/* * Copyright (c) 2006 Damien Bergamini * Copyright (c) 2006 Sam Leffler, Errno Consulting * Copyright (c) 2007 Christoph Hellwig * Copyright (c) 2008-2009 Weongyo Jeong * Copyright (c) 2012 Pontus Fuchs * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * This driver is based on the uath driver written by Damien Bergamini for * OpenBSD, who did black-box analysis of the Windows binary driver to find * out how the hardware works. It contains a lot magic numbers because of * that and only has minimal functionality. */ #include #include #include #include #include #include #include #include #include #include #include "ar5523.h" #include "ar5523_hw.h" /* * Various supported device vendors/products. * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g */ static int ar5523_submit_rx_cmd(struct ar5523 *ar); static void ar5523_data_tx_pkt_put(struct ar5523 *ar); static void ar5523_read_reply(struct ar5523 *ar, struct ar5523_cmd_hdr *hdr, struct ar5523_tx_cmd *cmd) { int dlen, olen; u32 *rp; dlen = hdr->len - sizeof(*hdr); if (dlen < 0) { WARN_ON(1); goto out; } ar5523_dbg(ar, "Code = %d len = %d\n", hdr->code & 0xff, dlen); rp = (u32 *)(hdr + 1); if (dlen >= sizeof(u32)) { olen = be32_to_cpu(rp[0]); dlen -= sizeof(u32); if (olen == 0) { /* convention is 0 =>'s one word */ olen = sizeof(u32); } } else olen = 0; if (cmd->odata) { if (cmd->olen < olen) { ar5523_err(ar, "olen to small %d < %d\n", cmd->olen, olen); cmd->olen = 0; cmd->res = -EOVERFLOW; } else { cmd->olen = olen; memcpy(cmd->odata, &rp[1], olen); cmd->res = 0; } } out: complete(&cmd->done); } static void ar5523_cmd_rx_cb(struct urb *urb) { struct ar5523 *ar = urb->context; struct ar5523_tx_cmd *cmd = &ar->tx_cmd; struct ar5523_cmd_hdr *hdr = ar->rx_cmd_buf; int dlen; if (urb->status) { if (urb->status != -ESHUTDOWN) ar5523_err(ar, "RX USB error %d.\n", urb->status); goto skip; } if (urb->actual_length < sizeof(struct ar5523_cmd_hdr)) { ar5523_err(ar, "RX USB to short.\n"); goto skip; } ar5523_dbg(ar, "%s code %02x priv %d\n", __func__, be32_to_cpu(hdr->code) & 0xff, hdr->priv); hdr->code = be32_to_cpu(hdr->code); hdr->len = be32_to_cpu(hdr->len); switch (hdr->code & 0xff) { default: /* reply to a read command */ if (hdr->priv != AR5523_CMD_ID) { ar5523_err(ar, "Unexpected command id: %02x\n", hdr->code & 0xff); goto skip; } ar5523_read_reply(ar, hdr, cmd); break; case WDCMSG_DEVICE_AVAIL: ar5523_dbg(ar, "WDCMSG_DEVICE_AVAIL\n"); cmd->res = 0; cmd->olen = 0; complete(&cmd->done); break; case WDCMSG_SEND_COMPLETE: ar5523_dbg(ar, "WDCMSG_SEND_COMPLETE: %d pending\n", atomic_read(&ar->tx_nr_pending)); if (!test_bit(AR5523_HW_UP, &ar->flags)) ar5523_dbg(ar, "Unexpected WDCMSG_SEND_COMPLETE\n"); else { mod_timer(&ar->tx_wd_timer, jiffies + AR5523_TX_WD_TIMEOUT); ar5523_data_tx_pkt_put(ar); } break; case WDCMSG_TARGET_START: /* This command returns a bogus id so it needs special handling */ dlen = hdr->len - sizeof(*hdr); if (dlen != (int)sizeof(u32)) { ar5523_err(ar, "Invalid reply to WDCMSG_TARGET_START"); return; } memcpy(cmd->odata, hdr + 1, sizeof(u32)); cmd->olen = sizeof(u32); cmd->res = 0; complete(&cmd->done); break; case WDCMSG_STATS_UPDATE: ar5523_dbg(ar, "WDCMSG_STATS_UPDATE\n"); break; } skip: ar5523_submit_rx_cmd(ar); } static int ar5523_alloc_rx_cmd(struct ar5523 *ar) { ar->rx_cmd_urb = usb_alloc_urb(0, GFP_KERNEL); if (!ar->rx_cmd_urb) return -ENOMEM; ar->rx_cmd_buf = usb_alloc_coherent(ar->dev, AR5523_MAX_RXCMDSZ, GFP_KERNEL, &ar->rx_cmd_urb->transfer_dma); if (!ar->rx_cmd_buf) { usb_free_urb(ar->rx_cmd_urb); return -ENOMEM; } return 0; } static void ar5523_cancel_rx_cmd(struct ar5523 *ar) { usb_kill_urb(ar->rx_cmd_urb); } static void ar5523_free_rx_cmd(struct ar5523 *ar) { usb_free_coherent(ar->dev, AR5523_MAX_RXCMDSZ, ar->rx_cmd_buf, ar->rx_cmd_urb->transfer_dma); usb_free_urb(ar->rx_cmd_urb); } static int ar5523_submit_rx_cmd(struct ar5523 *ar) { int error; usb_fill_bulk_urb(ar->rx_cmd_urb, ar->dev, ar5523_cmd_rx_pipe(ar->dev), ar->rx_cmd_buf, AR5523_MAX_RXCMDSZ, ar5523_cmd_rx_cb, ar); ar->rx_cmd_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = usb_submit_urb(ar->rx_cmd_urb, GFP_ATOMIC); if (error) { if (error != -ENODEV) ar5523_err(ar, "error %d when submitting rx urb\n", error); return error; } return 0; } /* * Command submitted cb */ static void ar5523_cmd_tx_cb(struct urb *urb) { struct ar5523_tx_cmd *cmd = urb->context; struct ar5523 *ar = cmd->ar; if (urb->status) { ar5523_err(ar, "Failed to TX command. Status = %d\n", urb->status); cmd->res = urb->status; complete(&cmd->done); return; } if (!(cmd->flags & AR5523_CMD_FLAG_READ)) { cmd->res = 0; complete(&cmd->done); } } static int ar5523_cmd(struct ar5523 *ar, u32 code, const void *idata, int ilen, void *odata, int olen, int flags) { struct ar5523_cmd_hdr *hdr; struct ar5523_tx_cmd *cmd = &ar->tx_cmd; int xferlen, error; /* always bulk-out a multiple of 4 bytes */ xferlen = (sizeof(struct ar5523_cmd_hdr) + ilen + 3) & ~3; hdr = (struct ar5523_cmd_hdr *)cmd->buf_tx; memset(hdr, 0, sizeof(struct ar5523_cmd_hdr)); hdr->len = cpu_to_be32(xferlen); hdr->code = cpu_to_be32(code); hdr->priv = AR5523_CMD_ID; if (flags & AR5523_CMD_FLAG_MAGIC) hdr->magic = cpu_to_be32(1 << 24); memcpy(hdr + 1, idata, ilen); cmd->odata = odata; cmd->olen = olen; cmd->flags = flags; ar5523_dbg(ar, "do cmd %02x\n", code); usb_fill_bulk_urb(cmd->urb_tx, ar->dev, ar5523_cmd_tx_pipe(ar->dev), cmd->buf_tx, xferlen, ar5523_cmd_tx_cb, cmd); cmd->urb_tx->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = usb_submit_urb(cmd->urb_tx, GFP_KERNEL); if (error) { ar5523_err(ar, "could not send command 0x%x, error=%d\n", code, error); return error; } if (!wait_for_completion_timeout(&cmd->done, 2 * HZ)) { cmd->odata = NULL; ar5523_err(ar, "timeout waiting for command %02x reply\n", code); cmd->res = -ETIMEDOUT; } return cmd->res; } static int ar5523_cmd_write(struct ar5523 *ar, u32 code, const void *data, int len, int flags) { flags &= ~AR5523_CMD_FLAG_READ; return ar5523_cmd(ar, code, data, len, NULL, 0, flags); } static int ar5523_cmd_read(struct ar5523 *ar, u32 code, const void *idata, int ilen, void *odata, int olen, int flags) { flags |= AR5523_CMD_FLAG_READ; return ar5523_cmd(ar, code, idata, ilen, odata, olen, flags); } static int ar5523_config(struct ar5523 *ar, u32 reg, u32 val) { struct ar5523_write_mac write; int error; write.reg = cpu_to_be32(reg); write.len = cpu_to_be32(0); /* 0 = single write */ *(u32 *)write.data = cpu_to_be32(val); error = ar5523_cmd_write(ar, WDCMSG_TARGET_SET_CONFIG, &write, 3 * sizeof(u32), 0); if (error != 0) ar5523_err(ar, "could not write register 0x%02x\n", reg); return error; } static int ar5523_config_multi(struct ar5523 *ar, u32 reg, const void *data, int len) { struct ar5523_write_mac write; int error; write.reg = cpu_to_be32(reg); write.len = cpu_to_be32(len); memcpy(write.data, data, len); /* properly handle the case where len is zero (reset) */ error = ar5523_cmd_write(ar, WDCMSG_TARGET_SET_CONFIG, &write, (len == 0) ? sizeof(u32) : 2 * sizeof(u32) + len, 0); if (error != 0) ar5523_err(ar, "could not write %d bytes to register 0x%02x\n", len, reg); return error; } static int ar5523_get_status(struct ar5523 *ar, u32 which, void *odata, int olen) { int error; which = cpu_to_be32(which); error = ar5523_cmd_read(ar, WDCMSG_TARGET_GET_STATUS, &which, sizeof(which), odata, olen, AR5523_CMD_FLAG_MAGIC); if (error != 0) ar5523_err(ar, "could not read EEPROM offset 0x%02x\n", be32_to_cpu(which)); return error; } static int ar5523_get_capability(struct ar5523 *ar, u32 cap, u32 *val) { int error; cap = cpu_to_be32(cap); error = ar5523_cmd_read(ar, WDCMSG_TARGET_GET_CAPABILITY, &cap, sizeof(cap), val, sizeof(u32), AR5523_CMD_FLAG_MAGIC); if (error != 0) { ar5523_err(ar, "could not read capability %u\n", be32_to_cpu(cap)); return error; } *val = be32_to_cpu(*val); return error; } static int ar5523_get_devcap(struct ar5523 *ar) { #define GETCAP(x) do { \ error = ar5523_get_capability(ar, x, &cap); \ if (error != 0) \ return error; \ ar5523_info(ar, "Cap: " \ "%s=0x%08x\n", #x, cap); \ } while (0) int error; u32 cap; /* collect device capabilities */ GETCAP(CAP_TARGET_VERSION); GETCAP(CAP_TARGET_REVISION); GETCAP(CAP_MAC_VERSION); GETCAP(CAP_MAC_REVISION); GETCAP(CAP_PHY_REVISION); GETCAP(CAP_ANALOG_5GHz_REVISION); GETCAP(CAP_ANALOG_2GHz_REVISION); GETCAP(CAP_REG_DOMAIN); GETCAP(CAP_REG_CAP_BITS); GETCAP(CAP_WIRELESS_MODES); GETCAP(CAP_CHAN_SPREAD_SUPPORT); GETCAP(CAP_COMPRESS_SUPPORT); GETCAP(CAP_BURST_SUPPORT); GETCAP(CAP_FAST_FRAMES_SUPPORT); GETCAP(CAP_CHAP_TUNING_SUPPORT); GETCAP(CAP_TURBOG_SUPPORT); GETCAP(CAP_TURBO_PRIME_SUPPORT); GETCAP(CAP_DEVICE_TYPE); GETCAP(CAP_WME_SUPPORT); GETCAP(CAP_TOTAL_QUEUES); GETCAP(CAP_CONNECTION_ID_MAX); GETCAP(CAP_LOW_5GHZ_CHAN); GETCAP(CAP_HIGH_5GHZ_CHAN); GETCAP(CAP_LOW_2GHZ_CHAN); GETCAP(CAP_HIGH_2GHZ_CHAN); GETCAP(CAP_TWICE_ANTENNAGAIN_5G); GETCAP(CAP_TWICE_ANTENNAGAIN_2G); GETCAP(CAP_CIPHER_AES_CCM); GETCAP(CAP_CIPHER_TKIP); GETCAP(CAP_MIC_TKIP); return 0; } static int ar5523_set_ledsteady(struct ar5523 *ar, int lednum, int ledmode) { struct ar5523_cmd_ledsteady led; led.lednum = cpu_to_be32(lednum); led.ledmode = cpu_to_be32(ledmode); ar5523_dbg(ar, "set %s led %s (steady)\n", (lednum == UATH_LED_LINK) ? "link" : "activity", ledmode ? "on" : "off"); return ar5523_cmd_write(ar, WDCMSG_SET_LED_STEADY, &led, sizeof(led), 0); } static int ar5523_set_rxfilter(struct ar5523 *ar, u32 bits, u32 op) { struct ar5523_cmd_rx_filter rxfilter; rxfilter.bits = cpu_to_be32(bits); rxfilter.op = cpu_to_be32(op); ar5523_dbg(ar, "setting Rx filter=0x%x flags=0x%x\n", bits, op); return ar5523_cmd_write(ar, WDCMSG_RX_FILTER, &rxfilter, sizeof(rxfilter), 0); } static int ar5523_reset_tx_queues(struct ar5523 *ar) { __be32 qid = cpu_to_be32(0); ar5523_dbg(ar, "resetting Tx queue\n"); return ar5523_cmd_write(ar, WDCMSG_RELEASE_TX_QUEUE, &qid, sizeof(qid), 0); } static int ar5523_set_chan(struct ar5523 *ar) { struct ieee80211_conf *conf = &ar->hw->conf; struct ar5523_cmd_reset reset; memset(&reset, 0, sizeof(reset)); reset.flags |= cpu_to_be32(UATH_CHAN_2GHZ); reset.flags |= cpu_to_be32(UATH_CHAN_OFDM); reset.freq = cpu_to_be32(conf->channel->center_freq); reset.maxrdpower = cpu_to_be32(50); /* XXX */ reset.channelchange = cpu_to_be32(1); reset.keeprccontent = cpu_to_be32(0); ar5523_dbg(ar, "set chan flags 0x%x freq %d\n", be32_to_cpu(reset.flags), conf->channel->center_freq); return ar5523_cmd_write(ar, WDCMSG_RESET, &reset, sizeof(reset), 0); } static int ar5523_queue_init(struct ar5523 *ar) { struct ar5523_cmd_txq_setup qinfo; ar5523_dbg(ar, "setting up Tx queue\n"); qinfo.qid = cpu_to_be32(0); qinfo.len = cpu_to_be32(sizeof(qinfo.attr)); qinfo.attr.priority = cpu_to_be32(0); /* XXX */ qinfo.attr.aifs = cpu_to_be32(3); qinfo.attr.logcwmin = cpu_to_be32(4); qinfo.attr.logcwmax = cpu_to_be32(10); qinfo.attr.bursttime = cpu_to_be32(0); qinfo.attr.mode = cpu_to_be32(0); qinfo.attr.qflags = cpu_to_be32(1); /* XXX? */ return ar5523_cmd_write(ar, WDCMSG_SETUP_TX_QUEUE, &qinfo, sizeof(qinfo), 0); } static int ar5523_switch_chan(struct ar5523 *ar) { int error; error = ar5523_set_chan(ar); if (error) { ar5523_err(ar, "could not set chan, error %d\n", error); goto out_err; } /* reset Tx rings */ error = ar5523_reset_tx_queues(ar); if (error) { ar5523_err(ar, "could not reset Tx queues, error %d\n", error); goto out_err; } /* set Tx rings WME properties */ error = ar5523_queue_init(ar); if (error) ar5523_err(ar, "could not init wme, error %d\n", error); out_err: return error; } static void ar5523_rx_data_put(struct ar5523 *ar, struct ar5523_rx_data *data) { unsigned long flags; spin_lock_irqsave(&ar->rx_data_list_lock, flags); list_move(&data->list, &ar->rx_data_free); spin_unlock_irqrestore(&ar->rx_data_list_lock, flags); } static void ar5523_data_rx_cb(struct urb *urb) { struct ar5523_rx_data *data = urb->context; struct ar5523 *ar = data->ar; struct ar5523_rx_desc *desc; struct ar5523_chunk *chunk; struct ieee80211_hw *hw = ar->hw; struct ieee80211_rx_status *rx_status; u32 rxlen; int usblen = urb->actual_length; int hdrlen, pad; ar5523_dbg(ar, "%s\n", __func__); /* sync/async unlink faults aren't errors */ if (urb->status) { if (urb->status != -ESHUTDOWN) ar5523_err(ar, "%s: USB err: %d\n", __func__, urb->status); goto skip; } if (usblen < AR5523_MIN_RXBUFSZ) { ar5523_err(ar, "RX: wrong xfer size (usblen=%d)\n", usblen); goto skip; } chunk = (struct ar5523_chunk *) data->skb->data; if (((chunk->flags & UATH_CFLAGS_FINAL) == 0) || chunk->seqnum != 0) { ar5523_dbg(ar, "RX: No final flag. s: %d f: %02x l: %d\n", chunk->seqnum, chunk->flags, be16_to_cpu(chunk->length)); goto skip; } /* Rx descriptor is located at the end, 32-bit aligned */ desc = (struct ar5523_rx_desc *) (data->skb->data + usblen - sizeof(struct ar5523_rx_desc)); rxlen = be32_to_cpu(desc->len); if (rxlen > ar->rxbufsz) { ar5523_dbg(ar, "RX: Bad descriptor (len=%d)\n", be32_to_cpu(desc->len)); goto skip; } if (!rxlen) { ar5523_dbg(ar, "RX: rxlen is 0\n"); goto skip; } if (be32_to_cpu(desc->status) != 0) { ar5523_dbg(ar, "Bad RX status (0x%x len = %d). Skip\n", be32_to_cpu(desc->status), be32_to_cpu(desc->len)); goto skip; } skb_reserve(data->skb, sizeof(*chunk)); skb_put(data->skb, rxlen - sizeof(struct ar5523_rx_desc)); hdrlen = ieee80211_get_hdrlen_from_skb(data->skb); if (!IS_ALIGNED(hdrlen, 4)) { ar5523_dbg(ar, "eek, alignment workaround activated\n"); pad = ALIGN(hdrlen, 4) - hdrlen; memmove(data->skb->data + pad, data->skb->data, hdrlen); skb_pull(data->skb, pad); skb_put(data->skb, pad); } rx_status = IEEE80211_SKB_RXCB(data->skb); memset(rx_status, 0, sizeof(*rx_status)); rx_status->freq = be32_to_cpu(desc->channel); rx_status->band = hw->conf.channel->band; rx_status->signal = -95 + be32_to_cpu(desc->rssi); ieee80211_rx_irqsafe(hw, data->skb); data->skb = NULL; skip: if (data->skb) { dev_kfree_skb_irq(data->skb); data->skb = NULL; } ar5523_rx_data_put(ar, data); if (atomic_inc_return(&ar->rx_data_free_cnt) >= AR5523_RX_DATA_REFILL_COUNT && test_bit(AR5523_HW_UP, &ar->flags)) queue_work(ar->wq, &ar->rx_refill_work); } static void ar5523_rx_refill_work(struct work_struct *work) { struct ar5523 *ar = container_of(work, struct ar5523, rx_refill_work); struct ar5523_rx_data *data; unsigned long flags; int error; ar5523_dbg(ar, "%s\n", __func__); do { spin_lock_irqsave(&ar->rx_data_list_lock, flags); if (!list_empty(&ar->rx_data_free)) data = (struct ar5523_rx_data *) ar->rx_data_free.next; else data = NULL; spin_unlock_irqrestore(&ar->rx_data_list_lock, flags); if (!data) goto done; data->skb = alloc_skb(ar->rxbufsz, GFP_KERNEL); if (!data->skb) { ar5523_err(ar, "could not allocate rx skbuff\n"); return; } usb_fill_bulk_urb(data->urb, ar->dev, ar5523_data_rx_pipe(ar->dev), data->skb->data, ar->rxbufsz, ar5523_data_rx_cb, data); spin_lock_irqsave(&ar->rx_data_list_lock, flags); list_move(&data->list, &ar->rx_data_used); spin_unlock_irqrestore(&ar->rx_data_list_lock, flags); atomic_dec(&ar->rx_data_free_cnt); error = usb_submit_urb(data->urb, GFP_KERNEL); if (error) { kfree_skb(data->skb); if (error != -ENODEV) ar5523_err(ar, "Err sending rx data urb %d\n", error); ar5523_rx_data_put(ar, data); atomic_inc(&ar->rx_data_free_cnt); return; } } while (true); done: return; } static void ar5523_cancel_rx_bufs(struct ar5523 *ar) { struct ar5523_rx_data *data; unsigned long flags; do { spin_lock_irqsave(&ar->rx_data_list_lock, flags); if (!list_empty(&ar->rx_data_used)) data = (struct ar5523_rx_data *) ar->rx_data_used.next; else data = NULL; spin_unlock_irqrestore(&ar->rx_data_list_lock, flags); if (!data) break; usb_kill_urb(data->urb); list_move(&data->list, &ar->rx_data_free); atomic_inc(&ar->rx_data_free_cnt); } while (data); } static void ar5523_free_rx_bufs(struct ar5523 *ar) { struct ar5523_rx_data *data; ar5523_cancel_rx_bufs(ar); while (!list_empty(&ar->rx_data_free)) { data = (struct ar5523_rx_data *) ar->rx_data_free.next; list_del(&data->list); usb_free_urb(data->urb); } } static int ar5523_alloc_rx_bufs(struct ar5523 *ar) { int i; for (i = 0; i < AR5523_RX_DATA_COUNT; i++) { struct ar5523_rx_data *data = &ar->rx_data[i]; data->ar = ar; data->urb = usb_alloc_urb(0, GFP_KERNEL); if (!data->urb) { ar5523_err(ar, "could not allocate rx data urb\n"); goto