/* * Back-end of the driver for virtual network devices. This portion of the * driver exports a 'unified' network-device interface that can be accessed * by any operating system that implements a compatible front end. A * reference front-end implementation can be found in: * drivers/net/xen-netfront.c * * Copyright (c) 2002-2005, K A Fraser * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation; or, when distributed * separately from the Linux kernel or incorporated into other * software packages, subject to the following license: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this source file (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "common.h" #include <linux/kthread.h> #include <linux/if_vlan.h> #include <linux/udp.h> #include <net/tcp.h> #include <xen/xen.h> #include <xen/events.h> #include <xen/interface/memory.h> #include <asm/xen/hypercall.h> #include <asm/xen/page.h> struct pending_tx_info { struct xen_netif_tx_request req; struct xenvif *vif; }; typedef unsigned int pending_ring_idx_t; struct netbk_rx_meta { int id; int size; int gso_size; }; #define MAX_PENDING_REQS 256 /* Discriminate from any valid pending_idx value. */ #define INVALID_PENDING_IDX 0xFFFF #define MAX_BUFFER_OFFSET PAGE_SIZE /* extra field used in struct page */ union page_ext { struct { #if BITS_PER_LONG < 64 #define IDX_WIDTH 8 #define GROUP_WIDTH (BITS_PER_LONG - IDX_WIDTH) unsigned int group:GROUP_WIDTH; unsigned int idx:IDX_WIDTH; #else unsigned int group, idx; #endif } e; void *mapping; }; struct xen_netbk { wait_queue_head_t wq; struct task_struct *task; struct sk_buff_head rx_queue; struct sk_buff_head tx_queue; struct timer_list net_timer; struct page *mmap_pages[MAX_PENDING_REQS]; pending_ring_idx_t pending_prod; pending_ring_idx_t pending_cons; struct list_head net_schedule_list; /* Protect the net_schedule_list in netif. */ spinlock_t net_schedule_list_lock; atomic_t netfront_count; struct pending_tx_info pending_tx_info[MAX_PENDING_REQS]; struct gnttab_copy tx_copy_ops[MAX_PENDING_REQS]; u16 pending_ring[MAX_PENDING_REQS]; /* * Given MAX_BUFFER_OFFSET of 4096 the worst case is that each * head/fragment page uses 2 copy operations because it * straddles two buffers in the frontend. */ struct gnttab_copy grant_copy_op[2*XEN_NETIF_RX_RING_SIZE]; struct netbk_rx_meta meta[2*XEN_NETIF_RX_RING_SIZE]; }; static struct xen_netbk *xen_netbk; static int xen_netbk_group_nr; void xen_netbk_add_xenvif(struct xenvif *vif) { int i; int min_netfront_count; int min_group = 0; struct xen_netbk *netbk; min_netfront_count = atomic_read(&xen_netbk[0].netfront_count); for (i = 0; i < xen_netbk_group_nr; i++) { int netfront_count = atomic_read(&xen_netbk[i].netfront_count); if (netfront_count < min_netfront_count) { min_group = i; min_netfront_count = netfront_count; } } netbk = &xen_netbk[min_group]; vif->netbk = netbk; atomic_inc(&netbk->netfront_count); } void xen_netbk_remove_xenvif(struct xenvif *vif) { struct xen_netbk *netbk = vif->netbk; vif->netbk = NULL; atomic_dec(&netbk->netfront_count); } static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx); static void make_tx_response(struct xenvif *vif, struct xen_netif_tx_request *txp, s8 st); static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif, u16 id, s8 st, u16 offset, u16 size, u16 flags); static inline unsigned long idx_to_pfn(struct xen_netbk *netbk, u16 idx) { return page_to_pfn(netbk->mmap_pages[idx]); } static inline unsigned long idx_to_kaddr(struct xen_netbk *netbk, u16 idx) { return (unsigned long)pfn_to_kaddr(idx_to_pfn(netbk, idx)); } /* extra field used in struct page */ static inline void set_page_ext(struct page *pg, struct xen_netbk *netbk, unsigned int idx) { unsigned int group = netbk - xen_netbk; union page_ext ext = { .e = { .group = group + 1, .idx = idx } }; BUILD_BUG_ON(sizeof(ext) > sizeof(ext.mapping)); pg->mapping = ext.mapping; } static int get_page_ext(struct page *pg, unsigned int *pgroup, unsigned int *pidx) { union page_ext ext = { .mapping = pg->mapping }; struct xen_netbk *netbk; unsigned int group, idx; group = ext.e.group - 1; if (group < 0 || group >= xen_netbk_group_nr) return 0; netbk = &xen_netbk[group]; idx = ext.e.idx; if ((idx < 0) || (idx >= MAX_PENDING_REQS)) return 0; if (netbk->mmap_pages[idx] != pg) return 0; *pgroup = group; *pidx = idx; return 1; } /* * This is the amount of packet we copy rather than map, so that the * guest can't fiddle with the contents of the headers while we do * packet processing on them (netfilter, routing, etc). */ #define PKT_PROT_LEN (ETH_HLEN + \ VLAN_HLEN + \ sizeof(struct iphdr) + MAX_IPOPTLEN + \ sizeof(struct tcphdr) + MAX_TCP_OPTION_SPACE) static u16 frag_get_pending_idx(skb_frag_t *frag) { return (u16)frag->page_offset; } static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx) { frag->page_offset = pending_idx; } static inline pending_ring_idx_t pending_index(unsigned i) { return i & (MAX_PENDING_REQS-1); } static inline pending_ring_idx_t