linux/drivers/usb/gadget/lpc32xx_udc.c

3427 lines
85 KiB
C

/*
* USB Gadget driver for LPC32xx
*
* Authors:
* Kevin Wells <kevin.wells@nxp.com>
* Mike James
* Roland Stigge <stigge@antcom.de>
*
* Copyright (C) 2006 Philips Semiconductors
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2012 Roland Stigge
*
* Note: This driver is based on original work done by Mike James for
* the LPC3180.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/clk.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/i2c.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <linux/usb/isp1301.h>
#include <asm/byteorder.h>
#include <mach/hardware.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <mach/platform.h>
#include <mach/irqs.h>
#include <mach/board.h>
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
/*
* USB device configuration structure
*/
typedef void (*usc_chg_event)(int);
struct lpc32xx_usbd_cfg {
int vbus_drv_pol; /* 0=active low drive for VBUS via ISP1301 */
usc_chg_event conn_chgb; /* Connection change event (optional) */
usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
};
/*
* controller driver data structures
*/
/* 16 endpoints (not to be confused with 32 hardware endpoints) */
#define NUM_ENDPOINTS 16
/*
* IRQ indices make reading the code a little easier
*/
#define IRQ_USB_LP 0
#define IRQ_USB_HP 1
#define IRQ_USB_DEVDMA 2
#define IRQ_USB_ATX 3
#define EP_OUT 0 /* RX (from host) */
#define EP_IN 1 /* TX (to host) */
/* Returns the interrupt mask for the selected hardware endpoint */
#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
#define EP_INT_TYPE 0
#define EP_ISO_TYPE 1
#define EP_BLK_TYPE 2
#define EP_CTL_TYPE 3
/* EP0 states */
#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
#define DATA_IN 1 /* Expect dev->host transfer */
#define DATA_OUT 2 /* Expect host->dev transfer */
/* DD (DMA Descriptor) structure, requires word alignment, this is already
* defined in the LPC32XX USB device header file, but this version is slightly
* modified to tag some work data with each DMA descriptor. */
struct lpc32xx_usbd_dd_gad {
u32 dd_next_phy;
u32 dd_setup;
u32 dd_buffer_addr;
u32 dd_status;
u32 dd_iso_ps_mem_addr;
u32 this_dma;
u32 iso_status[6]; /* 5 spare */
u32 dd_next_v;
};
/*
* Logical endpoint structure
*/
struct lpc32xx_ep {
struct usb_ep ep;
struct list_head queue;
struct lpc32xx_udc *udc;
u32 hwep_num_base; /* Physical hardware EP */
u32 hwep_num; /* Maps to hardware endpoint */
u32 maxpacket;
u32 lep;
bool is_in;
bool req_pending;
u32 eptype;
u32 totalints;
bool wedge;
};
/*
* Common UDC structure
*/
struct lpc32xx_udc {
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
struct platform_device *pdev;
struct device *dev;
struct dentry *pde;
spinlock_t lock;
struct i2c_client *isp1301_i2c_client;
/* Board and device specific */
struct lpc32xx_usbd_cfg *board;
u32 io_p_start;
u32 io_p_size;
void __iomem *udp_baseaddr;
int udp_irq[4];
struct clk *usb_pll_clk;
struct clk *usb_slv_clk;
struct clk *usb_otg_clk;
/* DMA support */
u32 *udca_v_base;
u32 udca_p_base;
struct dma_pool *dd_cache;
/* Common EP and control data */
u32 enabled_devints;
u32 enabled_hwepints;
u32 dev_status;
u32 realized_eps;
/* VBUS detection, pullup, and power flags */
u8 vbus;
u8 last_vbus;
int pullup;
int poweron;
/* Work queues related to I2C support */
struct work_struct pullup_job;
struct work_struct vbus_job;
struct work_struct power_job;
/* USB device peripheral - various */
struct lpc32xx_ep ep[NUM_ENDPOINTS];
bool enabled;
bool clocked;
bool suspended;
bool selfpowered;
int ep0state;
atomic_t enabled_ep_cnt;
wait_queue_head_t ep_disable_wait_queue;
};
/*
* Endpoint request
*/
struct lpc32xx_request {
struct usb_request req;
struct list_head queue;
struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
bool mapped;
bool send_zlp;
};
static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
{
return container_of(g, struct lpc32xx_udc, gadget);
}
#define ep_dbg(epp, fmt, arg...) \
dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_err(epp, fmt, arg...) \
dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_info(epp, fmt, arg...) \
dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_warn(epp, fmt, arg...) \
dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