err; } list_add_tail(&data->list, &ar->rx_data_free); atomic_inc(&ar->rx_data_free_cnt); } return 0; err: ar5523_free_rx_bufs(ar); return -ENOMEM; } static void ar5523_data_tx_pkt_put(struct ar5523 *ar) { atomic_dec(&ar->tx_nr_total); if (!atomic_dec_return(&ar->tx_nr_pending)) { del_timer(&ar->tx_wd_timer); wake_up(&ar->tx_flush_waitq); } if (atomic_read(&ar->tx_nr_total) < AR5523_TX_DATA_RESTART_COUNT) { ar5523_dbg(ar, "restart tx queue\n"); ieee80211_wake_queues(ar->hw); } } static void ar5523_data_tx_cb(struct urb *urb) { struct sk_buff *skb = urb->context; struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb); struct ar5523_tx_data *data = (struct ar5523_tx_data *) txi->driver_data; struct ar5523 *ar = data->ar; unsigned long flags; ar5523_dbg(ar, "data tx urb completed: %d\n", urb->status); spin_lock_irqsave(&ar->tx_data_list_lock, flags); list_del(&data->list); spin_unlock_irqrestore(&ar->tx_data_list_lock, flags); if (urb->status) { ar5523_dbg(ar, "%s: urb status: %d\n", __func__, urb->status); ar5523_data_tx_pkt_put(ar); ieee80211_free_txskb(ar->hw, skb); } else { skb_pull(skb, sizeof(struct ar5523_tx_desc) + sizeof(__be32)); ieee80211_tx_status_irqsafe(ar->hw, skb); } usb_free_urb(urb); } static void ar5523_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb); struct ar5523_tx_data *data = (struct ar5523_tx_data *) txi->driver_data; struct ar5523 *ar = hw->priv; unsigned long flags; ar5523_dbg(ar, "tx called\n"); if (atomic_inc_return(&ar->tx_nr_total) >= AR5523_TX_DATA_COUNT) { ar5523_dbg(ar, "tx queue full\n"); ar5523_dbg(ar, "stop queues (tot %d pend %d)\n", atomic_read(&ar->tx_nr_total), atomic_read(&ar->tx_nr_pending)); ieee80211_stop_queues(hw); } data->skb = skb; spin_lock_irqsave(&ar->tx_data_list_lock, flags); list_add_tail(&data->list, &ar->tx_queue_pending); spin_unlock_irqrestore(&ar->tx_data_list_lock, flags); ieee80211_queue_work(ar->hw, &ar->tx_work); } static void ar5523_tx_work_locked(struct ar5523 *ar) { struct ar5523_tx_data *data; struct ar5523_tx_desc *desc; struct ar5523_chunk *chunk; struct ieee80211_tx_info *txi; struct urb *urb; struct sk_buff *skb; int error = 0, paylen; u32 txqid; unsigned long flags; BUILD_BUG_ON(sizeof(struct ar5523_tx_data) > IEEE80211_TX_INFO_DRIVER_DATA_SIZE); ar5523_dbg(ar, "%s\n", __func__); do { spin_lock_irqsave(&ar->tx_data_list_lock, flags); if (!list_empty(&ar->tx_queue_pending)) { data = (struct ar5523_tx_data *) ar->tx_queue_pending.next; list_del(&data->list); } else data = NULL; spin_unlock_irqrestore(&ar->tx_data_list_lock, flags); if (!data) break; skb = data->skb; txqid = 0; txi = IEEE80211_SKB_CB(skb); paylen = skb->len; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { ar5523_err(ar, "Failed to allocate TX urb\n"); ieee80211_free_txskb(ar->hw, skb); continue; } data->ar = ar; data->urb = urb; desc = (struct ar5523_tx_desc *)skb_push(skb, sizeof(*desc)); chunk = (struct ar5523_chunk *)skb_push(skb, sizeof(*chunk)); chunk->seqnum = 0; chunk->flags = UATH_CFLAGS_FINAL; chunk->length = cpu_to_be16(skb->len); desc->msglen = cpu_to_be32(skb->len); desc->msgid = AR5523_DATA_ID; desc->buflen = cpu_to_be32(paylen); desc->type = cpu_to_be32(WDCMSG_SEND); desc->flags = cpu_to_be32(UATH_TX_NOTIFY); if (test_bit(AR5523_CONNECTED, &ar->flags)) desc->connid = cpu_to_be32(AR5523_ID_BSS); else desc->connid = cpu_to_be32(AR5523_ID_BROADCAST); if (txi->flags & IEEE80211_TX_CTL_USE_MINRATE) txqid |= UATH_TXQID_MINRATE; desc->txqid = cpu_to_be32(txqid); urb->transfer_flags = URB_ZERO_PACKET; usb_fill_bulk_urb(urb, ar->dev, ar5523_data_tx_pipe(ar->dev), skb->data, skb->len, ar5523_data_tx_cb, skb); spin_lock_irqsave(&ar->tx_data_list_lock, flags); list_add_tail(&data->list, &ar->tx_queue_submitted); spin_unlock_irqrestore(&ar->tx_data_list_lock, flags); mod_timer(&ar->tx_wd_timer, jiffies + AR5523_TX_WD_TIMEOUT); atomic_inc(&ar->tx_nr_pending); ar5523_dbg(ar, "TX Frame (%d pending)\n", atomic_read(&ar->tx_nr_pending)); error = usb_submit_urb(urb, GFP_KERNEL); if (error) { ar5523_err(ar, "error %d when submitting tx urb\n", error); spin_lock_irqsave(&ar->tx_data_list_lock, flags); list_del(&data->list); spin_unlock_irqrestore(&ar->tx_data_list_lock, flags); atomic_dec(&ar->tx_nr_pending); ar5523_data_tx_pkt_put(ar); usb_free_urb(urb); ieee80211_free_txskb(ar->hw, skb); } } while (true); } static void ar5523_tx_work(struct work_struct *work) { struct ar5523 *ar = container_of(work, struct ar5523, tx_work); ar5523_dbg(ar, "%s\n", __func__); mutex_lock(&ar->mutex); ar5523_tx_work_locked(ar); mutex_unlock(&ar->mutex); } static void ar5523_tx_wd_timer(unsigned long arg) { struct ar5523 *ar = (struct ar5523 *) arg; ar5523_dbg(ar, "TX watchdog timer triggered\n"); ieee80211_queue_work(ar->hw, &ar->tx_wd_work); } static void ar5523_tx_wd_work(struct work_struct *work) { struct ar5523 *ar = container_of(work, struct ar5523, tx_wd_work); /* Occasionally the TX queues stop responding. The only way to * recover seems to be to reset the dongle. */ mutex_lock(&ar->mutex); ar5523_err(ar, "TX queue stuck (tot %d pend %d)\n", atomic_read(&ar->tx_nr_total), atomic_read(&ar->tx_nr_pending)); ar5523_err(ar, "Will restart dongle.