/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "atom.h" #include "atom-bits.h" #include "drm_dp_helper.h" /* move these to drm_dp_helper.c/h */ #define DP_LINK_CONFIGURATION_SIZE 9 #define DP_LINK_STATUS_SIZE 6 #define DP_DPCD_SIZE 8 static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; static char *link_train_names[] = { "pattern 1", "pattern 2", "idle", "off" }; static const int dp_clocks[] = { 54000, // 1 lane, 1.62 Ghz 90000, // 1 lane, 2.70 Ghz 108000, // 2 lane, 1.62 Ghz 180000, // 2 lane, 2.70 Ghz 216000, // 4 lane, 1.62 Ghz 360000, // 4 lane, 2.70 Ghz }; static const int num_dp_clocks = sizeof(dp_clocks) / sizeof(int); /* common helper functions */ static int dp_lanes_for_mode_clock(u8 dpcd[DP_DPCD_SIZE], int mode_clock) { int i; u8 max_link_bw; u8 max_lane_count; if (!dpcd) return 0; max_link_bw = dpcd[DP_MAX_LINK_RATE]; max_lane_count = dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK; switch (max_link_bw) { case DP_LINK_BW_1_62: default: for (i = 0; i < num_dp_clocks; i++) { if (i % 2) continue; switch (max_lane_count) { case 1: if (i > 1) return 0; break; case 2: if (i > 3) return 0; break; case 4: default: break; } if (dp_clocks[i] > mode_clock) { if (i < 2) return 1; else if (i < 4) return 2; else return 4; } } break; case DP_LINK_BW_2_7: for (i = 0; i < num_dp_clocks; i++) { switch (max_lane_count) { case 1: if (i > 1) return 0; break; case 2: if (i > 3) return 0; break; case 4: default: break; } if (dp_clocks[i] > mode_clock) { if (i < 2) return 1; else if (i < 4) return 2; else return 4; } } break; } return 0; } static int dp_link_clock_for_mode_clock(u8 dpcd[DP_DPCD_SIZE], int mode_clock) { int i; u8 max_link_bw; u8 max_lane_count; if (!dpcd) return 0; max_link_bw = dpcd[DP_MAX_LINK_RATE]; max_lane_count = dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK; switch (max_link_bw) { case DP_LINK_BW_1_62: default: for (i = 0; i < num_dp_clocks; i++) { if (i % 2) continue; switch (max_lane_count) { case 1: if (i > 1) return 0; break; case 2: if (i > 3) return 0; break; case 4: default: break; } if (dp_clocks[i] > mode_clock) return 162000; } break; case DP_LINK_BW_2_7: for (i = 0; i < num_dp_clocks; i++) { switch (max_lane_count) { case 1: if (i > 1) return 0; break; case 2: if (i > 3) return 0; break; case 4: default: break; } if (dp_clocks[i] > mode_clock) return (i % 2) ? 270000 : 162000; } } return 0; } int dp_mode_valid(u8 dpcd[DP_DPCD_SIZE], int mode_clock) { int lanes = dp_lanes_for_mode_clock(dpcd, mode_clock); int bw = dp_lanes_for_mode_clock(dpcd, mode_clock); if ((lanes == 0) || (bw == 0)) return MODE_CLOCK_HIGH; return MODE_OK; } static u8 dp_link_status(u8 link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static u8 dp_get_lane_status(u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; u8 l = dp_link_status(link_status, i); return (l >> s) & 0xf; } static bool dp_clock_recovery_ok(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; u8 lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } static bool dp_channel_eq_ok(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { u8 lane_align; u8 lane_status; int lane; lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) return false; } return true; } static u8 dp_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static u8 dp_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } /* XXX fix me -- chip specific */ #define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200 static u8 dp_pre_emphasis_max(u8 voltage_swing) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } static void dp_get_adjust_train(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count, u8 train_set[4]) { u8 v = 0; u8 p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { u8 this_v = dp_get_adjust_request_voltage(link_status, lane); u8 this_p = dp_get_adjust_request_pre_emphasis(link_status, lane); DRM_INFO("requested