linux/arch/x86_64/mm/srat.c

218 lines
5.1 KiB
C

/*
* ACPI 3.0 based NUMA setup
* Copyright 2004 Andi Kleen, SuSE Labs.
*
* Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
*
* Called from acpi_numa_init while reading the SRAT and SLIT tables.
* Assumes all memory regions belonging to a single proximity domain
* are in one chunk. Holes between them will be included in the node.
*/
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/mmzone.h>
#include <linux/bitmap.h>
#include <linux/module.h>
#include <linux/topology.h>
#include <asm/proto.h>
#include <asm/numa.h>
static struct acpi_table_slit *acpi_slit;
static nodemask_t nodes_parsed __initdata;
static nodemask_t nodes_found __initdata;
static struct node nodes[MAX_NUMNODES] __initdata;
static __u8 pxm2node[256] = { [0 ... 255] = 0xff };
static __init int setup_node(int pxm)
{
unsigned node = pxm2node[pxm];
if (node == 0xff) {
if (nodes_weight(nodes_found) >= MAX_NUMNODES)
return -1;
node = first_unset_node(nodes_found);
node_set(node, nodes_found);
pxm2node[pxm] = node;
}
return pxm2node[pxm];
}
static __init int conflicting_nodes(unsigned long start, unsigned long end)
{
int i;
for_each_online_node(i) {
struct node *nd = &nodes[i];
if (nd->start == nd->end)
continue;
if (nd->end > start && nd->start < end)
return 1;
if (nd->end == end && nd->start == start)
return 1;
}
return -1;
}
static __init void cutoff_node(int i, unsigned long start, unsigned long end)
{
struct node *nd = &nodes[i];
if (nd->start < start) {
nd->start = start;
if (nd->end < nd->start)
nd->start = nd->end;
}
if (nd->end > end) {
if (!(end & 0xfff))
end--;
nd->end = end;
if (nd->start > nd->end)
nd->start = nd->end;
}
}
static __init void bad_srat(void)
{
printk(KERN_ERR "SRAT: SRAT not used.\n");
acpi_numa = -1;
}
static __init inline int srat_disabled(void)
{
return numa_off || acpi_numa < 0;
}
/* Callback for SLIT parsing */
void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
{
acpi_slit = slit;
}
/* Callback for Proximity Domain -> LAPIC mapping */
void __init
acpi_numa_processor_affinity_init(struct acpi_table_processor_affinity *pa)
{
int pxm, node;
if (srat_disabled() || pa->flags.enabled == 0)
return;
pxm = pa->proximity_domain;
node = setup_node(pxm);
if (node < 0) {
printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
bad_srat();
return;
}
if (pa->apic_id >= NR_CPUS) {
printk(KERN_ERR "SRAT: lapic %u too large.\n",
pa->apic_id);
bad_srat();
return;
}
cpu_to_node[pa->apic_id] = node;
acpi_numa = 1;
printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n",
pxm, pa->apic_id, node);
}
/* Callback for parsing of the Proximity Domain <-> Memory Area mappings */
void __init
acpi_numa_memory_affinity_init(struct acpi_table_memory_affinity *ma)
{
struct node *nd;
unsigned long start, end;
int node, pxm;
int i;
if (srat_disabled() || ma->flags.enabled == 0)
return;
/* hotplug bit is ignored for now */
pxm = ma->proximity_domain;
node = setup_node(pxm);
if (node < 0) {
printk(KERN_ERR "SRAT: Too many proximity domains.\n");
bad_srat();
return;
}
start = ma->base_addr_lo | ((u64)ma->base_addr_hi << 32);
end = start + (ma->length_lo | ((u64)ma->length_hi << 32));
i = conflicting_nodes(start, end);
if (i >= 0) {
printk(KERN_ERR
"SRAT: pxm %d overlap %lx-%lx with node %d(%Lx-%Lx)\n",
pxm, start, end, i, nodes[i].start, nodes[i].end);
bad_srat();
return;
}
nd = &nodes[node];
if (!node_test_and_set(node, nodes_parsed)) {
nd->start = start;
nd->end = end;
} else {
if (start < nd->start)
nd->start = start;
if (nd->end < end)
nd->end = end;
}
if (!(nd->end & 0xfff))
nd->end--;
printk(KERN_INFO "SRAT: Node %u PXM %u %Lx-%Lx\n", node, pxm,
nd->start, nd->end);
}
void __init acpi_numa_arch_fixup(void) {}
/* Use the information discovered above to actually set up the nodes. */
int __init acpi_scan_nodes(unsigned long start, unsigned long end)
{
int i;
if (acpi_numa <= 0)
return -1;
memnode_shift = compute_hash_shift(nodes, nodes_weight(nodes_parsed));
if (memnode_shift < 0) {
printk(KERN_ERR
"SRAT: No NUMA node hash function found. Contact maintainer\n");
bad_srat();
return -1;
}
for (i = 0; i < MAX_NUMNODES; i++) {
if (!node_isset(i, nodes_parsed))
continue;
cutoff_node(i, start, end);
if (nodes[i].start == nodes[i].end) {
node_clear(i, nodes_parsed);
continue;
}
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_node[i] == NUMA_NO_NODE)
continue;
if (!node_isset(cpu_to_node[i], nodes_parsed))
cpu_to_node[i] = NUMA_NO_NODE;
}
numa_init_array();
return 0;
}
int node_to_pxm(int n)
{
int i;
if (pxm2node[n] == n)
return n;
for (i = 0; i < 256; i++)
if (pxm2node[i] == n)
return i;
return 0;
}
int __node_distance(int a, int b)
{
int index;
if (!acpi_slit)
return a == b ? 10 : 20;
index = acpi_slit->localities * node_to_pxm(a);
return acpi_slit->entry[index + node_to_pxm(b)];
}
EXPORT_SYMBOL(__node_distance);