mirror of https://gitee.com/openkylin/linux.git
826 lines
22 KiB
C
826 lines
22 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include "smumgr.h"
|
|
#include "tonga_smumgr.h"
|
|
#include "pp_debug.h"
|
|
#include "smu_ucode_xfer_vi.h"
|
|
#include "tonga_ppsmc.h"
|
|
#include "smu/smu_7_1_2_d.h"
|
|
#include "smu/smu_7_1_2_sh_mask.h"
|
|
#include "cgs_common.h"
|
|
|
|
#define TONGA_SMC_SIZE 0x20000
|
|
#define BUFFER_SIZE 80000
|
|
#define MAX_STRING_SIZE 15
|
|
#define BUFFER_SIZETWO 131072 /*128 *1024*/
|
|
|
|
/**
|
|
* Set the address for reading/writing the SMC SRAM space.
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param smcAddress the address in the SMC RAM to access.
|
|
*/
|
|
static int tonga_set_smc_sram_address(struct pp_smumgr *smumgr,
|
|
uint32_t smcAddress, uint32_t limit)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
PP_ASSERT_WITH_CODE((0 == (3 & smcAddress)),
|
|
"SMC address must be 4 byte aligned.",
|
|
return -1;);
|
|
|
|
PP_ASSERT_WITH_CODE((limit > (smcAddress + 3)),
|
|
"SMC address is beyond the SMC RAM area.",
|
|
return -1;);
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, smcAddress);
|
|
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Copy bytes from an array into the SMC RAM space.
|
|
*
|
|
* @param smumgr the address of the powerplay SMU manager.
|
|
* @param smcStartAddress the start address in the SMC RAM to copy bytes to.
|
|
* @param src the byte array to copy the bytes from.
|
|
* @param byteCount the number of bytes to copy.
|
|
*/
|
|
int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr,
|
|
uint32_t smcStartAddress, const uint8_t *src,
|
|
uint32_t byteCount, uint32_t limit)
|
|
{
|
|
uint32_t addr;
|
|
uint32_t data, orig_data;
|
|
int result = 0;
|
|
uint32_t extra_shift;
|
|
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
PP_ASSERT_WITH_CODE((0 == (3 & smcStartAddress)),
|
|
"SMC address must be 4 byte aligned.",
|
|
return 0;);
|
|
|
|
PP_ASSERT_WITH_CODE((limit > (smcStartAddress + byteCount)),
|
|
"SMC address is beyond the SMC RAM area.",
|
|
return 0;);
|
|
|
|
addr = smcStartAddress;
|
|
|
|
while (byteCount >= 4) {
|
|
/*
|
|
* Bytes are written into the
|
|
* SMC address space with the MSB first
|
|
*/
|
|
data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3];
|
|
|
|
result = tonga_set_smc_sram_address(smumgr, addr, limit);
|
|
|
|
if (result)
|
|
goto out;
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
|
|
|
|
src += 4;
|
|
byteCount -= 4;
|
|
addr += 4;
|
|
}
|
|
|
|
if (0 != byteCount) {
|
|
/* Now write odd bytes left, do a read modify write cycle */
|
|
data = 0;
|
|
|
|
result = tonga_set_smc_sram_address(smumgr, addr, limit);
|
|
if (result)
|
|
goto out;
|
|
|
|
orig_data = cgs_read_register(smumgr->device,
|
|
mmSMC_IND_DATA_0);
|
|
extra_shift = 8 * (4 - byteCount);
|
|
|
|
while (byteCount > 0) {
|
|
data = (data << 8) + *src++;
|
|
byteCount--;
|
|
}
|
|
|
|
data <<= extra_shift;
|
|
data |= (orig_data & ~((~0UL) << extra_shift));
|
|
|
|
result = tonga_set_smc_sram_address(smumgr, addr, limit);
|
|
if (result)
|
|
goto out;
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
|
|
}
|
|
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
|
|
int tonga_program_jump_on_start(struct pp_smumgr *smumgr)
|
|
{
|
|
static const unsigned char pData[] = { 0xE0, 0x00, 0x80, 0x40 };
|
|
|
|
tonga_copy_bytes_to_smc(smumgr, 0x0, pData, 4, sizeof(pData)+1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Return if the SMC is currently running.
|
|
*
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
*/
|
|
static int tonga_is_smc_ram_running(struct pp_smumgr *smumgr)
|
|
{
|
|
return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
|
|
&& (0x20100 <= cgs_read_ind_register(smumgr->device,
|
|
CGS_IND_REG__SMC, ixSMC_PC_C)));
|
|
}
|
|
|
|
static int tonga_send_msg_to_smc_offset(struct pp_smumgr *smumgr)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000);
|
|
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Send a message to the SMC, and wait for its response.