nr_pending_reqs(struct xen_netbk *netbk) { return MAX_PENDING_REQS - netbk->pending_prod + netbk->pending_cons; } static void xen_netbk_kick_thread(struct xen_netbk *netbk) { wake_up(&netbk->wq); } static int max_required_rx_slots(struct xenvif *vif) { int max = DIV_ROUND_UP(vif->dev->mtu, PAGE_SIZE); if (vif->can_sg || vif->gso || vif->gso_prefix) max += MAX_SKB_FRAGS + 1; /* extra_info + frags */ return max; } int xen_netbk_rx_ring_full(struct xenvif *vif) { RING_IDX peek = vif->rx_req_cons_peek; RING_IDX needed = max_required_rx_slots(vif); return ((vif->rx.sring->req_prod - peek) < needed) || ((vif->rx.rsp_prod_pvt + XEN_NETIF_RX_RING_SIZE - peek) < needed); } int xen_netbk_must_stop_queue(struct xenvif *vif) { if (!xen_netbk_rx_ring_full(vif)) return 0; vif->rx.sring->req_event = vif->rx_req_cons_peek + max_required_rx_slots(vif); mb(); /* request notification /then/ check the queue */ return xen_netbk_rx_ring_full(vif); } /* * Returns true if we should start a new receive buffer instead of * adding 'size' bytes to a buffer which currently contains 'offset' * bytes. */ static bool start_new_rx_buffer(int offset, unsigned long size, int head) { /* simple case: we have completely filled the current buffer. */ if (offset == MAX_BUFFER_OFFSET) return true; /* * complex case: start a fresh buffer if the current frag * would overflow the current buffer but only if: * (i) this frag would fit completely in the next buffer * and (ii) there is already some data in the current buffer * and (iii) this is not the head buffer. * * Where: * - (i) stops us splitting a frag into two copies * unless the frag is too large for a single buffer. * - (ii) stops us from leaving a buffer pointlessly empty. * - (iii) stops us leaving the first buffer * empty. Strictly speaking this is already covered * by (ii) but is explicitly checked because * netfront relies on the first buffer being * non-empty and can crash otherwise. * * This means we will effectively linearise small * frags but do not needlessly split large buffers * into multiple copies tend to give large frags their * own buffers as before. */ if ((offset + size > MAX_BUFFER_OFFSET) && (size <= MAX_BUFFER_OFFSET) && offset && !head) return true; return false; } /* * Figure out how many ring slots we're going to need to send @skb to * the guest. This function is essentially a dry run of * netbk_gop_frag_copy. */ unsigned int xen_netbk_count_skb_slots(struct xenvif *vif, struct sk_buff *skb) { unsigned int count; int i, copy_off; count = DIV_ROUND_UP(skb_headlen(skb), PAGE_SIZE); copy_off = skb_headlen(skb) % PAGE_SIZE; if (skb_shinfo(skb)->gso_size) count++; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { unsigned long size = skb_frag_size(&skb_shinfo(skb)->frags[i]); unsigned long offset = skb_shinfo(skb)->frags[i].page_offset; unsigned long bytes; offset &= ~PAGE_MASK; while (size > 0) { BUG_ON(offset >= PAGE_SIZE); BUG_ON(copy_off > MAX_BUFFER_OFFSET); bytes = PAGE_SIZE - offset; if (bytes > size) bytes = size; if (start_new_rx_buffer(copy_off, bytes, 0)) { count++; copy_off = 0; } if (copy_off + bytes > MAX_BUFFER_OFFSET) bytes = MAX_BUFFER_OFFSET - copy_off; copy_off += bytes; offset += bytes; size -= bytes; if (offset == PAGE_SIZE) offset = 0; } } return count; } struct netrx_pending_operations { unsigned copy_prod, copy_cons; unsigned meta_prod, meta_cons; struct gnttab_copy *copy; struct netbk_rx_meta *meta; int copy_off; grant_ref_t copy_gref; }; static struct netbk_rx_meta *get_next_rx_buffer(struct xenvif *vif, struct netrx_pending_operations *npo) { struct netbk_rx_meta *meta; struct xen_netif_rx_request *req; req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); meta = npo->meta + npo->meta_prod++; meta->gso_size = 0; meta->size = 0; meta->id = req->id; npo->copy_off = 0; npo->copy_gref = req->gref; return meta; } /* * Set up the grant operations for this fragment. If it's a flipping * interface, we also set up the unmap request from here. */ static void netbk_gop_frag_copy(struct xenvif *vif, struct sk_buff *skb, struct netrx_pending_operations *npo, struct page *page, unsigned long size, unsigned long offset, int *head) { struct gnttab_copy *copy_gop; struct netbk_rx_meta *meta; /* * These variables are used iff get_page_ext returns true, * in which case they are guaranteed to be initialized. */ unsigned int uninitialized_var(group), uninitialized_var(idx); int foreign = get_page_ext(page, &group, &idx); unsigned long bytes; /* Data must not cross a page boundary. */ BUG_ON(size + offset > PAGE_SIZE<<compound_order(page)); meta = npo->meta + npo->meta_prod - 1; /* Skip unused frames from start of page */ page += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; while (size > 0) { BUG_ON(offset >= PAGE_SIZE); BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET); bytes = PAGE_SIZE - offset; if (bytes > size) bytes = size; if (start_new_rx_buffer(npo->copy_off, bytes, *head)) { /* * Netfront requires there to be some data