#define UDCA_BUFF_SIZE (128)
/* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
* be replaced with an inremap()ed pointer
* */
#define USB_CTRL IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)
/* USB_CTRL bit defines */
#define USB_SLAVE_HCLK_EN (1 << 24)
#define USB_HOST_NEED_CLK_EN (1 << 21)
#define USB_DEV_NEED_CLK_EN (1 << 22)
/**********************************************************************
* USB device controller register offsets
**********************************************************************/
#define USBD_DEVINTST(x) ((x) + 0x200)
#define USBD_DEVINTEN(x) ((x) + 0x204)
#define USBD_DEVINTCLR(x) ((x) + 0x208)
#define USBD_DEVINTSET(x) ((x) + 0x20C)
#define USBD_CMDCODE(x) ((x) + 0x210)
#define USBD_CMDDATA(x) ((x) + 0x214)
#define USBD_RXDATA(x) ((x) + 0x218)
#define USBD_TXDATA(x) ((x) + 0x21C)
#define USBD_RXPLEN(x) ((x) + 0x220)
#define USBD_TXPLEN(x) ((x) + 0x224)
#define USBD_CTRL(x) ((x) + 0x228)
#define USBD_DEVINTPRI(x) ((x) + 0x22C)
#define USBD_EPINTST(x) ((x) + 0x230)
#define USBD_EPINTEN(x) ((x) + 0x234)
#define USBD_EPINTCLR(x) ((x) + 0x238)
#define USBD_EPINTSET(x) ((x) + 0x23C)
#define USBD_EPINTPRI(x) ((x) + 0x240)
#define USBD_REEP(x) ((x) + 0x244)
#define USBD_EPIND(x) ((x) + 0x248)
#define USBD_EPMAXPSIZE(x) ((x) + 0x24C)
/* DMA support registers only below */
/* Set, clear, or get enabled state of the DMA request status. If
* enabled, an IN or OUT token will start a DMA transfer for the EP */
#define USBD_DMARST(x) ((x) + 0x250)
#define USBD_DMARCLR(x) ((x) + 0x254)
#define USBD_DMARSET(x) ((x) + 0x258)
/* DMA UDCA head pointer */
#define USBD_UDCAH(x) ((x) + 0x280)
/* EP DMA status, enable, and disable. This is used to specifically
* enabled or disable DMA for a specific EP */
#define USBD_EPDMAST(x) ((x) + 0x284)
#define USBD_EPDMAEN(x) ((x) + 0x288)
#define USBD_EPDMADIS(x) ((x) + 0x28C)
/* DMA master interrupts enable and pending interrupts */
#define USBD_DMAINTST(x) ((x) + 0x290)
#define USBD_DMAINTEN(x) ((x) + 0x294)
/* DMA end of transfer interrupt enable, disable, status */
#define USBD_EOTINTST(x) ((x) + 0x2A0)
#define USBD_EOTINTCLR(x) ((x) + 0x2A4)
#define USBD_EOTINTSET(x) ((x) + 0x2A8)
/* New DD request interrupt enable, disable, status */
#define USBD_NDDRTINTST(x) ((x) + 0x2AC)
#define USBD_NDDRTINTCLR(x) ((x) + 0x2B0)
#define USBD_NDDRTINTSET(x) ((x) + 0x2B4)
/* DMA error interrupt enable, disable, status */
#define USBD_SYSERRTINTST(x) ((x) + 0x2B8)
#define USBD_SYSERRTINTCLR(x) ((x) + 0x2BC)
#define USBD_SYSERRTINTSET(x) ((x) + 0x2C0)
/**********************************************************************
* USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
* USBD_DEVINTPRI register definitions
**********************************************************************/
#define USBD_ERR_INT (1 << 9)
#define USBD_EP_RLZED (1 << 8)
#define USBD_TXENDPKT (1 << 7)
#define USBD_RXENDPKT (1 << 6)
#define USBD_CDFULL (1 << 5)
#define USBD_CCEMPTY (1 << 4)
#define USBD_DEV_STAT (1 << 3)
#define USBD_EP_SLOW (1 << 2)
#define USBD_EP_FAST (1 << 1)
#define USBD_FRAME (1 << 0)
/**********************************************************************
* USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
* USBD_EPINTPRI register definitions
**********************************************************************/
/* End point selection macro (RX) */
#define USBD_RX_EP_SEL(e) (1 << ((e) << 1))
/* End point selection macro (TX) */
#define USBD_TX_EP_SEL(e) (1 << (((e) << 1) + 1))
/**********************************************************************
* USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
* USBD_EPDMAEN/USBD_EPDMADIS/
* USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
* USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
* USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
* register definitions
**********************************************************************/
/* Endpoint selection macro */
#define USBD_EP_SEL(e) (1 << (e))
/**********************************************************************
* SBD_DMAINTST/USBD_DMAINTEN
**********************************************************************/
#define USBD_SYS_ERR_INT (1 << 2)
#define USBD_NEW_DD_INT (1 << 1)
#define USBD_EOT_INT (1 << 0)
