/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "radeon.h" #include "cikd.h" #include "cik_reg.h" #include "radeon_kfd.h" #include "radeon_ucode.h" #include #include "cik_structs.h" #define CIK_PIPE_PER_MEC (4) struct kgd_mem { struct radeon_bo *bo; uint64_t gpu_addr; void *cpu_ptr; }; static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size, void **mem_obj, uint64_t *gpu_addr, void **cpu_ptr); static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj); static uint64_t get_vmem_size(struct kgd_dev *kgd); static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd); static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd); static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type); /* * Register access functions */ static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid); static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t hpd_size, uint64_t hpd_gpu_addr); static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr); static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd); static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id); static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id); static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int timeout); static const struct kfd2kgd_calls kfd2kgd = { .init_gtt_mem_allocation = alloc_gtt_mem, .free_gtt_mem = free_gtt_mem, .get_vmem_size = get_vmem_size, .get_gpu_clock_counter = get_gpu_clock_counter, .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz, .program_sh_mem_settings = kgd_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, .init_pipeline = kgd_init_pipeline, .init_interrupts = kgd_init_interrupts, .hqd_load = kgd_hqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_is_occupied = kgd_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .get_fw_version = get_fw_version }; static const struct kgd2kfd_calls *kgd2kfd; bool radeon_kfd_init(void) { #if defined(CONFIG_HSA_AMD_MODULE) bool (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**); kgd2kfd_init_p = symbol_request(kgd2kfd_init); if (kgd2kfd_init_p == NULL) return false; if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd)) { symbol_put(kgd2kfd_init); kgd2kfd = NULL; return false; } return true; #elif defined(CONFIG_HSA_AMD) if (!kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd)) { kgd2kfd = NULL; return false; } return true; #else return false; #endif } void radeon_kfd_fini(void) { if (kgd2kfd) { kgd2kfd->exit(); symbol_put(kgd2kfd_init); } } void radeon_kfd_device_probe(struct radeon_device *rdev) { if (kgd2kfd) rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev, rdev->pdev, &kfd2kgd); } void radeon_kfd_device_init(struct radeon_device *rdev) { if (rdev->kfd) { struct kgd2kfd_shared_resources gpu_resources = { .compute_vmid_bitmap = 0xFF00, .first_compute_pipe = 1, .compute_pipe_count = 4 - 1, }; radeon_doorbell_get_kfd_info(rdev, &gpu_resources.doorbell_physical_address, &gpu_resources.doorbell_aperture_size, &gpu_resources.doorbell_start_offset); kgd2kfd->device_init(rdev->kfd, &gpu_resources); } } void radeon_kfd_device_fini(struct radeon_device *rdev) { if (rdev->kfd) { kgd2kfd->device_exit(rdev->kfd); rdev->kfd = NULL; } } void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry) { if (rdev->kfd) kgd2kfd->interrupt(rdev->kfd, ih_ring_entry); } void radeon_kfd_suspend(struct radeon_device *rdev) { if (rdev->kfd) kgd2kfd->suspend(rdev->kfd); } int radeon_kfd_resume(struct radeon_device *rdev) { int r = 0; if (rdev->kfd) r = kgd2kfd->resume(rdev->kfd); return r; } static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size, void **mem_obj, uint64_t *gpu_addr, void **cpu_ptr) { struct radeon_device *rdev = (struct radeon_device *)kgd; struct kgd_mem **mem = (struct kgd_mem **) mem_obj; int r; BUG_ON(kgd == NULL); BUG_ON(gpu_addr == NULL); BUG_ON(cpu_ptr == NULL); *mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL); if ((*mem) == NULL) return -ENOMEM; r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo); if (r) { dev_err(rdev->dev, "failed to allocate BO for amdkfd (%d)\n", r); return r; } /* map the buffer */ r = radeon_bo_reserve((*mem)->bo, true); if (r) { dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r); goto allocate_mem_reserve_bo_failed; } r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT, &(*mem)->gpu_addr); if (r) { dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r); goto allocate_mem_pin_bo_failed; } *gpu_addr = (*mem)->gpu_addr; r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr); if (r) { dev_err(rdev->dev, "(%d) failed to map bo to kernel for amdkfd\n", r); goto allocate_mem_kmap_bo_failed; } *cpu_ptr = (*mem)->cpu_ptr; radeon_bo_unreserve((*mem)->bo); return 0; allocate_mem_kmap_bo_failed: radeon_bo_unpin((*mem)->bo); allocate_mem_pin_bo_failed: radeon_bo_unreserve((*mem)->bo); allocate_mem_reserve_bo_failed: radeon_bo_unref(&(*mem)->bo); return r; } static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj) { struct kgd_mem *mem = (struct kgd_mem *) mem_obj; BUG_ON(mem == NULL); radeon_bo_reserve(mem->bo, true); radeon_bo_kunmap(mem->bo); radeon_bo_unpin(mem->bo); radeon_bo_unreserve(mem->bo); radeon_bo_unref(&(mem->bo)); kfree(mem); } static uint64_t get_vmem_size(struct kgd_dev *kgd) { struct radeon_device *rdev = (struct radeon_device *)kgd; BUG_ON(kgd == NULL); return rdev->mc.real_vram_size; } static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd) { struct radeon_device *rdev = (struct radeon_device *)kgd; return rdev->asic->get_gpu_clock_counter(rdev); } static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd) { struct radeon_device *rdev = (struct radeon_device *)kgd; /* The sclk is in quantas of 10kHz */ return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100; } static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd) { return (struct radeon_device *)kgd; } static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value) { struct radeon_device *rdev = get_radeon_device(kgd); writel(value, (void __iomem *)(rdev->rmmio + offset)); } static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset) { struct radeon_device *rdev = get_radeon_device(kgd); return readl((void __iomem *)(rdev->rmmio + offset)); } static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { struct radeon_device *rdev = get_radeon_device(kgd); uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); mutex_lock(&rdev->srbm_mutex); write_register(kgd, SRBM_GFX_CNTL, value); } static void unlock_srbm(struct kgd_dev *kgd) { struct radeon_device *rdev = get_radeon_device(kgd); write_register(kgd, SRBM_GFX_CNTL, 0); mutex_unlock(&rdev->srbm_mutex); } static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id) { uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1; uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, queue_id, 0); } static void release_queue(struct kgd_dev *kgd) { unlock_srbm(kgd); } static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases) { lock_srbm(kgd, 0, 0, 0, vmid); write_register(kgd, SH_MEM_CONFIG, sh_mem_config); write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base); write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit); write_register(kgd, SH_MEM_BASES, sh_mem_bases); unlock_srbm(kgd); } static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid) { /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 * because a mapping is in progress or because a mapping finished and * the SW cleared it. * So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID_PASID_MAPPING_VALID; write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t), pasid_mapping); while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) cpu_relax(); write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); /* Mapping vmid to pasid also for IH block */ write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t), pasid_mapping); return 0; } static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t hpd_size, uint64_t hpd_gpu_addr) { uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1; uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, 0, 0); write_register(kgd, CP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8)); write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8)); write_register(kgd, CP_HPD_EOP_VMID, 0); write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size); unlock_srbm(kgd); return 0; } static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) { uint32_t mec; uint32_t pipe; mec = (pipe_id / CIK_PIPE_PER_MEC) + 1; pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, 0, 0); write_register(kgd, CPC_INT_CNTL, TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE); unlock_srbm(kgd); return 0; } static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m) { uint32_t retval; retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; pr_debug("kfd: sdma base address: 0x%x\n", retval); return retval; } static inline struct cik_mqd *get_mqd(void *mqd) { return (struct cik_mqd *)mqd; } static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) { return (struct cik_sdma_rlc_registers *)mqd; } static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr) { uint32_t wptr_shadow, is_wptr_shadow_valid; struct cik_mqd *m; m = get_mqd(mqd); is_wptr_shadow_valid = !get_user(wptr_shadow, wptr); acquire_queue(kgd, pipe_id, queue_id); write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo); write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi); write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control); write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo); write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi); write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control); write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control); write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo); write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi); write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr); write_register(kgd, CP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state); write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd); write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type); write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo); write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi); write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo); write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi); write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo); write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI, m->cp_hqd_pq_rptr_report_addr_hi); write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr); write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo); write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi); write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control); write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid); write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum); write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority); write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority); write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr); if (is_wptr_shadow_valid) write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow); write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active); release_queue(kgd); return 0; } static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) { struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); write_register(kgd, sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR, m->sdma_rlc_virtual_addr); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE_HI, m->sdma_rlc_rb_base_hi); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdma_rlc_rb_rptr_addr_lo); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdma_rlc_rb_rptr_addr_hi); write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, m->sdma_rlc_doorbell); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, m->sdma_rlc_rb_cntl); return 0; } static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(kgd, pipe_id, queue_id); act = read_register(kgd, CP_HQD_ACTIVE); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == read_register(kgd, CP_HQD_PQ_BASE) && high == read_register(kgd, CP_HQD_PQ_BASE_HI)) retval = true; } release_queue(kgd); return retval; } static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) { struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); sdma_rlc_rb_cntl = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE) return true; return false; } static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { uint32_t temp; acquire_queue(kgd, pipe_id, queue_id); write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0); write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type); while (true) { temp = read_register(kgd, CP_HQD_ACTIVE); if (temp & 0x1) break; if (timeout == 0) { pr_err("kfd: cp queue preemption time out (%dms)\n", temp); release_queue(kgd); return -ETIME; } msleep(20); timeout -= 20; } release_queue(kgd); return 0; } static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int timeout) { struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t temp; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA_RB_ENABLE; write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp); while (true) { temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA_RLC_IDLE) break; if (timeout == 0) return -ETIME; msleep(20); timeout -= 20; } write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0); write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0); return 0; } static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type) { struct radeon_device *rdev = (struct radeon_device *) kgd; const union radeon_firmware_header *hdr; BUG_ON(kgd == NULL || rdev->mec_fw == NULL); switch (type) { case KGD_ENGINE_PFP: hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data; break; case KGD_ENGINE_ME: hdr = (const union radeon_firmware_header *) rdev->me_fw->data; break; case KGD_ENGINE_CE: hdr = (const union radeon_firmware_header *) rdev->ce_fw->data; break; case KGD_ENGINE_MEC1: hdr = (const union radeon_firmware_header *) rdev->mec_fw->data; break; case KGD_ENGINE_MEC2: hdr = (const union radeon_firmware_header *) rdev->mec2_fw->data; break; case KGD_ENGINE_RLC: hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data; break; case KGD_ENGINE_SDMA: hdr = (const union radeon_firmware_header *) rdev->sdma_fw->data; break; default: return 0; } if (hdr == NULL) return 0; /* Only 12 bit in use*/ return hdr->common.ucode_version; }