/* SPDX-License-Identifier: GPL-2.0-only */ /* * cec - HDMI Consumer Electronics Control support header * * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #ifndef _MEDIA_CEC_H #define _MEDIA_CEC_H #include #include #include #include #include #include #include #include #include #include #define CEC_CAP_DEFAULTS (CEC_CAP_LOG_ADDRS | CEC_CAP_TRANSMIT | \ CEC_CAP_PASSTHROUGH | CEC_CAP_RC) /** * struct cec_devnode - cec device node * @dev: cec device * @cdev: cec character device * @minor: device node minor number * @registered: the device was correctly registered * @unregistered: the device was unregistered * @fhs_lock: lock to control access to the filehandle list * @fhs: the list of open filehandles (cec_fh) * * This structure represents a cec-related device node. * * The @parent is a physical device. It must be set by core or device drivers * before registering the node. */ struct cec_devnode { /* sysfs */ struct device dev; struct cdev cdev; /* device info */ int minor; bool registered; bool unregistered; struct list_head fhs; struct mutex lock; }; struct cec_adapter; struct cec_data; struct cec_pin; struct cec_data { struct list_head list; struct list_head xfer_list; struct cec_adapter *adap; struct cec_msg msg; struct cec_fh *fh; struct delayed_work work; struct completion c; u8 attempts; bool new_initiator; bool blocking; bool completed; }; struct cec_msg_entry { struct list_head list; struct cec_msg msg; }; struct cec_event_entry { struct list_head list; struct cec_event ev; }; #define CEC_NUM_CORE_EVENTS 2 #define CEC_NUM_EVENTS CEC_EVENT_PIN_HPD_HIGH struct cec_fh { struct list_head list; struct list_head xfer_list; struct cec_adapter *adap; u8 mode_initiator; u8 mode_follower; /* Events */ wait_queue_head_t wait; struct mutex lock; struct list_head events[CEC_NUM_EVENTS]; /* queued events */ u8 queued_events[CEC_NUM_EVENTS]; unsigned int total_queued_events; struct cec_event_entry core_events[CEC_NUM_CORE_EVENTS]; struct list_head msgs; /* queued messages */ unsigned int queued_msgs; }; #define CEC_SIGNAL_FREE_TIME_RETRY 3 #define CEC_SIGNAL_FREE_TIME_NEW_INITIATOR 5 #define CEC_SIGNAL_FREE_TIME_NEXT_XFER 7 /* The nominal data bit period is 2.4 ms */ #define CEC_FREE_TIME_TO_USEC(ft) ((ft) * 2400) struct cec_adap_ops { /* Low-level callbacks */ int (*adap_enable)(struct cec_adapter *adap, bool enable); int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable); int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool enable); int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr); int (*adap_transmit)(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg); void (*adap_status)(struct cec_adapter *adap, struct seq_file *file); void (*adap_free)(struct cec_adapter *adap); /* High-level CEC message callback */ int (*received)(struct cec_adapter *adap, struct cec_msg *msg); }; /* * The minimum message length you can receive (excepting poll messages) is 2. * With a transfer rate of at most 36 bytes per second this makes 18 messages * per second worst case. * * We queue at most 3 seconds worth of received messages. The CEC specification * requires that messages are replied to within a second, so 3 seconds should * give more than enough margin. Since most messages are actually more than 2 * bytes, this is in practice a lot more than 3 seconds. */ #define CEC_MAX_MSG_RX_QUEUE_SZ (18 * 3) /* * The transmit queue is limited to 1 second worth of messages (worst case). * Messages can be transmitted by userspace and kernel space. But for both it * makes no sense to have a lot of messages queued up. One second seems * reasonable. */ #define CEC_MAX_MSG_TX_QUEUE_SZ (18 * 1) struct cec_adapter { struct module *owner; char name[32]; struct cec_devnode devnode; struct mutex lock; struct rc_dev *rc; struct list_head transmit_queue; unsigned int transmit_queue_sz; struct list_head wait_queue; struct cec_data *transmitting; struct task_struct *kthread_config; struct completion config_completion; struct task_struct *kthread; wait_queue_head_t kthread_waitq; wait_queue_head_t waitq; const struct cec_adap_ops *ops; void *priv; u32 capabilities; u8 available_log_addrs; u16 phys_addr; bool needs_hpd; bool is_configuring; bool is_configured; bool cec_pin_is_high; u32 monitor_all_cnt; u32 monitor_pin_cnt; u32 follower_cnt; struct cec_fh *cec_follower; struct cec_fh *cec_initiator; bool passthrough; struct cec_log_addrs log_addrs; u32 tx_timeouts; #ifdef CONFIG_CEC_NOTIFIER struct cec_notifier *notifier; #endif #ifdef CONFIG_CEC_PIN struct cec_pin *pin; #endif struct dentry *cec_dir; struct dentry *status_file; u16 phys_addrs[15]; u32 sequence; char device_name[32]; char input_phys[32]; char input_drv[32]; }; static inline void *cec_get_drvdata(const struct cec_adapter *adap) { return adap->priv; } static inline bool cec_has_log_addr(const struct cec_adapter *adap, u8 log_addr) { return adap->log_addrs.log_addr_mask & (1 << log_addr); } static inline bool cec_is_sink(const struct cec_adapter *adap) { return adap->phys_addr == 0; } /** * cec_is_registered() - is the CEC adapter registered? * * @adap: the CEC adapter, may be NULL. * * Return: true if the adapter is registered, false otherwise. */ static inline bool cec_is_registered(const struct cec_adapter *adap) { return adap && adap->devnode.registered; } #define cec_phys_addr_exp(pa) \ ((pa) >> 12), ((pa) >> 8) & 0xf, ((pa) >> 4) & 0xf, (pa) & 0xf struct edid; #if IS_REACHABLE(CONFIG_CEC_CORE) struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops, void *priv, const char *name, u32 caps, u8 available_las); int cec_register_adapter(struct cec_adapter *adap, struct device *parent); void cec_unregister_adapter(struct cec_adapter *adap); void cec_delete_adapter(struct cec_adapter *adap); int cec_s_log_addrs(struct cec_adapter *adap, struct cec_log_addrs *log_addrs, bool block); void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block); void cec_s_phys_addr_from_edid(struct cec_adapter *adap, const struct edid *edid); int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, bool block); /* Called by the adapter */ void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt, ktime_t ts); static inline void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt) { cec_transmit_done_ts(adap, status, arb_lost_cnt, nack_cnt, low_drive_cnt, error_cnt, ktime_get()); } /* * Simplified version of cec_transmit_done for hardware that doesn't retry * failed transmits. So this is always just one attempt in which case * the status is sufficient. */ void cec_transmit_attempt_done_ts(struct cec_adapter *adap, u8 status, ktime_t ts); static inline void cec_transmit_attempt_done(struct cec_adapter *adap, u8 status) { cec_transmit_attempt_done_ts(adap, status, ktime_get()); } void cec_received_msg_ts(struct cec_adapter *adap, struct cec_msg *msg, ktime_t ts); static inline void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg) { cec_received_msg_ts(adap, msg, ktime_get()); } /** * cec_queue_pin_cec_event() - queue a CEC pin event with a given timestamp. * * @adap: pointer to the cec adapter * @is_high: when true the CEC pin is high, otherwise it is low * @ts: the timestamp for this event * */ void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, ktime_t ts); /** * cec_queue_pin_hpd_event() - queue a pin event with a given timestamp. * * @adap: pointer to the cec adapter * @is_high: when true the HPD pin is high, otherwise it is low * @ts: the timestamp for this event * */ void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts); /** * cec_get_edid_phys_addr() - find and return the physical address * * @edid: pointer to the EDID data * @size: size in bytes of the EDID data * @offset: If not %NULL then the location of the physical address * bytes in the EDID will be returned here. This is set to 0 * if there is no physical address found. * * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none. */ u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, unsigned int *offset); /** * cec_set_edid_phys_addr() - find and set the physical address * * @edid: pointer to the EDID data * @size: size in bytes of the EDID data * @phys_addr: the new physical address * * This function finds the location of the physical address in the EDID * and fills in the given physical address and updates the checksum * at the end of the EDID block. It does nothing if the EDID doesn't * contain a physical address. */ void cec_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr); /** * cec_phys_addr_for_input() - calculate the PA for an input * * @phys_addr: the physical address of the parent * @input: the number of the input port, must be between 1 and 15 * * This function calculates a new physical address based on the input * port number. For example: * * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0 * * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0 * * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5 * * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth. * * Return: the new physical address or CEC_PHYS_ADDR_INVALID. */ u16 cec_phys_addr_for_input(u16 phys_addr, u8 input); /** * cec_phys_addr_validate() - validate a physical address from an EDID * * @phys_addr: the physical address to validate * @parent: if not %NULL, then this is filled with the parents PA. * @port: if not %NULL, then this is filled with the input port. * * This validates a physical address as read from an EDID. If the * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end), * then it will return -EINVAL. * * The parent PA is passed into %parent and the input port is passed into * %port. For example: * * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0. * * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1. * * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2. * * PA = f.f.f.f: has parent f.f.f.f and input port 0. * * Return: 0 if the PA is valid, -EINVAL if not. */ int cec_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port); #else static inline int cec_register_adapter(struct cec_adapter *adap, struct device *parent) { return 0; } static inline void cec_unregister_adapter(struct cec_adapter *adap) { } static inline void cec_delete_adapter(struct cec_adapter *adap) { } static inline void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) { } static inline void cec_s_phys_addr_from_edid(struct cec_adapter *adap, const struct edid *edid) { } static inline u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, unsigned int *offset) { if (offset) *offset = 0; return CEC_PHYS_ADDR_INVALID; } static inline void cec_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr) { } static inline u16 cec_phys_addr_for_input(u16 phys_addr, u8 input) { return CEC_PHYS_ADDR_INVALID; } static inline int cec_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port) { if (parent) *parent = phys_addr; if (port) *port = 0; return 0; } #endif /** * cec_phys_addr_invalidate() - set the physical address to INVALID * * @adap: the CEC adapter * * This is a simple helper function to invalidate the physical * address. */ static inline void cec_phys_addr_invalidate(struct cec_adapter *adap) { cec_s_phys_addr(adap, CEC_PHYS_ADDR_INVALID, false); } #endif /* _MEDIA_CEC_H */