mirror of https://gitee.com/openkylin/linux.git
241 lines
6.1 KiB
C
241 lines
6.1 KiB
C
/*
|
|
* Switch a MMU context.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
*/
|
|
#ifndef _ASM_MMU_CONTEXT_H
|
|
#define _ASM_MMU_CONTEXT_H
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/dsemul.h>
|
|
#include <asm/ginvt.h>
|
|
#include <asm/hazards.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm-generic/mm_hooks.h>
|
|
|
|
#define htw_set_pwbase(pgd) \
|
|
do { \
|
|
if (cpu_has_htw) { \
|
|
write_c0_pwbase(pgd); \
|
|
back_to_back_c0_hazard(); \
|
|
} \
|
|
} while (0)
|
|
|
|
extern void tlbmiss_handler_setup_pgd(unsigned long);
|
|
extern char tlbmiss_handler_setup_pgd_end[];
|
|
|
|
/* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
|
|
#define TLBMISS_HANDLER_SETUP_PGD(pgd) \
|
|
do { \
|
|
tlbmiss_handler_setup_pgd((unsigned long)(pgd)); \
|
|
htw_set_pwbase((unsigned long)pgd); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
|
|
#define TLBMISS_HANDLER_RESTORE() \
|
|
write_c0_xcontext((unsigned long) smp_processor_id() << \
|
|
SMP_CPUID_REGSHIFT)
|
|
|
|
#define TLBMISS_HANDLER_SETUP() \
|
|
do { \
|
|
TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir); \
|
|
TLBMISS_HANDLER_RESTORE(); \
|
|
} while (0)
|
|
|
|
#else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using pgd_current*/
|
|
|
|
/*
|
|
* For the fast tlb miss handlers, we keep a per cpu array of pointers
|
|
* to the current pgd for each processor. Also, the proc. id is stuffed
|
|
* into the context register.
|
|
*/
|
|
extern unsigned long pgd_current[];
|
|
|
|
#define TLBMISS_HANDLER_RESTORE() \
|
|
write_c0_context((unsigned long) smp_processor_id() << \
|
|
SMP_CPUID_REGSHIFT)
|
|
|
|
#define TLBMISS_HANDLER_SETUP() \
|
|
TLBMISS_HANDLER_RESTORE(); \
|
|
back_to_back_c0_hazard(); \
|
|
TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
|
|
#endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
|
|
|
|
/*
|
|
* The ginvt instruction will invalidate wired entries when its type field
|
|
* targets anything other than the entire TLB. That means that if we were to
|
|
* allow the kernel to create wired entries with the MMID of current->active_mm
|
|
* then those wired entries could be invalidated when we later use ginvt to
|
|
* invalidate TLB entries with that MMID.
|
|
*
|
|
* In order to prevent ginvt from trashing wired entries, we reserve one MMID
|
|
* for use by the kernel when creating wired entries. This MMID will never be
|
|
* assigned to a struct mm, and we'll never target it with a ginvt instruction.
|
|
*/
|
|
#define MMID_KERNEL_WIRED 0
|
|
|
|
/*
|
|
* All unused by hardware upper bits will be considered
|
|
* as a software asid extension.
|
|
*/
|
|
static inline u64 asid_version_mask(unsigned int cpu)
|
|
{
|
|
unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
|
|
|
|
return ~(u64)(asid_mask | (asid_mask - 1));
|
|
}
|
|
|
|
static inline u64 asid_first_version(unsigned int cpu)
|
|
{
|
|
return ~asid_version_mask(cpu) + 1;
|
|
}
|
|
|
|
static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
|
|
{
|
|
if (cpu_has_mmid)
|
|
return atomic64_read(&mm->context.mmid);
|
|
|
|
return mm->context.asid[cpu];
|
|
}
|
|
|
|
static inline void set_cpu_context(unsigned int cpu,
|
|
struct mm_struct *mm, u64 ctx)
|
|
{
|
|
if (cpu_has_mmid)
|
|
atomic64_set(&mm->context.mmid, ctx);
|
|
else
|
|
mm->context.asid[cpu] = ctx;
|
|
}
|
|
|
|
#define asid_cache(cpu) (cpu_data[cpu].asid_cache)
|
|
#define cpu_asid(cpu, mm) \
|
|
(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
|
|
|
|
static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
|
|
{
|
|
}
|
|
|
|
extern void get_new_mmu_context(struct mm_struct *mm);
|
|
extern void check_mmu_context(struct mm_struct *mm);
|
|
extern void check_switch_mmu_context(struct mm_struct *mm);
|
|
|
|
/*
|
|
* Initialize the context related info for a new mm_struct
|
|
* instance.
|
|
*/
|
|
static inline int
|
|
init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
int i;
|
|
|
|
if (cpu_has_mmid) {
|
|
set_cpu_context(0, mm, 0);
|
|
} else {
|
|
for_each_possible_cpu(i)
|
|
set_cpu_context(i, mm, 0);
|
|
}
|
|
|
|
mm->context.bd_emupage_allocmap = NULL;
|
|
spin_lock_init(&mm->context.bd_emupage_lock);
|
|
init_waitqueue_head(&mm->context.bd_emupage_queue);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
|
|
htw_stop();
|
|
check_switch_mmu_context(next);
|
|
|
|
/*
|
|
* Mark current->active_mm as not "active" anymore.
|
|
* We don't want to mislead possible IPI tlb flush routines.
|
|
*/
|
|
cpumask_clear_cpu(cpu, mm_cpumask(prev));
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
htw_start();
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Destroy context related info for an mm_struct that is about
|
|
* to be put to rest.
|
|
*/
|
|
static inline void destroy_context(struct mm_struct *mm)
|
|
{
|
|
dsemul_mm_cleanup(mm);
|
|
}
|
|
|
|
#define activate_mm(prev, next) switch_mm(prev, next, current)
|
|
#define deactivate_mm(tsk, mm) do { } while (0)
|
|
|
|
static inline void
|
|
drop_mmu_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int cpu;
|
|
u32 old_mmid;
|
|
u64 ctx;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
ctx = cpu_context(cpu, mm);
|
|
|
|
if (!ctx) {
|
|
/* no-op */
|
|
} else if (cpu_has_mmid) {
|
|
/*
|
|
* Globally invalidating TLB entries associated with the MMID
|
|
* is pretty cheap using the GINVT instruction, so we'll do
|
|
* that rather than incur the overhead of allocating a new
|
|
* MMID. The latter would be especially difficult since MMIDs
|
|
* are global & other CPUs may be actively using ctx.
|
|
*/
|
|
htw_stop();
|
|
old_mmid = read_c0_memorymapid();
|
|
write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
|
|
mtc0_tlbw_hazard();
|
|
ginvt_mmid();
|
|
sync_ginv();
|
|
write_c0_memorymapid(old_mmid);
|
|
instruction_hazard();
|
|
htw_start();
|
|
} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
|
|
/*
|
|
* mm is currently active, so we can't really drop it.
|
|
* Instead we bump the ASID.
|
|
*/
|
|
htw_stop();
|
|
get_new_mmu_context(mm);
|
|
write_c0_entryhi(cpu_asid(cpu, mm));
|
|
htw_start();
|
|
} else {
|
|
/* will get a new context next time */
|
|
set_cpu_context(cpu, mm, 0);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#endif /* _ASM_MMU_CONTEXT_H */
|