|
|
*
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param msg the message to send.
|
|
* @return The response that came from the SMC.
|
|
*/
|
|
static int tonga_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
if (!tonga_is_smc_ram_running(smumgr))
|
|
return -1;
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
PP_ASSERT_WITH_CODE(
|
|
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
|
|
"Failed to send Previous Message.",
|
|
);
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
PP_ASSERT_WITH_CODE(
|
|
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
|
|
"Failed to send Message.",
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a message to the SMC, and do not wait for its response.
|
|
*
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param msg the message to send.
|
|
* @return The response that came from the SMC.
|
|
*/
|
|
static int tonga_send_msg_to_smc_without_waiting
|
|
(struct pp_smumgr *smumgr, uint16_t msg)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
PP_ASSERT_WITH_CODE(
|
|
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
|
|
"Failed to send Previous Message.",
|
|
);
|
|
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a message to the SMC with parameter
|
|
*
|
|
* @param smumgr: the address of the powerplay hardware manager.
|
|
* @param msg: the message to send.
|
|
* @param parameter: the parameter to send
|
|
* @return The response that came from the SMC.
|
|
*/
|
|
static int tonga_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr,
|
|
uint16_t msg, uint32_t parameter)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
if (!tonga_is_smc_ram_running(smumgr))
|
|
return PPSMC_Result_Failed;
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
|
|
|
|
return tonga_send_msg_to_smc(smumgr, msg);
|
|
}
|
|
|
|
/*
|
|
* Send a message to the SMC with parameter, do not wait for response
|
|
*
|
|
* @param smumgr: the address of the powerplay hardware manager.
|
|
* @param msg: the message to send.
|
|
* @param parameter: the parameter to send
|
|
* @return The response that came from the SMC.
|
|
*/
|
|
static int tonga_send_msg_to_smc_with_parameter_without_waiting(
|
|
struct pp_smumgr *smumgr,
|
|
uint16_t msg, uint32_t parameter)
|
|
{
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
|
|
|
|
return tonga_send_msg_to_smc_without_waiting(smumgr, msg);
|
|
}
|
|
|
|
/*
|
|
* Read a 32bit value from the SMC SRAM space.
|
|
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param smcAddress the address in the SMC RAM to access.
|
|
* @param value and output parameter for the data read from the SMC SRAM.
|
|
*/
|
|
int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr,
|
|
uint32_t smcAddress, uint32_t *value,
|
|
uint32_t limit)
|
|
{
|
|
int result;
|
|
|
|
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
|
|
|
|
if (0 != result)
|
|
return result;
|
|
|
|
*value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a 32bit value to the SMC SRAM space.
|
|
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param smcAddress the address in the SMC RAM to access.
|
|
* @param value to write to the SMC SRAM.
|
|
*/
|
|
int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr,
|
|
uint32_t smcAddress, uint32_t value,
|
|
uint32_t limit)
|
|
{
|
|
int result;
|
|
|
|
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
|
|
|
|
if (0 != result)
|
|
return result;
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tonga_smu_fini(struct pp_smumgr *smumgr)
|
|
{
|
|
struct tonga_smumgr *priv = (struct tonga_smumgr *)(smumgr->backend);
|
|
|
|
smu_free_memory(smumgr->device, (void *)priv->smu_buffer.handle);
|
|
smu_free_memory(smumgr->device, (void *)priv->header_buffer.handle);
|
|
|
|
if (smumgr->backend != NULL) {
|
|
kfree(smumgr->backend);
|
|
smumgr->backend = NULL;
|
|
}
|
|
|
|
cgs_rel_firmware(smumgr->device, CGS_UCODE_ID_SMU);
|
|
return 0;
|
|
}
|
|
|
|
static enum cgs_ucode_id tonga_convert_fw_type_to_cgs(uint32_t fw_type)
|
|
{
|
|
enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM;
|
|
|
|
switch (fw_type) {
|
|
case UCODE_ID_SMU:
|
|
result = CGS_UCODE_ID_SMU;
|
|
break;
|
|
case UCODE_ID_SDMA0:
|
|
result = CGS_UCODE_ID_SDMA0;
|
|
break;
|
|
case UCODE_ID_SDMA1:
|
|
result = CGS_UCODE_ID_SDMA1;
|
|
break;
|
|
case UCODE_ID_CP_CE:
|
|
result = CGS_UCODE_ID_CP_CE;
|
|
break;
|
|
case UCODE_ID_CP_PFP:
|
|
result = CGS_UCODE_ID_CP_PFP;
|
|
break;
|
|
case UCODE_ID_CP_ME:
|
|
result = CGS_UCODE_ID_CP_ME;
|
|
break;
|
|
case UCODE_ID_CP_MEC:
|
|
result = CGS_UCODE_ID_CP_MEC;
|
|
break;
|
|
case UCODE_ID_CP_MEC_JT1:
|
|
result = CGS_UCODE_ID_CP_MEC_JT1;
|
|
break;
|
|
case UCODE_ID_CP_MEC_JT2:
|
|
result = CGS_UCODE_ID_CP_MEC_JT2;
|
|
break;
|
|
case UCODE_ID_RLC_G:
|
|
result = CGS_UCODE_ID_RLC_G;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Convert the PPIRI firmware type to SMU type mask.