\n"); ar5523_cmd_write(ar, WDCMSG_TARGET_RESET, NULL, 0, 0); mutex_unlock(&ar->mutex); } static void ar5523_flush_tx(struct ar5523 *ar) { ar5523_tx_work_locked(ar); /* Don't waste time trying to flush if USB is disconnected */ if (test_bit(AR5523_USB_DISCONNECTED, &ar->flags)) return; if (!wait_event_timeout(ar->tx_flush_waitq, !atomic_read(&ar->tx_nr_pending), AR5523_FLUSH_TIMEOUT)) ar5523_err(ar, "flush timeout (tot %d pend %d)\n", atomic_read(&ar->tx_nr_total), atomic_read(&ar->tx_nr_pending)); } static void ar5523_free_tx_cmd(struct ar5523 *ar) { struct ar5523_tx_cmd *cmd = &ar->tx_cmd; usb_free_coherent(ar->dev, AR5523_MAX_RXCMDSZ, cmd->buf_tx, cmd->urb_tx->transfer_dma); usb_free_urb(cmd->urb_tx); } static int ar5523_alloc_tx_cmd(struct ar5523 *ar) { struct ar5523_tx_cmd *cmd = &ar->tx_cmd; cmd->ar = ar; init_completion(&cmd->done); cmd->urb_tx = usb_alloc_urb(0, GFP_KERNEL); if (!cmd->urb_tx) { ar5523_err(ar, "could not allocate urb\n"); return -ENOMEM; } cmd->buf_tx = usb_alloc_coherent(ar->dev, AR5523_MAX_TXCMDSZ, GFP_KERNEL, &cmd->urb_tx->transfer_dma); if (!cmd->buf_tx) { usb_free_urb(cmd->urb_tx); return -ENOMEM; } return 0; } /* * This function is called periodically (every second) when associated to * query device statistics. */ static void ar5523_stat_work(struct work_struct *work) { struct ar5523 *ar = container_of(work, struct ar5523, stat_work.work); int error; ar5523_dbg(ar, "%s\n", __func__); mutex_lock(&ar->mutex); /* * Send request for statistics asynchronously once a second. This * seems to be important. Throughput is a lot better if this is done. */ error = ar5523_cmd_write(ar, WDCMSG_TARGET_GET_STATS, NULL, 0, 0); if (error) ar5523_err(ar, "could not query stats, error %d\n", error); mutex_unlock(&ar->mutex); ieee80211_queue_delayed_work(ar->hw, &ar->stat_work, HZ); } /* * Interface routines to the mac80211 stack. */ static int ar5523_start(struct ieee80211_hw *hw) { struct ar5523 *ar = hw->priv; int error; __be32 val; ar5523_dbg(ar, "start called\n"); mutex_lock(&ar->mutex); val = cpu_to_be32(0); ar5523_cmd_write(ar, WDCMSG_BIND, &val, sizeof(val), 0); /* set MAC address */ ar5523_config_multi(ar, CFG_MAC_ADDR, &ar->hw->wiphy->perm_addr, ETH_ALEN); /* XXX honor net80211 state */ ar5523_config(ar, CFG_RATE_CONTROL_ENABLE, 0x00000001); ar5523_config(ar, CFG_DIVERSITY_CTL, 0x00000001); ar5523_config(ar, CFG_ABOLT, 0x0000003f); ar5523_config(ar, CFG_WME_ENABLED, 0x00000000); ar5523_config(ar, CFG_SERVICE_TYPE, 1); ar5523_config(ar, CFG_TP_SCALE, 0x00000000); ar5523_config(ar, CFG_TPC_HALF_DBM5, 0x0000003c); ar5523_config(ar, CFG_TPC_HALF_DBM2, 0x0000003c); ar5523_config(ar, CFG_OVERRD_TX_POWER, 0x00000000); ar5523_config(ar, CFG_GMODE_PROTECTION, 0x00000000); ar5523_config(ar, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); ar5523_config(ar, CFG_PROTECTION_TYPE, 0x00000000); ar5523_config(ar, CFG_MODE_CTS, 0x00000002); error = ar5523_cmd_read(ar, WDCMSG_TARGET_START, NULL, 0, &val, sizeof(val), AR5523_CMD_FLAG_MAGIC); if (error) { ar5523_dbg(ar, "could not start target, error %d\n", error); goto err; } ar5523_dbg(ar, "WDCMSG_TARGET_START returns handle: 0x%x\n", be32_to_cpu(val)); ar5523_switch_chan(ar); val = cpu_to_be32(TARGET_DEVICE_AWAKE); ar5523_cmd_write(ar, WDCMSG_SET_PWR_MODE, &val, sizeof(val), 0); /* XXX? check */ ar5523_cmd_write(ar, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); set_bit(AR5523_HW_UP, &ar->flags); queue_work(ar->wq, &ar->rx_refill_work); /* enable Rx */ ar5523_set_rxfilter(ar, 0, UATH_FILTER_OP_INIT); ar5523_set_rxfilter(ar, UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, UATH_FILTER_OP_SET); ar5523_set_ledsteady(ar, UATH_LED_ACTIVITY, UATH_LED_ON); ar5523_dbg(ar, "start OK\n"); err: mutex_unlock(&ar->mutex); return error; } static void ar5523_stop(struct ieee80211_hw *hw) { struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "stop called\n"); cancel_delayed_work_sync(&ar->stat_work); mutex_lock(&ar->mutex); clear_bit(AR5523_HW_UP, &ar->flags); ar5523_set_ledsteady(ar, UATH_LED_LINK, UATH_LED_OFF); ar5523_set_ledsteady(ar, UATH_LED_ACTIVITY, UATH_LED_OFF); ar5523_cmd_write(ar, WDCMSG_TARGET_STOP, NULL, 0, 0); del_timer_sync(&ar->tx_wd_timer); cancel_work_sync(&ar->tx_wd_work); cancel_work_sync(&ar->rx_refill_work); ar5523_cancel_rx_bufs(ar); mutex_unlock(&ar->mutex); } static int ar5523_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct ar5523 *ar = hw->priv; int ret; ar5523_dbg(ar, "set_rts_threshold called\n"); mutex_lock(&ar->mutex); ret = ar5523_config(ar, CFG_USER_RTS_THRESHOLD, value); mutex_unlock(&ar->mutex); return ret; } static void ar5523_flush(struct ieee80211_hw *hw, bool drop) { struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "flush called\n"); ar5523_flush_tx(ar); } static int ar5523_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "add interface called\n"); if (ar->vif) { ar5523_dbg(ar, "invalid add_interface\n"); return -EOPNOTSUPP; } switch (vif->type) { case NL80211_IFTYPE_STATION: ar->vif = vif; break; default: return -EOPNOTSUPP; } return 0; } static void ar5523_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "remove interface called\n"); ar->vif = NULL; } static int ar5523_hwconfig(struct ieee80211_hw *hw, u32 changed) { struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "config called\n"); mutex_lock(&ar->mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ar5523_dbg(ar, "Do channel switch\n"); ar5523_flush_tx(ar); ar5523_switch_chan(ar); } mutex_unlock(&ar->mutex); return 0; } static int ar5523_get_wlan_mode(struct ar5523 *ar, struct ieee80211_bss_conf *bss_conf) { struct ieee80211_supported_band *band; int bit; struct ieee80211_sta *sta; u32 sta_rate_set; band = ar->hw->wiphy->bands[ar->hw->conf.channel->band]; sta = ieee80211_find_sta(ar->vif, bss_conf->bssid); if (!sta) { ar5523_info(ar, "STA not found!