in the head * buffer. */ BUG_ON(*head); meta = get_next_rx_buffer(vif, npo); } if (npo->copy_off + bytes > MAX_BUFFER_OFFSET) bytes = MAX_BUFFER_OFFSET - npo->copy_off; copy_gop = npo->copy + npo->copy_prod++; copy_gop->flags = GNTCOPY_dest_gref; if (foreign) { struct xen_netbk *netbk = &xen_netbk[group]; struct pending_tx_info *src_pend; src_pend = &netbk->pending_tx_info[idx]; copy_gop->source.domid = src_pend->vif->domid; copy_gop->source.u.ref = src_pend->req.gref; copy_gop->flags |= GNTCOPY_source_gref; } else { void *vaddr = page_address(page); copy_gop->source.domid = DOMID_SELF; copy_gop->source.u.gmfn = virt_to_mfn(vaddr); } copy_gop->source.offset = offset; copy_gop->dest.domid = vif->domid; copy_gop->dest.offset = npo->copy_off; copy_gop->dest.u.ref = npo->copy_gref; copy_gop->len = bytes; npo->copy_off += bytes; meta->size += bytes; offset += bytes; size -= bytes; /* Next frame */ if (offset == PAGE_SIZE && size) { BUG_ON(!PageCompound(page)); page++; offset = 0; } /* Leave a gap for the GSO descriptor. */ if (*head && skb_shinfo(skb)->gso_size && !vif->gso_prefix) vif->rx.req_cons++; *head = 0; /* There must be something in this buffer now. */ } } /* * Prepare an SKB to be transmitted to the frontend. * * This function is responsible for allocating grant operations, meta * structures, etc. * * It returns the number of meta structures consumed. The number of * ring slots used is always equal to the number of meta slots used * plus the number of GSO descriptors used. Currently, we use either * zero GSO descriptors (for non-GSO packets) or one descriptor (for * frontend-side LRO). */ static int netbk_gop_skb(struct sk_buff *skb, struct netrx_pending_operations *npo) { struct xenvif *vif = netdev_priv(skb->dev); int nr_frags = skb_shinfo(skb)->nr_frags; int i; struct xen_netif_rx_request *req; struct netbk_rx_meta *meta; unsigned char *data; int head = 1; int old_meta_prod; old_meta_prod = npo->meta_prod; /* Set up a GSO prefix descriptor, if necessary */ if (skb_shinfo(skb)->gso_size && vif->gso_prefix) { req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); meta = npo->meta + npo->meta_prod++; meta->gso_size = skb_shinfo(skb)->gso_size; meta->size = 0; meta->id = req->id; } req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); meta = npo->meta + npo->meta_prod++; if (!vif->gso_prefix) meta->gso_size = skb_shinfo(skb)->gso_size; else meta->gso_size = 0; meta->size = 0; meta->id = req->id; npo->copy_off = 0; npo->copy_gref = req->gref; data = skb->data; while (data < skb_tail_pointer(skb)) { unsigned int offset = offset_in_page(data); unsigned int len = PAGE_SIZE - offset; if (data + len > skb_tail_pointer(skb)) len = skb_tail_pointer(skb) - data; netbk_gop_frag_copy(vif, skb, npo, virt_to_page(data), len, offset, &head); data += len; } for (i = 0; i < nr_frags; i++) { netbk_gop_frag_copy(vif, skb, npo, skb_frag_page(&skb_shinfo(skb)->frags[i]), skb_frag_size(&skb_shinfo(skb)->frags[i]), skb_shinfo(skb)->frags[i].page_offset, &head); } return npo->meta_prod - old_meta_prod; } /* * This is a twin to netbk_gop_skb. Assume that netbk_gop_skb was * used to set up the operations on the top of * netrx_pending_operations, which have since been done. Check that * they didn't give any errors and advance over them. */ static int netbk_check_gop(struct xenvif *vif, int nr_meta_slots, struct netrx_pending_operations *npo) { struct gnttab_copy *copy_op; int status = XEN_NETIF_RSP_OKAY; int i; for (i = 0; i < nr_meta_slots; i++) { copy_op = npo->copy + npo->copy_cons++; if (copy_op->status != GNTST_okay) { netdev_dbg(vif->dev, "Bad status %d from copy to DOM%d.\n", copy_op->status, vif->domid); status = XEN_NETIF_RSP_ERROR; } } return status; } static void netbk_add_frag_responses(struct xenvif *vif, int status, struct netbk_rx_meta *meta, int nr_meta_slots) { int i; unsigned long offset; /* No fragments used */ if (nr_meta_slots <= 1) return; nr_meta_slots--; for (i = 0; i < nr_meta_slots; i++) { int flags; if (i == nr_meta_slots - 1) flags = 0; else flags = XEN_NETRXF_more_data; offset = 0; make_rx_response(vif, meta[i].id, status, offset, meta[i].size, flags); } } struct skb_cb_overlay { int meta_slots_used; }; static void xen_netbk_rx_action(struct xen_netbk *netbk) { struct xenvif *vif = NULL, *tmp; s8 status; u16 irq, flags; struct xen_netif_rx_response *resp; struct sk_buff_head rxq; struct sk_buff *skb; LIST_HEAD(notify); int ret; int nr_frags; int count; unsigned long offset; struct skb_cb_overlay *sco; struct netrx_pending_operations npo = { .copy = netbk->grant_copy_op, .meta = netbk->meta, }; skb_queue_head_init(&rxq); count = 0; while ((skb = skb_dequeue(&netbk->rx_queue)) != NULL) { vif = netdev_priv(skb->dev); nr_frags = skb_shinfo(skb)->nr_frags; sco = (struct skb_cb_overlay *)skb->cb; sco->meta_slots_used = netbk_gop_skb(skb, &npo); count += nr_frags + 1; __skb_queue_tail(&rxq, skb); /* Filled the batch queue? */ if (count + MAX_SKB_FRAGS >= XEN_NETIF_RX_RING_SIZE) break; } BUG_ON(npo.meta_prod > ARRAY_SIZE(netbk->meta)); if (!npo.copy_prod) return; BUG_ON(npo.copy_prod > ARRAY_SIZE(netbk->grant_copy_op)); gnttab_batch_copy(netbk->grant_copy_op, npo.copy_prod); while ((skb = __skb_dequeue(&rxq)) != NULL) { sco = (struct skb_cb_overlay *)skb->cb; vif = netdev_priv(skb->dev); if (netbk->meta[npo.meta_cons].gso_size && vif->gso_prefix) { resp = RING_GET_RESPONSE(&vif->rx, vif->rx.rsp_prod_pvt++); resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data; resp->offset = netbk->meta[npo.meta_cons].gso_size; resp->id = netbk->meta[npo.meta_cons].id; resp->status = sco->meta_slots_used; npo.meta_cons++; sco->meta_slots_used--; } vif->dev->stats.tx_bytes += skb->len; vif->dev->stats.tx_packets++; status = netbk_check_gop(vif, sco->meta_slots_used, &npo); if (sco->meta_slots_used == 1) flags = 0; else flags = XEN_NETRXF_more_data; if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */ flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated; else if (skb->ip_summed == CHECKSUM_UNNECESSARY) /* remote but checksummed. */ flags |= XEN_NETRXF_data_validated; offset = 0; resp = make_rx_response(vif, netbk->meta[npo.meta_cons].id, status, offset, netbk->meta[npo.meta_cons].size, flags); if (netbk->meta[npo.meta_cons].gso_size && !vif->gso_prefix) { struct xen_netif_extra_info *gso = (struct xen_netif_extra_info *) RING_GET_RESPONSE(&vif->rx, vif->rx.rsp_prod_pvt++); resp->flags |= XEN_NETRXF_extra_info; gso->u.gso.size = netbk->meta[npo.meta_cons].gso_size; gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; gso->u.gso.pad = 0; gso->u.gso.features = 0; gso->type = XEN_NETIF_EXTRA_TYPE_GSO; gso->flags = 0; } netbk_add_frag_responses(vif, status, netbk->meta + npo.meta_cons + 1, sco->meta_slots_used); RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->rx, ret); irq = vif->irq; if (ret && list_empty(&vif->notify_list)) list_add_tail(&vif->notify_list, ¬ify); xenvif_notify_tx_completion(vif); xenvif_put(vif); npo.meta_cons += sco->meta_slots_used; dev_kfree_skb(skb); } list_for_each_entry_safe(vif, tmp, ¬ify, notify_list) { notify_remote_via_irq(vif->irq); list_del_init(&vif->notify_list); } /* More work to do? */ if (!skb_queue_empty(&netbk->rx_queue) && !timer_pending(&netbk->net_timer)) xen_netbk_kick_thread(netbk); } void xen_netbk_queue_tx_skb(struct xenvif *vif, struct sk_buff *skb) { struct xen_netbk *netbk = vif->netbk; skb_queue_tail(&netbk->rx_queue, skb); xen_netbk_kick_thread(netbk); } static void xen_netbk_alarm(unsigned long data) { struct xen_netbk *netbk = (struct xen_netbk *)data; xen_netbk_kick_thread(netbk); } static int __on_net_schedule_list(struct xenvif *vif) { return !list_empty(&vif->schedule_list); } /* Must be called with net_schedule_list_lock held */ static void remove_from_net_schedule_list(struct xenvif *vif) { if (likely(__on_net_schedule_list(vif))) { list_del_init(&vif->schedule_list); xenvif_put(vif); } } static struct xenvif *poll_net_schedule_list(struct xen_netbk *netbk) { struct xenvif *vif = NULL; spin_lock_irq(&netbk->net_schedule_list_lock); if (list_empty(&netbk->net_schedule_list)) goto out; vif = list_first_entry(&netbk->net_schedule_list, struct xenvif, schedule_list); if (!vif) goto out; xenvif_get(vif); remove_from_net_schedule_list(vif); out: spin_unlock_irq(&netbk->net_schedule_list_lock); return vif; } void xen_netbk_schedule_xenvif(struct xenvif *vif) { unsigned long flags; struct xen_netbk *netbk = vif->netbk; if (__on_net_schedule_list(vif)) goto kick; spin_lock_irqsave(&netbk->net_schedule_list_lock, flags); if (!__on_net_schedule_list(vif) && likely(xenvif_schedulable(vif))) { list_add_tail(&vif->schedule_list, &netbk->net_schedule_list); xenvif_get(vif); } spin_unlock_irqrestore(&netbk->net_schedule_list_lock, flags); kick: smp_mb(); if ((nr_pending_reqs(netbk) < (MAX_PENDING_REQS/2)) && !list_empty(&netbk->net_schedule_list)) xen_netbk_kick_thread(netbk); } void xen_netbk_deschedule_xenvif(struct xenvif *vif) { struct xen_netbk *netbk = vif->netbk; spin_lock_irq(&netbk->net_schedule_list_lock); remove_from_net_schedule_list(vif); spin_unlock_irq(&netbk->net_schedule_list_lock); } void xen_netbk_check_rx_xenvif(struct xenvif *vif) { int more_to_do; RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, more_to_do); if (more_to_do) xen_netbk_schedule_xenvif(vif); } static void tx_add_credit(struct xenvif *vif) { unsigned long max_burst, max_credit; /* * Allow a burst big enough to transmit a jumbo packet of up to 128kB. * Otherwise the interface can seize up due to insufficient credit. */ max_burst = RING_GET_REQUEST(&vif->tx, vif->tx.req_cons)->size; max_burst = min(max_burst, 131072UL); max_burst = max(max_burst, vif->credit_bytes); /* Take care that adding a new chunk of credit doesn't wrap to zero. */ max_credit = vif->remaining_credit + vif->credit_bytes; if (max_credit < vif->remaining_credit) max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */ vif->remaining_credit = min(max_credit, max_burst); } static void tx_credit_callback(unsigned long data) { struct xenvif *vif = (struct xenvif *)data; tx_add_credit(vif); xen_netbk_check_rx_xenvif(vif); } static void netbk_tx_err(struct xenvif *vif, struct xen_netif_tx_request *txp, RING_IDX end) { RING_IDX cons = vif->tx.req_cons; do { make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR); if (cons >= end) break; txp = RING_GET_REQUEST(&vif->tx, cons++); } while (1); vif->tx.req_cons = cons; xen_netbk_check_rx_xenvif(vif); xenvif_put(vif); } static int netbk_count_requests(struct xenvif *vif, struct xen_netif_tx_request *first, struct xen_netif_tx_request *txp, int work_to_do) { RING_IDX cons = vif->tx.req_cons; int frags = 0; if (!