|
|
* For MEC, we need to check all MEC related type
|
|
*/
|
|
static uint16_t tonga_get_mask_for_firmware_type(uint16_t firmwareType)
|
|
{
|
|
uint16_t result = 0;
|
|
|
|
switch (firmwareType) {
|
|
case UCODE_ID_SDMA0:
|
|
result = UCODE_ID_SDMA0_MASK;
|
|
break;
|
|
case UCODE_ID_SDMA1:
|
|
result = UCODE_ID_SDMA1_MASK;
|
|
break;
|
|
case UCODE_ID_CP_CE:
|
|
result = UCODE_ID_CP_CE_MASK;
|
|
break;
|
|
case UCODE_ID_CP_PFP:
|
|
result = UCODE_ID_CP_PFP_MASK;
|
|
break;
|
|
case UCODE_ID_CP_ME:
|
|
result = UCODE_ID_CP_ME_MASK;
|
|
break;
|
|
case UCODE_ID_CP_MEC:
|
|
case UCODE_ID_CP_MEC_JT1:
|
|
case UCODE_ID_CP_MEC_JT2:
|
|
result = UCODE_ID_CP_MEC_MASK;
|
|
break;
|
|
case UCODE_ID_RLC_G:
|
|
result = UCODE_ID_RLC_G_MASK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Check if the FW has been loaded,
|
|
* SMU will not return if loading has not finished.
|
|
*/
|
|
static int tonga_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fwType)
|
|
{
|
|
uint16_t fwMask = tonga_get_mask_for_firmware_type(fwType);
|
|
|
|
if (0 != SMUM_WAIT_VFPF_INDIRECT_REGISTER(smumgr, SMC_IND,
|
|
SOFT_REGISTERS_TABLE_28, fwMask, fwMask)) {
|
|
printk(KERN_ERR "[ powerplay ] check firmware loading failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Populate one firmware image to the data structure */
|
|
static int tonga_populate_single_firmware_entry(struct pp_smumgr *smumgr,
|
|
uint16_t firmware_type,
|
|
struct SMU_Entry *pentry)
|
|
{
|
|
int result;
|
|
struct cgs_firmware_info info = {0};
|
|
|
|
result = cgs_get_firmware_info(
|
|
smumgr->device,
|
|
tonga_convert_fw_type_to_cgs(firmware_type),
|
|
&info);
|
|
|
|
if (result == 0) {
|
|
pentry->version = 0;
|
|
pentry->id = (uint16_t)firmware_type;
|
|
pentry->image_addr_high = smu_upper_32_bits(info.mc_addr);
|
|
pentry->image_addr_low = smu_lower_32_bits(info.mc_addr);
|
|
pentry->meta_data_addr_high = 0;
|
|
pentry->meta_data_addr_low = 0;
|
|
pentry->data_size_byte = info.image_size;
|
|
pentry->num_register_entries = 0;
|
|
|
|
if (firmware_type == UCODE_ID_RLC_G)
|
|
pentry->flags = 1;
|
|
else
|
|
pentry->flags = 0;
|
|
} else {
|
|
return result;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int tonga_request_smu_reload_fw(struct pp_smumgr *smumgr)
|
|
{
|
|
struct tonga_smumgr *tonga_smu =
|
|
(struct tonga_smumgr *)(smumgr->backend);
|
|
uint16_t fw_to_load;
|
|
struct SMU_DRAMData_TOC *toc;
|
|
/**
|
|
* First time this gets called during SmuMgr init,
|
|
* we haven't processed SMU header file yet,
|
|
* so Soft Register Start offset is unknown.
|
|
* However, for this case, UcodeLoadStatus is already 0,
|
|
* so we can skip this if the Soft Registers Start offset is 0.