\n"); return WLAN_MODE_11b; } sta_rate_set = sta->supp_rates[ar->hw->conf.channel->band]; for (bit = 0; bit < band->n_bitrates; bit++) { if (sta_rate_set & 1) { int rate = band->bitrates[bit].bitrate; switch (rate) { case 60: case 90: case 120: case 180: case 240: case 360: case 480: case 540: return WLAN_MODE_11g; } } sta_rate_set >>= 1; } return WLAN_MODE_11b; } static void ar5523_create_rateset(struct ar5523 *ar, struct ieee80211_bss_conf *bss_conf, struct ar5523_cmd_rateset *rs, bool basic) { struct ieee80211_supported_band *band; struct ieee80211_sta *sta; int bit, i = 0; u32 sta_rate_set, basic_rate_set; sta = ieee80211_find_sta(ar->vif, bss_conf->bssid); basic_rate_set = bss_conf->basic_rates; if (!sta) { ar5523_info(ar, "STA not found. Cannot set rates\n"); sta_rate_set = bss_conf->basic_rates; } sta_rate_set = sta->supp_rates[ar->hw->conf.channel->band]; ar5523_dbg(ar, "sta rate_set = %08x\n", sta_rate_set); band = ar->hw->wiphy->bands[ar->hw->conf.channel->band]; for (bit = 0; bit < band->n_bitrates; bit++) { BUG_ON(i >= AR5523_MAX_NRATES); ar5523_dbg(ar, "Considering rate %d : %d\n", band->bitrates[bit].hw_value, sta_rate_set & 1); if (sta_rate_set & 1) { rs->set[i] = band->bitrates[bit].hw_value; if (basic_rate_set & 1 && basic) rs->set[i] |= 0x80; i++; } sta_rate_set >>= 1; basic_rate_set >>= 1; } rs->length = i; } static int ar5523_set_basic_rates(struct ar5523 *ar, struct ieee80211_bss_conf *bss) { struct ar5523_cmd_rates rates; memset(&rates, 0, sizeof(rates)); rates.connid = cpu_to_be32(2); /* XXX */ rates.size = cpu_to_be32(sizeof(struct ar5523_cmd_rateset)); ar5523_create_rateset(ar, bss, &rates.rateset, true); return ar5523_cmd_write(ar, WDCMSG_SET_BASIC_RATE, &rates, sizeof(rates), 0); } static int ar5523_create_connection(struct ar5523 *ar, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss) { struct ar5523_cmd_create_connection create; int wlan_mode; memset(&create, 0, sizeof(create)); create.connid = cpu_to_be32(2); create.bssid = cpu_to_be32(0); /* XXX packed or not? */ create.size = cpu_to_be32(sizeof(struct ar5523_cmd_rateset)); ar5523_create_rateset(ar, bss, &create.connattr.rateset, false); wlan_mode = ar5523_get_wlan_mode(ar, bss); create.connattr.wlanmode = cpu_to_be32(wlan_mode); return ar5523_cmd_write(ar, WDCMSG_CREATE_CONNECTION, &create, sizeof(create), 0); } static int ar5523_write_associd(struct ar5523 *ar, struct ieee80211_bss_conf *bss) { struct ar5523_cmd_set_associd associd; memset(&associd, 0, sizeof(associd)); associd.defaultrateix = cpu_to_be32(0); /* XXX */ associd.associd = cpu_to_be32(bss->aid); associd.timoffset = cpu_to_be32(0x3b); /* XXX */ memcpy(associd.bssid, bss->bssid, ETH_ALEN); return ar5523_cmd_write(ar, WDCMSG_WRITE_ASSOCID, &associd, sizeof(associd), 0); } static void ar5523_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss, u32 changed) { struct ar5523 *ar = hw->priv; int error; ar5523_dbg(ar, "bss_info_changed called\n"); mutex_lock(&ar->mutex); if (!(changed & BSS_CHANGED_ASSOC)) goto out_unlock; if (bss->assoc) { error = ar5523_create_connection(ar, vif, bss); if (error) { ar5523_err(ar, "could not create connection\n"); goto out_unlock; } error = ar5523_set_basic_rates(ar, bss); if (error) { ar5523_err(ar, "could not set negotiated rate set\n"); goto out_unlock; } error = ar5523_write_associd(ar, bss); if (error) { ar5523_err(ar, "could not set association\n"); goto out_unlock; } /* turn link LED on */ ar5523_set_ledsteady(ar, UATH_LED_LINK, UATH_LED_ON); set_bit(AR5523_CONNECTED, &ar->flags); ieee80211_queue_delayed_work(hw, &ar->stat_work, HZ); } else { cancel_delayed_work(&ar->stat_work); clear_bit(AR5523_CONNECTED, &ar->flags); ar5523_set_ledsteady(ar, UATH_LED_LINK, UATH_LED_OFF); } out_unlock: mutex_unlock(&ar->mutex); } #define AR5523_SUPPORTED_FILTERS (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_FCSFAIL | \ FIF_OTHER_BSS) static void ar5523_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ar5523 *ar = hw->priv; u32 filter = 0; ar5523_dbg(ar, "configure_filter called\n"); mutex_lock(&ar->mutex); ar5523_flush_tx(ar); *total_flags &= AR5523_SUPPORTED_FILTERS; /* The filters seems strange. UATH_FILTER_RX_BCAST and * UATH_FILTER_RX_MCAST does not result in those frames being RXed. * The only way I have found to get [mb]cast frames seems to be * to set UATH_FILTER_RX_PROM. */ filter |= UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | UATH_FILTER_RX_PROM; ar5523_set_rxfilter(ar, 0, UATH_FILTER_OP_INIT); ar5523_set_rxfilter(ar, filter, UATH_FILTER_OP_SET); mutex_unlock(&ar->mutex); } static const struct ieee80211_ops ar5523_ops = { .start = ar5523_start, .stop = ar5523_stop, .tx = ar5523_tx, .set_rts_threshold = ar5523_set_rts_threshold, .add_interface = ar5523_add_interface, .remove_interface = ar5523_remove_interface, .config = ar5523_hwconfig, .bss_info_changed = ar5523_bss_info_changed, .configure_filter = ar5523_configure_filter, .flush = ar5523_flush, }; static int ar5523_host_available(struct ar5523 *ar) { struct ar5523_cmd_host_available setup; /* inform target the host is available */ setup.sw_ver_major = cpu_to_be32(ATH_SW_VER_MAJOR); setup.sw_ver_minor = cpu_to_be32(ATH_SW_VER_MINOR); setup.sw_ver_patch = cpu_to_be32(ATH_SW_VER_PATCH); setup.sw_ver_build = cpu_to_be32(ATH_SW_VER_BUILD); return ar5523_cmd_read(ar, WDCMSG_HOST_AVAILABLE, &setup, sizeof(setup), NULL, 