/**********************************************************************
* USBD_RXPLEN register definitions
**********************************************************************/
#define USBD_PKT_RDY (1 << 11)
#define USBD_DV (1 << 10)
#define USBD_PK_LEN_MASK 0x3FF
/**********************************************************************
* USBD_CTRL register definitions
**********************************************************************/
#define USBD_LOG_ENDPOINT(e) ((e) << 2)
#define USBD_WR_EN (1 << 1)
#define USBD_RD_EN (1 << 0)
/**********************************************************************
* USBD_CMDCODE register definitions
**********************************************************************/
#define USBD_CMD_CODE(c) ((c) << 16)
#define USBD_CMD_PHASE(p) ((p) << 8)
/**********************************************************************
* USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
**********************************************************************/
#define USBD_DMAEP(e) (1 << (e))
/* DD (DMA Descriptor) structure, requires word alignment */
struct lpc32xx_usbd_dd {
u32 *dd_next;
u32 dd_setup;
u32 dd_buffer_addr;
u32 dd_status;
u32 dd_iso_ps_mem_addr;
};
/* dd_setup bit defines */
#define DD_SETUP_ATLE_DMA_MODE 0x01
#define DD_SETUP_NEXT_DD_VALID 0x04
#define DD_SETUP_ISO_EP 0x10
#define DD_SETUP_PACKETLEN(n) (((n) & 0x7FF) << 5)
#define DD_SETUP_DMALENBYTES(n) (((n) & 0xFFFF) << 16)
/* dd_status bit defines */
#define DD_STATUS_DD_RETIRED 0x01
#define DD_STATUS_STS_MASK 0x1E
#define DD_STATUS_STS_NS 0x00 /* Not serviced */
#define DD_STATUS_STS_BS 0x02 /* Being serviced */
#define DD_STATUS_STS_NC 0x04 /* Normal completion */
#define DD_STATUS_STS_DUR 0x06 /* Data underrun (short packet) */
#define DD_STATUS_STS_DOR 0x08 /* Data overrun */
#define DD_STATUS_STS_SE 0x12 /* System error */
#define DD_STATUS_PKT_VAL 0x20 /* Packet valid */
#define DD_STATUS_LSB_EX 0x40 /* LS byte extracted (ATLE) */
#define DD_STATUS_MSB_EX 0x80 /* MS byte extracted (ATLE) */
#define DD_STATUS_MLEN(n) (((n) >> 8) & 0x3F)
#define DD_STATUS_CURDMACNT(n) (((n) >> 16) & 0xFFFF)
/*
*
* Protocol engine bits below
*
*/
/* Device Interrupt Bit Definitions */
#define FRAME_INT 0x00000001
#define EP_FAST_INT 0x00000002
#define EP_SLOW_INT 0x00000004
#define DEV_STAT_INT 0x00000008
#define CCEMTY_INT 0x00000010
#define CDFULL_INT 0x00000020
#define RxENDPKT_INT 0x00000040
#define TxENDPKT_INT 0x00000080
#define EP_RLZED_INT 0x00000100
#define ERR_INT 0x00000200
/* Rx & Tx Packet Length Definitions */
#define PKT_LNGTH_MASK 0x000003FF
#define PKT_DV 0x00000400
#define PKT_RDY 0x00000800
/* USB Control Definitions */
#define CTRL_RD_EN 0x00000001
#define CTRL_WR_EN 0x00000002
/* Command Codes */
#define CMD_SET_ADDR 0x00D00500
#define CMD_CFG_DEV 0x00D80500
#define CMD_SET_MODE 0x00F30500
#define CMD_RD_FRAME 0x00F50500
#define DAT_RD_FRAME 0x00F50200
#define CMD_RD_TEST 0x00FD0500
#define DAT_RD_TEST 0x00FD0200
#define CMD_SET_DEV_STAT 0x00FE0500
#define CMD_GET_DEV_STAT 0x00FE0500
#define DAT_GET_DEV_STAT 0x00FE0200
#define CMD_GET_ERR_CODE 0x00FF0500
#define DAT_GET_ERR_CODE 0x00FF0200
#define CMD_RD_ERR_STAT 0x00FB0500
#define DAT_RD_ERR_STAT 0x00FB0200
#define DAT_WR_BYTE(x) (0x00000100 | ((x) << 16))
#define CMD_SEL_EP(x) (0x00000500 | ((x) << 16))
#define DAT_SEL_EP(x) (0x00000200 | ((x) << 16))
#define CMD_SEL_EP_CLRI(x) (0x00400500 | ((x) << 16))
#define DAT_SEL_EP_CLRI(x) (0x00400200 | ((x) << 16))
#define CMD_SET_EP_STAT(x) (0x00400500 | ((x) << 16))
#define CMD_CLR_BUF 0x00F20500
#define DAT_CLR_BUF 0x00F20200
#define CMD_VALID_BUF 0x00FA0500
/* Device Address Register Definitions */
#define DEV_ADDR_MASK 0x7F
#define DEV_EN 0x80
/* Device Configure Register Definitions */
#define CONF_DVICE 0x01
/* Device Mode Register Definitions */
#define AP_CLK 0x01
#define INAK_CI 0x02
#define INAK_CO 0x04
#define INAK_II 0x08
#define INAK_IO 0x10
#define INAK_BI 0x20
#define INAK_BO 0x40
/* Device Status Register Definitions */
#define DEV_CON 0x01
#define DEV_CON_CH 0x02
#define DEV_SUS 0x04
#define DEV_SUS_CH 0x08
#define DEV_RST 0x10
/* Error Code Register Definitions */
#define ERR_EC_MASK 0x0F
#define ERR_EA 0x10
/* Error Status Register Definitions */
#define ERR_PID 0x01