signal parameters: lane %d voltage %s pre_emph %s\n", lane, voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= DP_VOLTAGE_MAX) v = DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; if (p >= dp_pre_emphasis_max(v)) p = dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; DRM_INFO("using signal parameters: voltage %s pre_emph %s\n", voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } /* radeon aux chan functions */ bool radeon_process_aux_ch(struct radeon_i2c_chan *chan, u8 *req_bytes, int num_bytes, u8 *read_byte, u8 read_buf_len, u8 delay) { struct drm_device *dev = chan->dev; struct radeon_device *rdev = dev->dev_private; PROCESS_AUX_CHANNEL_TRANSACTION_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, ProcessAuxChannelTransaction); unsigned char *base; memset(&args, 0, sizeof(args)); base = (unsigned char *)rdev->mode_info.atom_context->scratch; memcpy(base, req_bytes, num_bytes); args.lpAuxRequest = 0; args.lpDataOut = 16; args.ucDataOutLen = 0; args.ucChannelID = chan->rec.i2c_id; args.ucDelay = delay / 10; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); if (args.ucReplyStatus) { DRM_ERROR("failed to get auxch %02x%02x %02x %02x 0x%02x %02x\n", req_bytes[1], req_bytes[0], req_bytes[2], req_bytes[3], chan->rec.i2c_id, args.ucReplyStatus); return false; } if (args.ucDataOutLen && read_byte && read_buf_len) { if (read_buf_len < args.ucDataOutLen) { DRM_ERROR("Buffer to small for return answer %d %d\n", read_buf_len, args.ucDataOutLen); return false; } { int len = min(read_buf_len, args.ucDataOutLen); memcpy(read_byte, base + 16, len); } } return true; } bool radeon_dp_aux_native_write(struct radeon_connector *radeon_connector, uint16_t address, uint8_t send_bytes, uint8_t *send) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[20]; u8 msg_len, dp_msg_len; bool ret; dp_msg_len = 4; msg[0] = address; msg[1] = address >> 8; msg[2] = AUX_NATIVE_WRITE << 4; dp_msg_len += send_bytes; msg[3] = (dp_msg_len << 4) | (send_bytes - 1); if (send_bytes > 16) return false; memcpy(&msg[4], send, send_bytes); msg_len = 4 + send_bytes; ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_len, NULL, 0, 0); return ret; } bool radeon_dp_aux_native_read(struct radeon_connector *radeon_connector, uint16_t address, uint8_t delay, uint8_t expected_bytes, uint8_t *read_p) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[20]; u8 msg_len, dp_msg_len; bool ret = false; msg_len = 4; dp_msg_len = 4; msg[0] = address; msg[1] = address >> 8; msg[2] = AUX_NATIVE_READ << 4; msg[3] = (dp_msg_len) << 4; msg[3] |= expected_bytes - 1; ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_len, read_p, expected_bytes, delay); return ret; } /* radeon dp functions */ static u8 radeon_dp_encoder_service(struct radeon_device *rdev, int action, int dp_clock, uint8_t ucconfig, uint8_t lane_num) { DP_ENCODER_SERVICE_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, DPEncoderService); memset(&args, 0, sizeof(args)); args.ucLinkClock = dp_clock / 10; args.ucConfig = ucconfig; args.ucAction = action; args.ucLaneNum = lane_num; args.ucStatus = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return args.ucStatus; } u8 radeon_dp_getsinktype(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; struct drm_device *dev = radeon_connector->base.dev; struct radeon_device *rdev = dev->dev_private; return radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_GET_SINK_TYPE, 0, dig_connector->dp_i2c_bus->rec.i2c_id, 0); } void radeon_dp_getdpcd(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[25]; int ret; ret = radeon_dp_aux_native_read(radeon_connector, DP_DPCD_REV, 0, 8, msg); if (ret) { memcpy(dig_connector->dpcd, msg, 8); { int i; printk("DPCD: "); for (i = 0; i < 8; i++) printk("%02x ", msg[i]); printk("\n"); } } dig_connector->dpcd[0] = 0; return; } void radeon_dp_set_link_config(struct drm_connector *connector, struct drm_display_mode *mode) { struct radeon_connector *radeon_connector; struct radeon_connector_atom_dig *dig_connector; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) return; radeon_connector = to_radeon_connector(connector); if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; dig_connector->dp_clock = dp_link_clock_for_mode_clock(dig_connector->dpcd, mode->clock); dig_connector->dp_lane_count = dp_lanes_for_mode_clock(dig_connector->dpcd, mode->clock); } int radeon_dp_mode_valid_helper(struct radeon_connector *radeon_connector, struct drm_display_mode *mode) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; return dp_mode_valid(dig_connector->dpcd, mode->clock); } static bool atom_dp_get_link_status(struct radeon_connector *radeon_connector, u8 link_status[DP_LINK_STATUS_SIZE]) { int ret; ret = radeon_dp_aux_native_read(radeon_connector, DP_LANE0_1_STATUS, 100, DP_LINK_STATUS_SIZE, link_status); if (!ret) { DRM_ERROR("displayport link status failed\n"); return false; } DRM_INFO("link status %02x %02x %02x %02x %02x %02x\n", link_status[0], link_status[1], link_status[2], link_status[3], link_status[4], link_status[5]); return true; } static void dp_set_power(struct radeon_connector *radeon_connector, u8 power_state) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; if (dig_connector->dpcd[0] >= 0x11) { radeon_dp_aux_native_write(radeon_connector, DP_SET_POWER, 1, &power_state); } } static void dp_set_downspread(struct radeon_connector *radeon_connector, u8 downspread) { radeon_dp_aux_native_write(radeon_connector, DP_DOWNSPREAD_CTRL, 1, &downspread); } static void dp_set_link_bw_lanes(struct radeon_connector *radeon_connector, u8 link_configuration[DP_LINK_CONFIGURATION_SIZE]) { radeon_dp_aux_native_write(radeon_connector, DP_LINK_BW_SET, 2, link_configuration); } static void dp_update_dpvs_emph(struct radeon_connector *radeon_connector, struct drm_encoder *encoder, u8 train_set[4]) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; int i; for (i = 0; i < dig_connector->dp_lane_count; i++) atombios_dig_transmitter_setup(encoder, ATOM_TRANSMITTER_ACTION_SETUP_VSEMPH, i, train_set[i]); radeon_dp_aux_native_write(radeon_connector, DP_TRAINING_LANE0_SET, dig_connector->dp_lane_count, train_set); } static void dp_set_training(struct radeon_connector *radeon_connector, u8 training) { radeon_dp_aux_native_write(radeon_connector, DP_TRAINING_PATTERN_SET, 1, &training); } void dp_link_train(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_encoder_atom_dig *dig; struct radeon_connector *radeon_connector; struct radeon_connector_atom_dig *dig_connector; int enc_id = 0; bool clock_recovery, channel_eq; u8 link_status[DP_LINK_STATUS_SIZE]; u8 link_configuration[DP_LINK_CONFIGURATION_SIZE]; u8 tries, voltage; u8 train_set[4]; int i; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) return; if (!radeon_encoder->enc_priv) return; dig = radeon_encoder->enc_priv; radeon_connector = to_radeon_connector(connector); if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; if (ASIC_IS_DCE32(rdev)) { if (dig->dig_block) enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER; else enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER; if (dig_connector->linkb) enc_id |= ATOM_DP_CONFIG_LINK_B; else enc_id |= ATOM_DP_CONFIG_LINK_A; } else { if (dig_connector->linkb) enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER | ATOM_DP_CONFIG_LINK_B; else enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER | ATOM_DP_CONFIG_LINK_A; } memset(link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); if (dig_connector->dp_clock == 270000) link_configuration[0] = DP_LINK_BW_2_7; else link_configuration[0] = DP_LINK_BW_1_62; link_configuration[1] = dig_connector->dp_lane_count; if (dig_connector->dpcd[0] >= 0x11) link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; /* power up the