0, 0); } static int ar5523_get_devstatus(struct ar5523 *ar) { u8 macaddr[ETH_ALEN]; int error; /* retrieve MAC address */ error = ar5523_get_status(ar, ST_MAC_ADDR, macaddr, ETH_ALEN); if (error) { ar5523_err(ar, "could not read MAC address\n"); return error; } SET_IEEE80211_PERM_ADDR(ar->hw, macaddr); error = ar5523_get_status(ar, ST_SERIAL_NUMBER, &ar->serial[0], sizeof(ar->serial)); if (error) { ar5523_err(ar, "could not read device serial number\n"); return error; } return 0; } #define AR5523_SANE_RXBUFSZ 2000 static int ar5523_get_max_rxsz(struct ar5523 *ar) { int error; __be32 rxsize; /* Get max rx size */ error = ar5523_get_status(ar, ST_WDC_TRANSPORT_CHUNK_SIZE, &rxsize, sizeof(rxsize)); if (error != 0) { ar5523_err(ar, "could not read max RX size\n"); return error; } ar->rxbufsz = be32_to_cpu(rxsize); if (!ar->rxbufsz || ar->rxbufsz > AR5523_SANE_RXBUFSZ) { ar5523_err(ar, "Bad rxbufsz from device. Using %d instead\n", AR5523_SANE_RXBUFSZ); ar->rxbufsz = AR5523_SANE_RXBUFSZ; } ar5523_dbg(ar, "Max RX buf size: %d\n", ar->rxbufsz); return 0; } /* * This is copied from rtl818x, but we should probably move this * to common code as in OpenBSD. */ static const struct ieee80211_rate ar5523_rates[] = { { .bitrate = 10, .hw_value = 2, }, { .bitrate = 20, .hw_value = 4 }, { .bitrate = 55, .hw_value = 11, }, { .bitrate = 110, .hw_value = 22, }, { .bitrate = 60, .hw_value = 12, }, { .bitrate = 90, .hw_value = 18, }, { .bitrate = 120, .hw_value = 24, }, { .bitrate = 180, .hw_value = 36, }, { .bitrate = 240, .hw_value = 48, }, { .bitrate = 360, .hw_value = 72, }, { .bitrate = 480, .hw_value = 96, }, { .bitrate = 540, .hw_value = 108, }, }; static const struct ieee80211_channel ar5523_channels[] = { { .center_freq = 2412 }, { .center_freq = 2417 }, { .center_freq = 2422 }, { .center_freq = 2427 }, { .center_freq = 2432 }, { .center_freq = 2437 }, { .center_freq = 2442 }, { .center_freq = 2447 }, { .center_freq = 2452 }, { .center_freq = 2457 }, { .center_freq = 2462 }, { .center_freq = 2467 }, { .center_freq = 2472 }, { .center_freq = 2484 }, }; static int ar5523_init_modes(struct ar5523 *ar) { BUILD_BUG_ON(sizeof(ar->channels) != sizeof(ar5523_channels)); BUILD_BUG_ON(sizeof(ar->rates) != sizeof(ar5523_rates)); memcpy(ar->channels, ar5523_channels, sizeof(ar5523_channels)); memcpy(ar->rates, ar5523_rates, sizeof(ar5523_rates)); ar->band.band = IEEE80211_BAND_2GHZ; ar->band.channels = ar->channels; ar->band.n_channels = ARRAY_SIZE(ar5523_channels); ar->band.bitrates = ar->rates; ar->band.n_bitrates = ARRAY_SIZE(ar5523_rates); ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &ar->band; return 0; } /* * Load the MIPS R4000 microcode into the device. Once the image is loaded, * the device will detach itself from the bus and reattach later with a new * product Id (a la ezusb). */ static int ar5523_load_firmware(struct usb_device *dev) { struct ar5523_fwblock *txblock, *rxblock; const struct firmware *fw; void *fwbuf; int len, offset; int foolen; /* XXX(hch): handle short transfers */ int error = -ENXIO; if (request_firmware(&fw, AR5523_FIRMWARE_FILE, &dev->dev)) { dev_err(&dev->dev, "no firmware found: %s\n", AR5523_FIRMWARE_FILE); return -ENOENT; } txblock = kmalloc(sizeof(*txblock), GFP_KERNEL); if (!txblock) goto out; rxblock = kmalloc(sizeof(*rxblock), GFP_KERNEL); if (!rxblock) goto out_free_txblock; fwbuf = kmalloc(AR5523_MAX_FWBLOCK_SIZE, GFP_KERNEL); if (!fwbuf) goto out_free_rxblock; memset(txblock, 0, sizeof(struct ar5523_fwblock)); txblock->flags = cpu_to_be32(AR5523_WRITE_BLOCK); txblock->total = cpu_to_be32(fw->size); offset = 0; len = fw->size; while (len > 0) { int mlen = min(len, AR5523_MAX_FWBLOCK_SIZE); txblock->remain = cpu_to_be32(len - mlen); txblock->len = cpu_to_be32(mlen); /* send firmware block meta-data */ error = usb_bulk_msg(dev, ar5523_cmd_tx_pipe(dev), txblock, sizeof(*txblock), &foolen, AR5523_CMD_TIMEOUT); if (error) { dev_err(&dev->dev, "could not send firmware block info\n"); goto out_free_fwbuf; } /* send firmware block data */ memcpy(fwbuf, fw->data + offset, mlen); error = usb_bulk_msg(dev, ar5523_data_tx_pipe(dev), fwbuf, mlen, &foolen, AR5523_DATA_TIMEOUT); if (error) { dev_err(&dev->dev, "could not send firmware block data\n"); goto out_free_fwbuf; } /* wait for ack from firmware */ error = usb_bulk_msg(dev, ar5523_cmd_rx_pipe(dev), rxblock, sizeof(*rxblock), &foolen, AR5523_CMD_TIMEOUT); if (error) { dev_err(&dev->dev, "could not read firmware answer\n"); goto out_free_fwbuf; } len -= mlen; offset += mlen; } /* * Set the error to -ENXIO to make sure we continue probing for * a driver. */ error = -ENXIO; out_free_fwbuf: kfree(fwbuf); out_free_rxblock: kfree(rxblock); out_free_txblock: kfree(txblock); out: release_firmware(fw); return error; } static int ar5523_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct ieee80211_hw *hw; struct ar5523 *ar; int error = -ENOMEM; /* * Load firmware if the device requires it. This will return * -ENXIO on success and we'll get called back afer the usb * id changes to indicate that the firmware is present. */ if (id->driver_info & AR5523_FLAG_PRE_FIRMWARE) return ar5523_load_firmware(dev); hw = ieee80211_alloc_hw(sizeof(*ar), &ar5523_ops); if (!hw) goto out; SET_IEEE80211_DEV(hw, &intf->dev); ar = hw->priv; ar->hw = hw; ar->dev = dev; mutex_init(&ar->mutex); INIT_DELAYED_WORK(&ar->stat_work, ar5523_stat_work); init_timer(&ar->tx_wd_timer); setup_timer(&ar->tx_wd_timer, ar5523_tx_wd_timer, (unsigned