#define ERR_UEPKT 0x02
#define ERR_DCRC 0x04
#define ERR_TIMOUT 0x08
#define ERR_EOP 0x10
#define ERR_B_OVRN 0x20
#define ERR_BTSTF 0x40
#define ERR_TGL 0x80
/* Endpoint Select Register Definitions */
#define EP_SEL_F 0x01
#define EP_SEL_ST 0x02
#define EP_SEL_STP 0x04
#define EP_SEL_PO 0x08
#define EP_SEL_EPN 0x10
#define EP_SEL_B_1_FULL 0x20
#define EP_SEL_B_2_FULL 0x40
/* Endpoint Status Register Definitions */
#define EP_STAT_ST 0x01
#define EP_STAT_DA 0x20
#define EP_STAT_RF_MO 0x40
#define EP_STAT_CND_ST 0x80
/* Clear Buffer Register Definitions */
#define CLR_BUF_PO 0x01
/* DMA Interrupt Bit Definitions */
#define EOT_INT 0x01
#define NDD_REQ_INT 0x02
#define SYS_ERR_INT 0x04
#define DRIVER_VERSION "1.03"
static const char driver_name[] = "lpc32xx_udc";
/*
*
* proc interface support
*
*/
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
static const char debug_filename[] = "driver/udc";
static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
{
struct lpc32xx_request *req;
seq_printf(s, "\n");
seq_printf(s, "%12s, maxpacket %4d %3s",
ep->ep.name, ep->ep.maxpacket,
ep->is_in ? "in" : "out");
seq_printf(s, " type %4s", epnames[ep->eptype]);
seq_printf(s, " ints: %12d", ep->totalints);
if (list_empty(&ep->queue))
seq_printf(s, "\t(queue empty)\n");
else {
list_for_each_entry(req, &ep->queue, queue) {
u32 length = req->req.actual;
seq_printf(s, "\treq %p len %d/%d buf %p\n",
&req->req, length,
req->req.length, req->req.buf);
}
}
}
static int proc_udc_show(struct seq_file *s, void *unused)
{
struct lpc32xx_udc *udc = s->private;
struct lpc32xx_ep *ep;
unsigned long flags;
seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
spin_lock_irqsave(&udc->lock, flags);
seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
udc->vbus ? "present" : "off",
udc->enabled ? (udc->vbus ? "active" : "enabled") :
"disabled",
udc->selfpowered ? "self" : "VBUS",
udc->suspended ? ", suspended" : "",
udc->driver ? udc->driver->driver.name : "(none)");
if (udc->enabled && udc->vbus) {
proc_ep_show(s, &udc->ep[0]);
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
proc_ep_show(s, ep);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int proc_udc_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_udc_show, PDE_DATA(inode));
}
static const struct file_operations proc_ops = {
.owner = THIS_MODULE,
.open = proc_udc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void create_debug_file(struct lpc32xx_udc *udc)
{
udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
}
static void remove_debug_file(struct lpc32xx_udc *udc)
{
if (udc->pde)
debugfs_remove(udc->pde);
}
#else
static inline void create_debug_file(struct lpc32xx_udc *udc) {}
static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
#endif
/* Primary initialization sequence for the ISP1301 transceiver */
static void isp1301_udc_configure(struct lpc32xx_udc *udc)
{
/* LPC32XX only supports DAT_SE0 USB mode */
/* This sequence is important */
/* Disable transparent UART mode first */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
MC1_UART_EN);
/* Set full speed and SE0 mode */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
/*
* The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
*/
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
/* Driver VBUS_DRV high or low depending on board setup */
if (udc->board->vbus_drv_pol != 0)
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
else
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
OTG1_VBUS_DRV);
/* Bi-directional mode with suspend control
* Enable both pulldowns for now - the pullup will be enable when VBUS
* is detected */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1,
(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
/* Discharge VBUS (just in case) */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
msleep(1);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
OTG1_VBUS_DISCHRG);
/* Clear and enable VBUS high edge interrupt */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
/* Enable usb_need_clk clock after transceiver is initialized */
writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);
dev_info(udc->dev, "ISP1301 Vendor ID : 0x%04x\n",
i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
}