|
|
*/
|
|
cgs_write_ind_register(smumgr->device,
|
|
CGS_IND_REG__SMC, ixSOFT_REGISTERS_TABLE_28, 0);
|
|
|
|
tonga_send_msg_to_smc_with_parameter(smumgr,
|
|
PPSMC_MSG_SMU_DRAM_ADDR_HI,
|
|
tonga_smu->smu_buffer.mc_addr_high);
|
|
tonga_send_msg_to_smc_with_parameter(smumgr,
|
|
PPSMC_MSG_SMU_DRAM_ADDR_LO,
|
|
tonga_smu->smu_buffer.mc_addr_low);
|
|
|
|
toc = (struct SMU_DRAMData_TOC *)tonga_smu->pHeader;
|
|
toc->num_entries = 0;
|
|
toc->structure_version = 1;
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry(smumgr,
|
|
UCODE_ID_RLC_G,
|
|
&toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n",
|
|
return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry(smumgr,
|
|
UCODE_ID_CP_CE,
|
|
&toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n",
|
|
return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_populate_single_firmware_entry
|
|
(smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]),
|
|
"Failed to Get Firmware Entry.\n", return -1);
|
|
|
|
tonga_send_msg_to_smc_with_parameter(smumgr,
|
|
PPSMC_MSG_DRV_DRAM_ADDR_HI,
|
|
tonga_smu->header_buffer.mc_addr_high);
|
|
tonga_send_msg_to_smc_with_parameter(smumgr,
|
|
PPSMC_MSG_DRV_DRAM_ADDR_LO,
|
|
tonga_smu->header_buffer.mc_addr_low);
|
|
|
|
fw_to_load = UCODE_ID_RLC_G_MASK
|
|
+ UCODE_ID_SDMA0_MASK
|
|
+ UCODE_ID_SDMA1_MASK
|
|
+ UCODE_ID_CP_CE_MASK
|
|
+ UCODE_ID_CP_ME_MASK
|
|
+ UCODE_ID_CP_PFP_MASK
|
|
+ UCODE_ID_CP_MEC_MASK;
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
0 == tonga_send_msg_to_smc_with_parameter_without_waiting(
|
|
smumgr, PPSMC_MSG_LoadUcodes, fw_to_load),
|
|
"Fail to Request SMU Load uCode", return 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tonga_request_smu_load_specific_fw(struct pp_smumgr *smumgr,
|
|
uint32_t firmwareType)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Upload the SMC firmware to the SMC microcontroller.
|
|
*
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param pFirmware the data structure containing the various sections of the firmware.
|
|
*/
|
|
static int tonga_smu_upload_firmware_image(struct pp_smumgr *smumgr)
|
|
{
|
|
const uint8_t *src;
|
|
uint32_t byte_count;
|
|
uint32_t *data;
|
|
struct cgs_firmware_info info = {0};
|
|
|
|
if (smumgr == NULL || smumgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
cgs_get_firmware_info(smumgr->device,
|
|
tonga_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
|
|
|
|
if (info.image_size & 3) {
|
|
printk(KERN_ERR "[ powerplay ] SMC ucode is not 4 bytes aligned\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (info.image_size > TONGA_SMC_SIZE) {
|
|
printk(KERN_ERR "[ powerplay ] SMC address is beyond the SMC RAM area\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, 0x20000);
|
|
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
|
|
|
|
byte_count = info.image_size;
|
|
src = (const uint8_t *)info.kptr;
|
|
|
|
data = (uint32_t *)src;
|
|
for (; byte_count >= 4; data++, byte_count -= 4)
|
|
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data[0]);
|
|
|
|
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
|
|
{
|
|
int result;
|
|
|
|
/* Assert reset */
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = tonga_smu_upload_firmware_image(smumgr);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Clear status */
|
|
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_STATUS, 0);
|
|
|
|
/* Enable clock */
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/* De-assert reset */
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Set SMU Auto Start */
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMU_INPUT_DATA, AUTO_START, 1);
|
|
|
|
/* Clear firmware interrupt enable flag */
|
|
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
|
|
RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
|
|
|
|
/**
|
|
* Call Test SMU message with 0x20000 offset to trigger SMU start
|
|
*/
|
|
tonga_send_msg_to_smc_offset(smumgr);
|
|
|
|
/* Wait for done bit to be set */
|
|
SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
|
|
SMU_STATUS, SMU_DONE, 0);
|
|
|
|
/* Check pass/failed indicator */
|
|
if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device,
|
|
CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
|
|
printk(KERN_ERR "[ powerplay ] SMU Firmware start failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Wait for firmware to initialize */
|
|
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr)
|
|
{
|
|
int result = 0;
|
|
|
|
/* wait for smc boot up */
|
|
SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
|
|
RCU_UC_EVENTS, boot_seq_done, 0);
|
|
|
|
/*Clear firmware interrupt enable flag*/
|
|
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = tonga_smu_upload_firmware_image(smumgr);
|
|
|
|
if (result != 0)
|
|
return result;
|
|
|
|
/* Set smc instruct start point at 0x0 */
|
|
tonga_program_jump_on_start(smumgr);
|
|
|
|
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/*De-assert reset*/
|
|
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Wait for firmware to initialize */
|
|
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int tonga_start_smu(struct pp_smumgr *smumgr)
|
|
{
|
|
int result;
|
|
|
|
/* Only start SMC if SMC RAM is not running */
|
|
if (!tonga_is_smc_ram_running(smumgr)) {
|
|
/*Check if SMU is running in protected mode*/
|
|
if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
|
|
SMU_FIRMWARE, SMU_MODE)) {
|
|
result = tonga_start_in_non_protection_mode(smumgr);
|
|
if (result)
|
|
return result;
|
|
} else {
|
|
result = tonga_start_in_protection_mode(smumgr);
|
|
if (result)
|
|
return result;
|
|
}
|
|
}
|
|
|
|
result = tonga_request_smu_reload_fw(smumgr);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Write a 32bit value to the SMC SRAM space.