(first->flags & XEN_NETTXF_more_data)) return 0; do { if (frags >= work_to_do) { netdev_dbg(vif->dev, "Need more frags\n"); return -frags; } if (unlikely(frags >= MAX_SKB_FRAGS)) { netdev_dbg(vif->dev, "Too many frags\n"); return -frags; } memcpy(txp, RING_GET_REQUEST(&vif->tx, cons + frags), sizeof(*txp)); if (txp->size > first->size) { netdev_dbg(vif->dev, "Frags galore\n"); return -frags; } first->size -= txp->size; frags++; if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) { netdev_dbg(vif->dev, "txp->offset: %x, size: %u\n", txp->offset, txp->size); return -frags; } } while ((txp++)->flags & XEN_NETTXF_more_data); return frags; } static struct page *xen_netbk_alloc_page(struct xen_netbk *netbk, struct sk_buff *skb, u16 pending_idx) { struct page *page; page = alloc_page(GFP_KERNEL|__GFP_COLD); if (!page) return NULL; set_page_ext(page, netbk, pending_idx); netbk->mmap_pages[pending_idx] = page; return page; } static struct gnttab_copy *xen_netbk_get_requests(struct xen_netbk *netbk, struct xenvif *vif, struct sk_buff *skb, struct xen_netif_tx_request *txp, struct gnttab_copy *gop) { struct skb_shared_info *shinfo = skb_shinfo(skb); skb_frag_t *frags = shinfo->frags; u16 pending_idx = *((u16 *)skb->data); int i, start; /* Skip first skb fragment if it is on same page as header fragment. */ start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx); for (i = start; i < shinfo->nr_frags; i++, txp++) { struct page *page; pending_ring_idx_t index; struct pending_tx_info *pending_tx_info = netbk->pending_tx_info; index = pending_index(netbk->pending_cons++); pending_idx = netbk->pending_ring[index]; page = xen_netbk_alloc_page(netbk, skb, pending_idx); if (!page) return NULL; gop->source.u.ref = txp->gref; gop->source.domid = vif->domid; gop->source.offset = txp->offset; gop->dest.u.gmfn = virt_to_mfn(page_address(page)); gop->dest.domid = DOMID_SELF; gop->dest.offset = txp->offset; gop->len = txp->size; gop->flags = GNTCOPY_source_gref; gop++; memcpy(&pending_tx_info[pending_idx].req, txp, sizeof(*txp)); xenvif_get(vif); pending_tx_info[pending_idx].vif = vif; frag_set_pending_idx(&frags[i], pending_idx); } return gop; } static int xen_netbk_tx_check_gop(struct xen_netbk *netbk, struct sk_buff *skb, struct gnttab_copy **gopp) { struct gnttab_copy *gop = *gopp; u16 pending_idx = *((u16 *)skb->data); struct pending_tx_info *pending_tx_info = netbk->pending_tx_info; struct xenvif *vif = pending_tx_info[pending_idx].vif; struct xen_netif_tx_request *txp; struct skb_shared_info *shinfo = skb_shinfo(skb); int nr_frags = shinfo->nr_frags; int i, err, start; /* Check status of header. */ err = gop->status; if (unlikely(err)) { pending_ring_idx_t index; index = pending_index(netbk->pending_prod++); txp = &pending_tx_info[pending_idx].req; make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR); netbk->pending_ring[index] = pending_idx; xenvif_put(vif); } /* Skip first skb fragment if it is on same page as header fragment. */ start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx); for (i = start; i < nr_frags; i++) { int j, newerr; pending_ring_idx_t index; pending_idx = frag_get_pending_idx(&shinfo->frags[i]); /* Check error status: if okay then remember grant handle. */ newerr = (++gop)->status; if (likely(!newerr)) { /* Had a previous error? Invalidate this fragment. */ if (unlikely(err)) xen_netbk_idx_release(netbk, pending_idx); continue; } /* Error on this fragment: respond to client with an error. */ txp = &netbk->pending_tx_info[pending_idx].req; make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR); index = pending_index(netbk->pending_prod++); netbk->pending_ring[index] = pending_idx; xenvif_put(vif); /* Not the first error? Preceding frags already invalidated. */ if (err) continue; /* First error: invalidate header and preceding fragments. */ pending_idx = *((u16 *)skb->data); xen_netbk_idx_release(netbk, pending_idx); for (j = start; j < i; j++) { pending_idx = frag_get_pending_idx(&shinfo->frags[j]); xen_netbk_idx_release(netbk, pending_idx); } /* Remember the error: invalidate all subsequent fragments. */ err = newerr; } *gopp = gop + 1; return err; } static void xen_netbk_fill_frags(struct xen_netbk *netbk, struct sk_buff *skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); int