/* Enables or disables the USB device pullup via the ISP1301 transceiver */
static void isp1301_pullup_set(struct lpc32xx_udc *udc)
{
if (udc->pullup)
/* Enable pullup for bus signalling */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
else
/* Enable pullup for bus signalling */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
OTG1_DP_PULLUP);
}
static void pullup_work(struct work_struct *work)
{
struct lpc32xx_udc *udc =
container_of(work, struct lpc32xx_udc, pullup_job);
isp1301_pullup_set(udc);
}
static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
int block)
{
if (en_pullup == udc->pullup)
return;
udc->pullup = en_pullup;
if (block)
isp1301_pullup_set(udc);
else
/* defer slow i2c pull up setting */
schedule_work(&udc->pullup_job);
}
#ifdef CONFIG_PM
/* Powers up or down the ISP1301 transceiver */
static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
{
if (enable != 0)
/* Power up ISP1301 - this ISP1301 will automatically wakeup
when VBUS is detected */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
MC2_GLOBAL_PWR_DN);
else
/* Power down ISP1301 */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
}
static void power_work(struct work_struct *work)
{
struct lpc32xx_udc *udc =
container_of(work, struct lpc32xx_udc, power_job);
isp1301_set_powerstate(udc, udc->poweron);
}
#endif
/*
*
* USB protocol engine command/data read/write helper functions
*
*/
/* Issues a single command to the USB device state machine */
static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
{
u32 pass = 0;
int to;
/* EP may lock on CLRI if this read isn't done */
u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
(void) tmp;
while (pass == 0) {
writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
/* Write command code */
writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
to = 10000;
while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
USBD_CCEMPTY) == 0) && (to > 0)) {
to--;
}
if (to > 0)
pass = 1;
cpu_relax();
}
}
/* Issues 2 commands (or command and data) to the USB device state machine */
static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
u32 data)
{
udc_protocol_cmd_w(udc, cmd);
udc_protocol_cmd_w(udc, data);
}
/* Issues a single command to the USB device state machine and reads
* response data */
static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
{
u32 tmp;
int to = 1000;
/* Write a command and read data from the protocol engine */
writel((USBD_CDFULL | USBD_CCEMPTY),
USBD_DEVINTCLR(udc->udp_baseaddr));
/* Write command code */
udc_protocol_cmd_w(udc, cmd);
tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
&& (to > 0))
to--;
if (!to)
dev_dbg(udc->dev,
"Protocol engine didn't receive response (CDFULL)\n");
return readl(USBD_CMDDATA(udc->udp_baseaddr));
}
/*
*
* USB device interrupt mask support functions
*
*/
/* Enable one or more USB device interrupts */
static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
{
udc->enabled_devints |= devmask;
writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
}
/* Disable one or more USB device interrupts */
static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
{
udc->enabled_devints &= ~mask;
writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
}
/* Clear one or more USB device interrupts */
static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
{
writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
}
/*
*
* Endpoint interrupt disable/enable functions
*
*/
/* Enable one or more USB endpoint interrupts */
static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
udc->enabled_hwepints |= (1 << hwep);
writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
}
/* Disable one or more USB endpoint interrupts */
static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
udc->enabled_hwepints &= ~(1 << hwep);
writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
}
/* Clear one or more USB endpoint interrupts */
static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
}
/* Enable DMA for the HW channel */
static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
{
writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
}
/* Disable DMA for the HW channel */
static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
{
writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
}
/*
*