|
|
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
|
|
* @param smumgr the address of the powerplay hardware manager.
|
|
* @param smcAddress the address in the SMC RAM to access.
|
|
* @param value to write to the SMC SRAM.
|
|
*/
|
|
static int tonga_smu_init(struct pp_smumgr *smumgr)
|
|
{
|
|
struct tonga_smumgr *tonga_smu;
|
|
uint8_t *internal_buf;
|
|
uint64_t mc_addr = 0;
|
|
/* Allocate memory for backend private data */
|
|
tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
|
|
tonga_smu->header_buffer.data_size =
|
|
((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096;
|
|
tonga_smu->smu_buffer.data_size = 200*4096;
|
|
|
|
smu_allocate_memory(smumgr->device,
|
|
tonga_smu->header_buffer.data_size,
|
|
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
|
|
PAGE_SIZE,
|
|
&mc_addr,
|
|
&tonga_smu->header_buffer.kaddr,
|
|
&tonga_smu->header_buffer.handle);
|
|
|
|
tonga_smu->pHeader = tonga_smu->header_buffer.kaddr;
|
|
tonga_smu->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
|
|
tonga_smu->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != tonga_smu->pHeader),
|
|
"Out of memory.",
|
|
kfree(smumgr->backend);
|
|
cgs_free_gpu_mem(smumgr->device,
|
|
(cgs_handle_t)tonga_smu->header_buffer.handle);
|
|
return -1);
|
|
|
|
smu_allocate_memory(smumgr->device,
|
|
tonga_smu->smu_buffer.data_size,
|
|
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
|
|
PAGE_SIZE,
|
|
&mc_addr,
|
|
&tonga_smu->smu_buffer.kaddr,
|
|
&tonga_smu->smu_buffer.handle);
|
|
|
|
internal_buf = tonga_smu->smu_buffer.kaddr;
|
|
tonga_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
|
|
tonga_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != internal_buf),
|
|
"Out of memory.",
|
|
kfree(smumgr->backend);
|
|
cgs_free_gpu_mem(smumgr->device,
|
|
(cgs_handle_t)tonga_smu->smu_buffer.handle);
|
|
return -1;);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pp_smumgr_func tonga_smu_funcs = {
|
|
.smu_init = &tonga_smu_init,
|
|
.smu_fini = &tonga_smu_fini,
|
|
.start_smu = &tonga_start_smu,
|
|
.check_fw_load_finish = &tonga_check_fw_load_finish,
|
|
.request_smu_load_fw = &tonga_request_smu_reload_fw,
|
|
.request_smu_load_specific_fw = &tonga_request_smu_load_specific_fw,
|
|
.send_msg_to_smc = &tonga_send_msg_to_smc,
|
|
.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
|
|
.download_pptable_settings = NULL,
|
|
.upload_pptable_settings = NULL,
|
|
};
|
|
|
|
int tonga_smum_init(struct pp_smumgr *smumgr)
|
|
{
|
|
struct tonga_smumgr *tonga_smu = NULL;
|
|
|
|
tonga_smu = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
|
|
|
|
if (tonga_smu == NULL)
|
|
return -ENOMEM;
|
|
|
|
smumgr->backend = tonga_smu;
|
|
smumgr->smumgr_funcs = &tonga_smu_funcs;
|
|
|
|
return 0;
|
|
}
|