long) ar); INIT_WORK(&ar->tx_wd_work, ar5523_tx_wd_work); INIT_WORK(&ar->tx_work, ar5523_tx_work); INIT_LIST_HEAD(&ar->tx_queue_pending); INIT_LIST_HEAD(&ar->tx_queue_submitted); spin_lock_init(&ar->tx_data_list_lock); atomic_set(&ar->tx_nr_total, 0); atomic_set(&ar->tx_nr_pending, 0); init_waitqueue_head(&ar->tx_flush_waitq); atomic_set(&ar->rx_data_free_cnt, 0); INIT_WORK(&ar->rx_refill_work, ar5523_rx_refill_work); INIT_LIST_HEAD(&ar->rx_data_free); INIT_LIST_HEAD(&ar->rx_data_used); spin_lock_init(&ar->rx_data_list_lock); ar->wq = create_singlethread_workqueue("ar5523"); if (!ar->wq) { ar5523_err(ar, "Could not create wq\n"); goto out_free_ar; } error = ar5523_alloc_rx_bufs(ar); if (error) { ar5523_err(ar, "Could not allocate rx buffers\n"); goto out_free_wq; } error = ar5523_alloc_rx_cmd(ar); if (error) { ar5523_err(ar, "Could not allocate rx command buffers\n"); goto out_free_rx_bufs; } error = ar5523_alloc_tx_cmd(ar); if (error) { ar5523_err(ar, "Could not allocate tx command buffers\n"); goto out_free_rx_cmd; } error = ar5523_submit_rx_cmd(ar); if (error) { ar5523_err(ar, "Failed to submit rx cmd\n"); goto out_free_tx_cmd; } /* * We're now ready to send/receive firmware commands. */ error = ar5523_host_available(ar); if (error) { ar5523_err(ar, "could not initialize adapter\n"); goto out_cancel_rx_cmd; } error = ar5523_get_max_rxsz(ar); if (error) { ar5523_err(ar, "could not get caps from adapter\n"); goto out_cancel_rx_cmd; } error = ar5523_get_devcap(ar); if (error) { ar5523_err(ar, "could not get caps from adapter\n"); goto out_cancel_rx_cmd; } error = ar5523_get_devstatus(ar); if (error != 0) { ar5523_err(ar, "could not get device status\n"); goto out_cancel_rx_cmd; } ar5523_info(ar, "MAC/BBP AR5523, RF AR%c112\n", (id->driver_info & AR5523_FLAG_ABG) ? '5' : '2'); ar->vif = NULL; hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_HAS_RATE_CONTROL; hw->extra_tx_headroom = sizeof(struct ar5523_tx_desc) + sizeof(struct ar5523_chunk); hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); hw->queues = 1; error = ar5523_init_modes(ar); if (error) goto out_cancel_rx_cmd; usb_set_intfdata(intf, hw); error = ieee80211_register_hw(hw); if (error) { ar5523_err(ar, "could not register device\n"); goto out_cancel_rx_cmd; } ar5523_info(ar, "Found and initialized AR5523 device\n"); return 0; out_cancel_rx_cmd: ar5523_cancel_rx_cmd(ar); out_free_tx_cmd: ar5523_free_tx_cmd(ar); out_free_rx_cmd: ar5523_free_rx_cmd(ar); out_free_rx_bufs: ar5523_free_rx_bufs(ar); out_free_wq: destroy_workqueue(ar->wq); out_free_ar: ieee80211_free_hw(hw); out: return error; } static void ar5523_disconnect(struct usb_interface *intf) { struct ieee80211_hw *hw = usb_get_intfdata(intf); struct ar5523 *ar = hw->priv; ar5523_dbg(ar, "detaching\n"); set_bit(AR5523_USB_DISCONNECTED, &ar->flags); ieee80211_unregister_hw(hw); ar5523_cancel_rx_cmd(ar); ar5523_free_tx_cmd(ar); ar5523_free_rx_cmd(ar); ar5523_free_rx_bufs(ar); destroy_workqueue(ar->wq); ieee80211_free_hw(hw); usb_set_intfdata(intf, NULL); } #define AR5523_DEVICE_UG(vendor, device) \ { USB_DEVICE((vendor), (device)) }, \ { USB_DEVICE((vendor), (device) + 1), \ .driver_info = AR5523_FLAG_PRE_FIRMWARE } #define AR5523_DEVICE_UX(vendor, device) \ { USB_DEVICE((vendor), (device)), \ .driver_info = AR5523_FLAG_ABG }, \ { USB_DEVICE((vendor), (device) + 1), \ .driver_info = AR5523_FLAG_ABG|AR5523_FLAG_PRE_FIRMWARE } static struct usb_device_id ar5523_id_table[] = { AR5523_DEVICE_UG(0x168c, 0x0001), /* Atheros / AR5523 */ AR5523_DEVICE_UG(0x0cf3, 0x0001), /* Atheros2 / AR5523_1 */ AR5523_DEVICE_UG(0x0cf3, 0x0003), /* Atheros2 / AR5523_2 */ AR5523_DEVICE_UX(0x0cf3, 0x0005), /* Atheros2 / AR5523_3 */ AR5523_DEVICE_UG(0x0d8e, 0x7801), /* Conceptronic / AR5523_1 */ AR5523_DEVICE_UX(0x0d8e, 0x7811), /* Conceptronic / AR5523_2 */ AR5523_DEVICE_UX(0x2001, 0x3a00), /* Dlink / DWLAG132 */ AR5523_DEVICE_UG(0x2001, 0x3a02), /* Dlink / DWLG132 */ AR5523_DEVICE_UX(0x2001, 0x3a04), /* Dlink / DWLAG122 */ AR5523_DEVICE_UG(0x1690, 0x0712), /* Gigaset / AR5523 */ AR5523_DEVICE_UG(0x1690, 0x0710), /* Gigaset / SMCWUSBTG */ AR5523_DEVICE_UG(0x129b, 0x160c), /* Gigaset / USB stick 108 (CyberTAN Technology) */ AR5523_DEVICE_UG(0x16ab, 0x7801), /* Globalsun / AR5523_1 */ AR5523_DEVICE_UX(0x16ab, 0x7811), /* Globalsun / AR5523_2 */ AR5523_DEVICE_UG(0x0d8e, 0x7802), /* Globalsun / AR5523_3 */ AR5523_DEVICE_UX(0x0846, 0x4300), /* Netgear / WG111U */ AR5523_DEVICE_UG(0x0846, 0x4250), /* Netgear / WG111T */ AR5523_DEVICE_UG(0x0846, 0x5f00), /* Netgear / WPN111 */ AR5523_DEVICE_UG(0x157e, 0x3006), /* Umedia / AR5523_1 */ AR5523_DEVICE_UX(0x157e, 0x3205), /* Umedia / AR5523_2 */ AR5523_DEVICE_UG(0x157e, 0x3006), /* Umedia / TEW444UBEU */ AR5523_DEVICE_UG(0x1435, 0x0826), /* Wistronneweb / AR5523_1 */ AR5523_DEVICE_UX(0x1435, 0x0828), /* Wistronneweb / AR5523_2 */ AR5523_DEVICE_UG(0x0cde, 0x0012), /* Zcom / AR5523 */ AR5523_DEVICE_UG(0x1385, 0x4250), /* Netgear3 / WG111T (2) */ AR5523_DEVICE_UG(0x1385, 0x5f00), /* Netgear / WPN111 */ AR5523_DEVICE_UG(0x1385, 0x5f02), /* Netgear / WPN111 */ { } }; MODULE_DEVICE_TABLE(usb, ar5523_id_table); static struct usb_driver ar5523_driver = { .name = "ar5523", .id_table = ar5523_id_table, .probe = ar5523_probe, .disconnect = ar5523_disconnect, }; module_usb_driver(ar5523_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_FIRMWARE(AR5523_FIRMWARE_FILE);