* Endpoint realize/unrealize functions
*
*/
/* Before an endpoint can be used, it needs to be realized
* in the USB protocol engine - this realizes the endpoint.
* The interrupt (FIFO or DMA) is not enabled with this function */
static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
u32 maxpacket)
{
int to = 1000;
writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
writel(hwep, USBD_EPIND(udc->udp_baseaddr));
udc->realized_eps |= (1 << hwep);
writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
/* Wait until endpoint is realized in hardware */
while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
USBD_EP_RLZED)) && (to > 0))
to--;
if (!to)
dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
}
/* Unrealize an EP */
static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc->realized_eps &= ~(1 << hwep);
writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
}
/*
*
* Endpoint support functions
*
*/
/* Select and clear endpoint interrupt */
static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
{
udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
}
/* Disables the endpoint in the USB protocol engine */
static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
DAT_WR_BYTE(EP_STAT_DA));
}
/* Stalls the endpoint - endpoint will return STALL */
static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
DAT_WR_BYTE(EP_STAT_ST));
}
/* Clear stall or reset endpoint */
static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
DAT_WR_BYTE(0));
}
/* Select an endpoint for endpoint status, clear, validate */
static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
}
/*
*
* Endpoint buffer management functions
*
*/
/* Clear the current endpoint's buffer */
static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_select_hwep(udc, hwep);
udc_protocol_cmd_w(udc, CMD_CLR_BUF);
}
/* Validate the current endpoint's buffer */
static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
udc_select_hwep(udc, hwep);
udc_protocol_cmd_w(udc, CMD_VALID_BUF);
}
static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
{
/* Clear EP interrupt */
uda_clear_hwepint(udc, hwep);
return udc_selep_clrint(udc, hwep);
}
/*
*
* USB EP DMA support
*
*/
/* Allocate a DMA Descriptor */
static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
{
dma_addr_t dma;
struct lpc32xx_usbd_dd_gad *dd;
dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
if (dd)
dd->this_dma = dma;
return dd;
}
/* Free a DMA Descriptor */
static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
{
dma_pool_free(udc->dd_cache, dd, dd->this_dma);
}
/*
*
* USB setup and shutdown functions
*
*/
/* Enables or disables most of the USB system clocks when low power mode is
* needed. Clocks are typically started on a connection event, and disabled
* when a cable is disconnected */
static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
{
if (enable != 0) {
if (udc->clocked)
return;
udc->clocked = 1;
/* 48MHz PLL up */
clk_enable(udc->usb_pll_clk);
/* Enable the USB device clock */
writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
USB_CTRL);
clk_enable(udc->usb_otg_clk);
} else {
if (!udc->clocked)
return;
udc->clocked = 0;
/* Never disable the USB_HCLK during normal operation */
/* 48MHz PLL dpwn */
clk_disable(udc->usb_pll_clk);
/* Disable the USB device clock */
writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
USB_CTRL);
clk_disable(udc->usb_otg_clk);
}
}
/* Set/reset USB device address */
static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
{
/* Address will be latched at the end of the status phase, or
latched immediately if function is called twice */
udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
DAT_WR_BYTE(DEV_EN | addr));
}
/* Setup up a IN request for DMA transfer - this consists of determining the
* list of DMA addresses for the transfer, allocating DMA Descriptors,
* installing the DD into the UDCA, and then enabling the DMA for that EP */
static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
struct lpc32xx_request *req;
u32 hwep = ep->hwep_num;
ep->req_pending = 1;
/* There will always be a request waiting here */
req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
/* Place the DD Descriptor into the UDCA */
udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
