/* * IEEE754 floating point arithmetic * double precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License. */ #include "ieee754dp.h" enum maddf_flags { maddf_negate_product = 1 << 0, }; static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y, enum maddf_flags flags) { int re; int rs; u64 rm; unsigned lxm; unsigned hxm; unsigned lym; unsigned hym; u64 lrm; u64 hrm; u64 t; u64 at; int s; COMPXDP; COMPYDP; COMPZDP; EXPLODEXDP; EXPLODEYDP; EXPLODEZDP; FLUSHXDP; FLUSHYDP; FLUSHZDP; ieee754_clearcx(); /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) DPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754dp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); /* Multiplication is 0 so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); /* fall through to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; if (flags & maddf_negate_product) rs ^= 1; /* shunt to top of word */ xm <<= 64 - (DP_FBITS + 1); ym <<= 64 - (DP_FBITS + 1); /* * Multiply 64 bits xm, ym to give high 64 bits rm with stickness. */ /* 32 * 32 => 64 */ #define DPXMULT(x, y) ((u64)(x) * (u64)y) lxm = xm; hxm = xm >> 32; lym = ym; hym = ym >> 32; lrm = DPXMULT(lxm, lym); hrm = DPXMULT(hxm, hym); t = DPXMULT(lxm, hym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); t = DPXMULT(hxm, lym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); rm = hrm | (lrm != 0); /* * Sticky shift down to normal rounding precision. */ if ((s64) rm < 0) { rm = (rm >> (64 - (DP_FBITS + 1 + 3))) | ((rm << (DP_FBITS + 1 + 3)) != 0); re++; } else { rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) | ((rm << (DP_FBITS + 1 + 3 + 1)) != 0); } assert(rm & (DP_HIDDEN_BIT << 3)); if (zc == IEEE754_CLASS_ZERO) return ieee754dp_format(rs, re, rm); /* And now the addition */ assert(zm & DP_HIDDEN_BIT); /* * Provide guard,round and stick bit space. */ zm <<= 3; if (ze > re) { /* * Have to shift y fraction right to align. */ s = ze - re; rm = XDPSRS(rm, s); re += s; } else if (re > ze) { /* * Have to shift x fraction right to align. */ s = re - ze; zm = XDPSRS(zm, s); ze += s; } assert(ze == re); assert(ze <= DP_EMAX); if (zs == rs) { /* * Generate 28 bit result of adding two 27 bit numbers * leaving result in xm, xs and xe. */ zm = zm + rm; if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */ zm = XDPSRS1(zm); ze++; } } else { if (zm >= rm) { zm = zm - rm; } else { zm = rm - zm; zs = rs; } if (zm == 0) return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Normalize to rounding precision. */ while ((zm >> (DP_FBITS + 3)) == 0) { zm <<= 1; ze--; } } return ieee754dp_format(zs, ze, zm); } union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, maddf_negate_product); }