zero setup failed\n"); err = -ENODEV; goto free_resources; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_err(dev, "Self-test validate timed out\n"); err = -ENODEV; goto free_resources; } if (xor_val_result != 0) { dev_err(dev, "Self-test validate failed compare\n"); err = -ENODEV; goto free_resources; } /* skip memset if the capability is not present */ if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask)) goto free_resources; /* test memset */ dma_addr = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test memset prep failed\n"); err = -ENODEV; goto free_resources; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat3_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test memset setup failed\n"); err = -ENODEV; goto free_resources; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_err(dev, "Self-test memset timed out\n"); err = -ENODEV; goto free_resources; } for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) { u32 *ptr = page_address(dest); if (ptr[i]) { dev_err(dev, "Self-test memset failed compare\n"); err = -ENODEV; goto free_resources; } } /* test for non-zero parity sum */ xor_val_result = 0; for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, &xor_val_result, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test 2nd zero prep failed\n"); err = -ENODEV; goto free_resources; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat3_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test 2nd zero setup failed\n"); err = -ENODEV; goto free_resources; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_err(dev, "Self-test 2nd validate timed out\n"); err = -ENODEV; goto free_resources; } if (xor_val_result != SUM_CHECK_P_RESULT) { dev_err(dev, "Self-test validate failed compare\n"); err = -ENODEV; goto free_resources; } free_resources: dma->device_free_chan_resources(dma_chan); out: src_idx = IOAT_NUM_SRC_TEST; while (src_idx--) __free_page(xor_srcs[src_idx]); __free_page(dest); return err; } static int __devinit ioat3_dma_self_test(struct ioatdma_device *device) { int rc = ioat_dma_self_test(device); if (rc) return rc; rc = ioat_xor_val_self_test(device); if (rc) return rc; return 0; } int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca) { struct pci_dev *pdev = device->pdev; int dca_en = system_has_dca_enabled(pdev); struct dma_device *dma; struct dma_chan *c; struct ioat_chan_common *chan; bool is_raid_device = false; int err; u16 dev_id; u32 cap; device->enumerate_channels = ioat2_enumerate_channels; device->self_test = ioat3_dma_self_test; dma = &device->common; dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock; dma->device_issue_pending = ioat2_issue_pending; dma->device_alloc_chan_resources = ioat2_alloc_chan_resources; dma->device_free_chan_resources = ioat2_free_chan_resources; dma_cap_set(DMA_INTERRUPT, dma->cap_mask); dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock; cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET); /* dca is incompatible with raid operations */ if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ))) cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ); if (cap & IOAT_CAP_XOR) { is_raid_device = true; dma->max_xor = 8; dma->xor_align = 2; dma_cap_set(DMA_XOR, dma->cap_mask); dma->device_prep_dma_xor = ioat3_prep_xor; dma_cap_set(DMA_XOR_VAL, dma->cap_mask); dma->device_prep_dma_xor_val = ioat3_prep_xor_val; } if (cap & IOAT_CAP_PQ) { is_raid_device = true; dma_set_maxpq(dma, 8, 0); dma->pq_align = 2; dma_cap_set(DMA_PQ, dma->cap_mask); dma->device_prep_dma_pq = ioat3_prep_pq; dma_cap_set(DMA_PQ_VAL, dma->cap_mask); dma->device_prep_dma_pq_val = ioat3_prep_pq_val; if (!(cap & IOAT_CAP_XOR)) { dma->max_xor = 8; dma->xor_align = 2; dma_cap_set(DMA_XOR, dma->cap_mask); dma->device_prep_dma_xor = ioat3_prep_pqxor; dma_cap_set(DMA_XOR_VAL, dma->cap_mask); dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val; } } if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) { dma_cap_set(DMA_MEMSET, dma->cap_mask); dma->device_prep_dma_memset = ioat3_prep_memset_lock; } if (is_raid_device) { dma->device_is_tx_complete = ioat3_is_complete; device->cleanup_tasklet = ioat3_cleanup_tasklet; device->timer_fn = ioat3_timer_event; } else { dma->device_is_tx_complete = ioat2_is_complete; device->cleanup_tasklet = ioat2_cleanup_tasklet; device->timer_fn = ioat2_timer_event; } #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA dma_cap_clear(DMA_PQ_VAL, dma->cap_mask); dma->device_prep_dma_pq_val = NULL; #endif #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA dma_cap_clear(DMA_XOR_VAL, dma->cap_mask); dma->device_prep_dma_xor_val = NULL; #endif /* -= IOAT ver.3 workarounds =- */ /* Write CHANERRMSK_INT with 3E07h to mask out the errors * that can cause stability issues for IOAT ver.3 */ pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07); /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit * (workaround for spurious config parity error after restart) */ pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id); if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10); err = ioat_probe(device); if (err) return err; ioat_set_tcp_copy_break(262144); list_for_each_entry(c, &dma->channels, device_node) { chan = to_chan_common(c); writel(IOAT_DMA_DCA_ANY_CPU, chan->reg_base + IOAT_DCACTRL_OFFSET); } err = ioat_register(device); if (err) return err; ioat_kobject_add(device, &ioat2_ktype); if (dca) device->dca = ioat3_dca_init(pdev, device->reg_base); return 0; }