/* Enable DMA and interrupt for the HW EP */
udc_ep_dma_enable(udc, hwep);
/* Clear ZLP if last packet is not of MAXP size */
if (req->req.length % ep->ep.maxpacket)
req->send_zlp = 0;
return 0;
}
/* Setup up a OUT request for DMA transfer - this consists of determining the
* list of DMA addresses for the transfer, allocating DMA Descriptors,
* installing the DD into the UDCA, and then enabling the DMA for that EP */
static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
struct lpc32xx_request *req;
u32 hwep = ep->hwep_num;
ep->req_pending = 1;
/* There will always be a request waiting here */
req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
/* Place the DD Descriptor into the UDCA */
udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
/* Enable DMA and interrupt for the HW EP */
udc_ep_dma_enable(udc, hwep);
return 0;
}
static void udc_disable(struct lpc32xx_udc *udc)
{
u32 i;
/* Disable device */
udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
/* Disable all device interrupts (including EP0) */
uda_disable_devint(udc, 0x3FF);
/* Disable and reset all endpoint interrupts */
for (i = 0; i < 32; i++) {
uda_disable_hwepint(udc, i);
uda_clear_hwepint(udc, i);
udc_disable_hwep(udc, i);
udc_unrealize_hwep(udc, i);
udc->udca_v_base[i] = 0;
/* Disable and clear all interrupts and DMA */
udc_ep_dma_disable(udc, i);
writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
}
/* Disable DMA interrupts */
writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
writel(0, USBD_UDCAH(udc->udp_baseaddr));
}
static void udc_enable(struct lpc32xx_udc *udc)
{
u32 i;
struct lpc32xx_ep *ep = &udc->ep[0];
/* Start with known state */
udc_disable(udc);
/* Enable device */
udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
/* EP interrupts on high priority, FRAME interrupt on low priority */
writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
/* Clear any pending device interrupts */
writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
/* Setup UDCA - not yet used (DMA) */
writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
for (i = 0; i <= 1; i++) {
udc_realize_hwep(udc, i, ep->ep.maxpacket);
uda_enable_hwepint(udc, i);
udc_select_hwep(udc, i);
udc_clrstall_hwep(udc, i);
udc_clr_buffer_hwep(udc, i);
}
/* Device interrupt setup */
uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
USBD_EP_FAST));
uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
USBD_EP_FAST));
/* Set device address to 0 - called twice to force a latch in the USB
engine without the need of a setup packet status closure */
udc_set_address(udc, 0);
udc_set_address(udc, 0);
/* Enable master DMA interrupts */
writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
USBD_DMAINTEN(udc->udp_baseaddr));
udc->dev_status = 0;
}
/*
*
* USB device board specific events handled via callbacks
*
*/
/* Connection change event - notify board function of change */
static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
{
/* Just notify of a connection change event (optional) */
if (udc->board->conn_chgb != NULL)
udc->board->conn_chgb(conn);
}
/* Suspend/resume event - notify board function of change */
static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
{
/* Just notify of a Suspend/resume change event (optional) */
if (udc->board->susp_chgb != NULL)
udc->board->susp_chgb(conn);
if (conn)
udc->suspended = 0;
else
udc->suspended = 1;
}
/* Remote wakeup enable/disable - notify board function of change */
static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
{
if (udc->board->rmwk_chgb != NULL)
udc->board->rmwk_chgb(udc->dev_status &
(1 << USB_DEVICE_REMOTE_WAKEUP));
}
/* Reads data from FIFO, adjusts for alignment and data size */
static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
{
int n, i, bl;
u16 *p16;
u32 *p32, tmp, cbytes;
/* Use optimal data transfer method based on source address and size */
switch (((u32) data) & 0x3) {
case 0: /* 32-bit aligned */
p32 = (u32 *) data;
cbytes = (bytes & ~0x3);
/* Copy 32-bit aligned data first */
for (n = 0; n < cbytes; n += 4)
*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
/* Handle any remaining bytes */
bl = bytes - cbytes;
if (bl) {
tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
for (n = 0; n < bl; n++)