sink */ dp_set_power(radeon_connector, DP_SET_POWER_D0); /* disable the training pattern on the sink */ dp_set_training(radeon_connector, DP_TRAINING_PATTERN_DISABLE); /* set link bw and lanes on the sink */ dp_set_link_bw_lanes(radeon_connector, link_configuration); /* disable downspread on the sink */ dp_set_downspread(radeon_connector, 0); /* start training on the source */ radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_START, dig_connector->dp_clock, enc_id, 0); /* set training pattern 1 on the source */ radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL, dig_connector->dp_clock, enc_id, 0); /* set initial vs/emph */ memset(train_set, 0, 4); dp_update_dpvs_emph(radeon_connector, encoder, train_set); udelay(400); /* set training pattern 1 on the sink */ dp_set_training(radeon_connector, DP_TRAINING_PATTERN_1); /* clock recovery loop */ clock_recovery = false; tries = 0; voltage = 0xff; for (;;) { udelay(100); if (!atom_dp_get_link_status(radeon_connector, link_status)) break; if (dp_clock_recovery_ok(link_status, dig_connector->dp_lane_count)) { clock_recovery = true; break; } for (i = 0; i < dig_connector->dp_lane_count; i++) { if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; } if (i == dig_connector->dp_lane_count) { DRM_ERROR("clock recovery reached max voltage\n"); break; } if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++tries; if (tries == 5) { DRM_ERROR("clock recovery tried 5 times\n"); break; } } else tries = 0; voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by sink */ dp_get_adjust_train(link_status, dig_connector->dp_lane_count, train_set); dp_update_dpvs_emph(radeon_connector, encoder, train_set); } if (!clock_recovery) DRM_ERROR("clock recovery failed\n"); else DRM_INFO("clock recovery at voltage %d pre-emphasis %d\n", train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); /* set training pattern 2 on the sink */ dp_set_training(radeon_connector, DP_TRAINING_PATTERN_2); /* set training pattern 2 on the source */ radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL, dig_connector->dp_clock, enc_id, 1); /* channel equalization loop */ tries = 0; channel_eq = false; for (;;) { udelay(400); if (!atom_dp_get_link_status(radeon_connector, link_status)) break; if (dp_channel_eq_ok(link_status, dig_connector->dp_lane_count)) { channel_eq = true; break; } /* Try 5 times */ if (tries > 5) { DRM_ERROR("channel eq failed: 5 tries\n"); break; } /* Compute new train_set as requested by sink */ dp_get_adjust_train(link_status, dig_connector->dp_lane_count, train_set); dp_update_dpvs_emph(radeon_connector, encoder, train_set); tries++; } if (!channel_eq) DRM_ERROR("channel eq failed\n"); else DRM_INFO("channel eq at voltage %d pre-emphasis %d\n", train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); /* disable the training pattern on the sink */ dp_set_training(radeon_connector, DP_TRAINING_PATTERN_DISABLE); radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_COMPLETE, dig_connector->dp_clock, enc_id, 0); } int radeon_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct radeon_i2c_chan *auxch = (struct radeon_i2c_chan *)adapter; int ret = 0; uint16_t address = algo_data->address; uint8_t msg[5]; uint8_t reply[2]; int msg_len, dp_msg_len; int reply_bytes; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[2] = AUX_I2C_READ << 4; else msg[2] = AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[2] |= AUX_I2C_MOT << 4; msg[0] = address; msg[1] = address >> 8; reply_bytes = 1; msg_len = 4; dp_msg_len = 3; switch (mode) { case MODE_I2C_WRITE: msg[4] = write_byte; msg_len++; dp_msg_len += 2; break; case MODE_I2C_READ: dp_msg_len += 1; break; default: break; } msg[3] = (dp_msg_len) << 4; ret = radeon_process_aux_ch(auxch, msg, msg_len, reply, reply_bytes, 0); if (ret) { if (read_byte) *read_byte = reply[0]; return reply_bytes; } return -EREMOTEIO; }