nr_frags = shinfo->nr_frags; int i; for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = shinfo->frags + i; struct xen_netif_tx_request *txp; struct page *page; u16 pending_idx; pending_idx = frag_get_pending_idx(frag); txp = &netbk->pending_tx_info[pending_idx].req; page = virt_to_page(idx_to_kaddr(netbk, pending_idx)); __skb_fill_page_desc(skb, i, page, txp->offset, txp->size); skb->len += txp->size; skb->data_len += txp->size; skb->truesize += txp->size; /* Take an extra reference to offset xen_netbk_idx_release */ get_page(netbk->mmap_pages[pending_idx]); xen_netbk_idx_release(netbk, pending_idx); } } static int xen_netbk_get_extras(struct xenvif *vif, struct xen_netif_extra_info *extras, int work_to_do) { struct xen_netif_extra_info extra; RING_IDX cons = vif->tx.req_cons; do { if (unlikely(work_to_do-- <= 0)) { netdev_dbg(vif->dev, "Missing extra info\n"); return -EBADR; } memcpy(&extra, RING_GET_REQUEST(&vif->tx, cons), sizeof(extra)); if (unlikely(!extra.type || extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) { vif->tx.req_cons = ++cons; netdev_dbg(vif->dev, "Invalid extra type: %d\n", extra.type); return -EINVAL; } memcpy(&extras[extra.type - 1], &extra, sizeof(extra)); vif->tx.req_cons = ++cons; } while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE); return work_to_do; } static int netbk_set_skb_gso(struct xenvif *vif, struct sk_buff *skb, struct xen_netif_extra_info *gso) { if (!gso->u.gso.size) { netdev_dbg(vif->dev, "GSO size must not be zero.\n"); return -EINVAL; } /* Currently only TCPv4 S.O. is supported. */ if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) { netdev_dbg(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type); return -EINVAL; } skb_shinfo(skb)->gso_size = gso->u.gso.size; skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; /* Header must be checked, and gso_segs computed. */ skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; skb_shinfo(skb)->gso_segs = 0; return 0; } static int checksum_setup(struct xenvif *vif, struct sk_buff *skb) { struct iphdr *iph; unsigned char *th; int err = -EPROTO; int recalculate_partial_csum = 0; /* * A GSO SKB must be CHECKSUM_PARTIAL. However some buggy * peers can fail to set NETRXF_csum_blank when sending a GSO * frame. In this case force the SKB to CHECKSUM_PARTIAL and * recalculate the partial checksum. */ if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) { vif->rx_gso_checksum_fixup++; skb->ip_summed = CHECKSUM_PARTIAL; recalculate_partial_csum = 1; } /* A non-CHECKSUM_PARTIAL SKB does not require setup. */ if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (skb->protocol != htons(ETH_P_IP)) goto out; iph = (void *)skb->data; th = skb->data + 4 * iph->ihl; if (th >= skb_tail_pointer(skb)) goto out; skb->csum_start = th - skb->head; switch (iph->protocol) { case IPPROTO_TCP: skb->csum_offset = offsetof(struct tcphdr, check); if (recalculate_partial_csum) { struct tcphdr *tcph = (struct tcphdr *)th; tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len - iph->ihl*4, IPPROTO_TCP, 0); } break; case IPPROTO_UDP: skb->csum_offset = offsetof(struct udphdr, check); if (recalculate_partial_csum) { struct udphdr *udph = (struct udphdr *)th; udph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len - iph->ihl*4, IPPROTO_UDP, 0); } break; default: if (net_ratelimit()) netdev_err(vif->dev, "Attempting to checksum a non-TCP/UDP packet, dropping a protocol %d packet\n", iph->protocol); goto out; } if ((th + skb->csum_offset + 2) > skb_tail_pointer(skb)) goto out; err = 0; out: return err; } static bool tx_credit_exceeded(struct xenvif *vif, unsigned size) { unsigned long now = jiffies; unsigned long next_credit = vif->credit_timeout.expires + msecs_to_jiffies(vif->credit_usec / 1000); /* Timer could already be pending in rare cases. */ if (timer_pending(&vif->credit_timeout)) return true; /* Passed the point where we can replenish credit? */ if (time_after_eq(now, next_credit)) { vif->credit_timeout.expires = now; tx_add_credit(vif); } /* Still too big to send right now? Set a callback. */ if (size > vif->remaining_credit) { vif->credit_timeout.data = (unsigned long)vif; vif->credit_timeout.function = tx_credit_callback; mod_timer(&vif->credit_timeout, next_credit); return true; } return false; } static unsigned xen_netbk_tx_build_gops(struct xen_netbk *netbk) { struct gnttab_copy *gop = netbk->tx_copy_ops, *request_gop; struct sk_buff *skb; int ret; while (((nr_pending_reqs(netbk) + MAX_SKB_FRAGS) < MAX_PENDING_REQS) && !list_empty(&netbk->net_schedule_list)) { struct xenvif *vif; struct xen_netif_tx_request txreq; struct xen_netif_tx_request txfrags[MAX_SKB_FRAGS]; struct page *page; struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1]; u16 pending_idx; RING_IDX idx; int work_to_do; unsigned int data_len; pending_ring_idx_t index; /* Get a netif from the list with work to do. */ vif = poll_net_schedule_list(netbk); if (!vif) continue; RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, work_to_do); if (!work_to_do) { xenvif_put(vif); continue; } idx = vif->tx.req_cons; rmb(); /* Ensure that we see the request before we copy it. */ memcpy(&txreq, RING_GET_REQUEST(&vif->tx, idx), sizeof(txreq)); /* Credit-based scheduling. */ if (txreq.size > vif->remaining_credit && tx_credit_exceeded(vif, txreq.size)) { xenvif_put(vif); continue; } vif->remaining_credit -= txreq.size; work_to_do--; vif->tx.req_cons = ++idx; memset(extras, 0, sizeof(extras)); if (txreq.flags & XEN_NETTXF_extra_info) { work_to_do = xen_netbk_get_extras(vif, extras, work_to_do); idx = vif->tx.req_cons; if (unlikely(work_to_do < 0)) { netbk_tx_err(vif, &txreq, idx); continue; } } ret = netbk_count_requests(vif, &txreq, txfrags, work_to_do); if (unlikely(ret < 0)) { netbk_tx_err(vif, &txreq, idx - ret); continue; } idx += ret; if (unlikely(txreq.size < ETH_HLEN)) { netdev_dbg(vif->dev, "Bad packet size: %d\n", txreq.size); netbk_tx_err(vif, &txreq, idx); continue; } /* No crossing a page as the payload mustn't fragment. */ if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) { netdev_dbg(vif->dev, "txreq.offset: %x, size: %u, end: %lu\n", txreq.offset, txreq.size, (txreq.offset&~PAGE_MASK) + txreq.size); netbk_tx_err(vif, &txreq, idx); continue; } index = pending_index(netbk->pending_cons); pending_idx = netbk->pending_ring[index]; data_len = (txreq.size > PKT_PROT_LEN && ret < MAX_SKB_FRAGS) ? PKT_PROT_LEN : txreq.size; skb = alloc_skb(data_len + NET_SKB_PAD + NET_IP_ALIGN, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(skb == NULL)) { netdev_dbg(vif->dev, "Can't allocate a skb in start_xmit.\n"); netbk_tx_err(vif, &txreq, idx); break; } /* Packets passed to netif_rx() must have some headroom. */ skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) { struct xen_netif_extra_info *gso; gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1]; if (netbk_set_skb_gso(vif, skb, gso)) { kfree_skb(skb); netbk_tx_err(vif, &txreq, idx); continue; } } /* XXX could copy straight to head */ page = xen_netbk_alloc_page(netbk, skb, pending_idx); if (!page) { kfree_skb(skb); netbk_tx_err(vif, &txreq, idx); continue; } gop->source.u.ref = txreq.gref; gop->source.domid = vif->domid; gop->source.offset = txreq.offset; gop->dest.u.gmfn = virt_to_mfn(page_address(page)); gop->dest.domid = DOMID_SELF; gop->dest.offset = txreq.offset; gop->len = txreq.size; gop->flags = GNTCOPY_source_gref; gop++; memcpy(&netbk->pending_tx_info[pending_idx].req, &txreq, sizeof(txreq)); netbk->pending_tx_info[pending_idx].vif = vif; *((u16 *)skb->data) = pending_idx; __skb_put(skb, data_len); skb_shinfo(skb)->nr_frags = ret; if (data_len < txreq.size) { skb_shinfo(skb)->nr_frags++; frag_set_pending_idx(&skb_shinfo(skb)->frags[0], pending_idx); } else { frag_set_pending_idx(&skb_shinfo(skb)->frags[0], INVALID_PENDING_IDX); } netbk->pending_cons++; request_gop = xen_netbk_get_requests(netbk, vif, skb, txfrags, gop); if (request_gop == NULL) { kfree_skb(skb); netbk_tx_err(vif, &txreq, idx); continue; } gop = request_gop; __skb_queue_tail(&netbk->tx_queue, skb); vif->tx.req_cons = idx; xen_netbk_check_rx_xenvif(vif); if ((gop-netbk->tx_copy_ops) >= ARRAY_SIZE(netbk->tx_copy_ops)) break; } return gop - netbk->tx_copy_ops; } static void xen_netbk_tx_submit(struct xen_netbk *netbk) { struct gnttab_copy *gop = netbk->tx_copy_ops; struct sk_buff *skb; while ((skb = __skb_dequeue(&netbk->tx_queue)) != NULL) { struct xen_netif_tx_request *txp; struct xenvif *vif; u16 pending_idx; unsigned data_len; pending_idx = *((u16 *)skb->data); vif = netbk->pending_tx_info[pending_idx].vif; txp = &netbk->pending_tx_info[pending_idx].req; /* Check the remap error code. */ if (unlikely(xen_netbk_tx_check_gop(netbk, skb, &gop))) { netdev_dbg(vif->dev, "netback grant failed.\n"); skb_shinfo(skb)->nr_frags = 0; kfree_skb(skb); continue; } data_len = skb->len; memcpy(skb->data, (void *)(idx_to_kaddr(netbk, pending_idx)|txp->offset), data_len); if (data_len < txp->size) { /* Append the packet payload as a fragment. */ txp->offset += data_len; txp->size -= data_len; } else { /* Schedule a response immediately. */ xen_netbk_idx_release(netbk, pending_idx); } if (txp->flags & XEN_NETTXF_csum_blank) skb->ip_summed = CHECKSUM_PARTIAL; else if (txp->flags & XEN_NETTXF_data_validated) skb->ip_summed = CHECKSUM_UNNECESSARY; xen_netbk_fill_frags(netbk, skb); /* * If the initial fragment was < PKT_PROT_LEN then * pull through some bytes from the other fragments to * increase the linear region to PKT_PROT_LEN bytes. */ if (skb_headlen(skb) < PKT_PROT_LEN && skb_is_nonlinear(skb)) { int target = min_t(int, skb->len, PKT_PROT_LEN); __pskb_pull_tail(skb, target - skb_headlen(skb)); } skb->dev = vif->dev; skb->protocol = eth_type_trans(skb, skb->dev); if (checksum_setup(vif, skb)) { netdev_dbg(vif->dev, "Can't setup checksum in net_tx_action\n"); kfree_skb(skb); continue; } vif->dev->stats.rx_bytes += skb->len; vif->dev->stats.rx_packets++; xenvif_receive_skb(vif, skb); } } /* Called after netfront has transmitted */ static void xen_netbk_tx_action(struct xen_netbk *netbk) { unsigned nr_gops; nr_gops = xen_netbk_tx_build_gops(netbk); if (nr_gops == 0) return; gnttab_batch_copy(netbk->tx_copy_ops, nr_gops); xen_netbk_tx_submit(netbk); } static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx) { struct xenvif *vif; struct pending_tx_info *pending_tx_info; pending_ring_idx_t index; /* Already complete? */ if (netbk->mmap_pages[pending_idx] == NULL) return; pending_tx_info = &netbk->pending_tx_info[pending_idx]; vif = pending_tx_info->vif; make_tx_response(vif, &pending_tx_info->req, XEN_NETIF_RSP_OKAY); index = pending_index(netbk->pending_prod++); netbk->pending_ring[index] = pending_idx; xenvif_put(vif); netbk->mmap_pages[pending_idx]->mapping = 0; put_page(netbk->mmap_pages[pending_idx]); netbk->mmap_pages[pending_idx] = NULL; } static void make_tx_response(struct xenvif *vif, struct xen_netif_tx_request *txp, s8 st) { RING_IDX i = vif->tx.rsp_prod_pvt; struct xen_netif_tx_response *resp; int notify; resp = RING_GET_RESPONSE(&vif->tx, i); resp->id = txp->id; resp->status = st; if (txp->flags & XEN_NETTXF_extra_info) RING_GET_RESPONSE(&vif->tx, ++i)->status = XEN_NETIF_RSP_NULL; vif->tx.rsp_prod_pvt = ++i; RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->tx, notify); if (notify) notify_remote_via_irq(vif->irq); } static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif, u16 id, s8 st, u16 offset, u16 size, u16 flags) { RING_IDX i = vif->rx.rsp_prod_pvt; struct xen_netif_rx_response *resp; resp = RING_GET_RESPONSE(&vif->rx, i); resp->offset = offset; resp->flags = flags; resp->id = id; resp->status = (s16)size; if (st < 0) resp->status = (s16)st; vif->rx.rsp_prod_pvt = ++i; return resp; } static inline int rx_work_todo(struct xen_netbk *netbk) { return !skb_queue_empty(&netbk->rx_queue); } static inline int tx_work_todo(struct xen_netbk *netbk) { if (((nr_pending_reqs(netbk) + MAX_SKB_FRAGS) < MAX_PENDING_REQS) && !list_empty(&netbk->net_schedule_list)) return 1; return 0; } static int xen_netbk_kthread(void *data) { struct xen_netbk *netbk = data; while (!kthread_should_stop()) { wait_event_interruptible(netbk->wq, rx_work_todo(netbk) || tx_work_todo(netbk) || kthread_should_stop()); cond_resched(); if (kthread_should_stop()) break; if (rx_work_todo(netbk)) xen_netbk_rx_action(netbk); if (tx_work_todo(netbk)) xen_netbk_tx_action(netbk); } return 0; } void xen_netbk_unmap_frontend_rings(struct xenvif *vif) { if (vif->tx.sring) xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif), vif->tx.sring); if (vif->rx.sring) xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif), vif->rx.sring); } int xen_netbk_map_frontend_rings(struct xenvif *vif, grant_ref_t tx_ring_ref, grant_ref_t rx_ring_ref) { void *addr; struct xen_netif_tx_sring *txs; struct xen_netif_rx_sring *rxs; int err = -ENOMEM; err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif), tx_ring_ref, &addr); if (err) goto err; txs = (struct xen_netif_tx_sring *)addr; BACK_RING_INIT(&vif->tx, txs, PAGE_SIZE); err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif), rx_ring_ref, &addr); if (err) goto err; rxs = (struct xen_netif_rx_sring *)addr; BACK_RING_INIT(&vif->rx, rxs, PAGE_SIZE); vif->rx_req_cons_peek = 0; return 0; err: xen_netbk_unmap_frontend_rings(vif); return err; } static int __init netback_init(void) { int i; int rc = 0; int group; if (!xen_domain()) return -ENODEV; xen_netbk_group_nr = num_online_cpus(); xen_netbk = vzalloc(sizeof(struct xen_netbk) * xen_netbk_group_nr); if (!xen_netbk) return -ENOMEM; for (group = 0; group < xen_netbk_group_nr; group++) { struct xen_netbk *netbk = &xen_netbk[group]; skb_queue_head_init(&netbk->rx_queue); skb_queue_head_init(&netbk->tx_queue); init_timer(&netbk->net_timer); netbk->net_timer.data = (unsigned long)netbk; netbk->net_timer.function = xen_netbk_alarm; netbk->pending_cons = 0; netbk->pending_prod = MAX_PENDING_REQS; for (i = 0; i < MAX_PENDING_REQS; i++) netbk->pending_ring[i] = i; init_waitqueue_head(&netbk->wq); netbk->task = kthread_create(xen_netbk_kthread, (void *)netbk, "netback/%u", group); if (IS_ERR(netbk->task)) { printk(KERN_ALERT "kthread_create() fails at netback\n"); del_timer(&netbk->net_timer); rc = PTR_ERR(netbk->task); goto failed_init; } kthread_bind(netbk->task, group); INIT_LIST_HEAD(&netbk->net_schedule_list); spin_lock_init(&netbk->net_schedule_list_lock); atomic_set(&netbk->netfront_count, 0); wake_up_process(netbk->task); } rc = xenvif_xenbus_init(); if (rc) goto failed_init; return 0; failed_init: while (--group >= 0) { struct xen_netbk *netbk = &xen_netbk[group]; for (i = 0; i < MAX_PENDING_REQS; i++) { if (netbk->mmap_pages[i]) __free_page(netbk->mmap_pages[i]); } del_timer(&netbk->net_timer); kthread_stop(netbk->task); } vfree(xen_netbk); return rc; } module_init(netback_init); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS("xen-backend:vif");