data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
}
break;
case 1: /* 8-bit aligned */
case 3:
/* Each byte has to be handled independently */
for (n = 0; n < bytes; n += 4) {
tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
bl = bytes - n;
if (bl > 3)
bl = 3;
for (i = 0; i < bl; i++)
data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
}
break;
case 2: /* 16-bit aligned */
p16 = (u16 *) data;
cbytes = (bytes & ~0x3);
/* Copy 32-bit sized objects first with 16-bit alignment */
for (n = 0; n < cbytes; n += 4) {
tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
*p16++ = (u16)(tmp & 0xFFFF);
*p16++ = (u16)((tmp >> 16) & 0xFFFF);
}
/* Handle any remaining bytes */
bl = bytes - cbytes;
if (bl) {
tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
for (n = 0; n < bl; n++)
data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
}
break;
}
}
/* Read data from the FIFO for an endpoint. This function is for endpoints (such
* as EP0) that don't use DMA. This function should only be called if a packet
* is known to be ready to read for the endpoint. Note that the endpoint must
* be selected in the protocol engine prior to this call. */
static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
u32 bytes)
{
u32 tmpv;
int to = 1000;
u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
/* Setup read of endpoint */
writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
/* Wait until packet is ready */
while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
PKT_RDY) == 0) && (to > 0))
to--;
if (!to)
dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
/* Mask out count */
tmp = tmpv & PKT_LNGTH_MASK;
if (bytes < tmp)
tmp = bytes;
if ((tmp > 0) && (data != NULL))
udc_pop_fifo(udc, (u8 *) data, tmp);
writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
/* Clear the buffer */
udc_clr_buffer_hwep(udc, hwep);
return tmp;
}
/* Stuffs data into the FIFO, adjusts for alignment and data size */
static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
{
int n, i, bl;
u16 *p16;
u32 *p32, tmp, cbytes;
/* Use optimal data transfer method based on source address and size */
switch (((u32) data) & 0x3) {
case 0: /* 32-bit aligned */
p32 = (u32 *) data;
cbytes = (bytes & ~0x3);
/* Copy 32-bit aligned data first */
for (n = 0; n < cbytes; n += 4)
writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
/* Handle any remaining bytes */
bl = bytes - cbytes;
if (bl) {
tmp = 0;
for (n = 0; n < bl; n++)
tmp |= data[cbytes + n] << (n * 8);
writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
}
break;
case 1: /* 8-bit aligned */
case 3:
/* Each byte has to be handled independently */
for (n = 0; n < bytes; n += 4) {
bl = bytes - n;
if (bl > 4)
bl = 4;
tmp = 0;
for (i = 0; i < bl; i++)
tmp |= data[n + i] << (i * 8);
writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
}
break;
case 2: /* 16-bit aligned */
p16 = (u16 *) data;
cbytes = (bytes & ~0x3);
/* Copy 32-bit aligned data first */
for (n = 0; n < cbytes; n += 4) {
tmp = *p16++ & 0xFFFF;
tmp |= (*p16++ & 0xFFFF) << 16;
writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
}
/* Handle any remaining bytes */
bl = bytes - cbytes;
if (bl) {
tmp = 0;
for (n = 0; n < bl; n++)
tmp |= data[cbytes + n] << (n * 8);
writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
}
break;
}
}
/* Write data to the FIFO for an endpoint. This function is for endpoints (such
* as EP0) that don't use DMA. Note that the endpoint must be selected in the
* protocol engine prior to this call. */
static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
u32 bytes)
{
u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
if ((bytes > 0) && (data == NULL))
return;
/* Setup write of endpoint */
writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
/* Need at least 1 byte to trigger TX */
if (bytes == 0)
writel(0, USBD_TXDATA(udc->udp_baseaddr));
else
udc_stuff_fifo(udc, (u8 *) data, bytes);
writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
udc_val_buffer_hwep(udc, hwep);
}
/* USB device reset - resets USB to a default state with just EP0
enabled */
static void uda_usb_reset(struct lpc32xx_udc *udc)
{
u32 i = 0;
/* Re-init device controller and EP0 */
udc_enable(udc);
udc->gadget.speed = USB_SPEED_FULL;
for (i = 1; i < NUM_ENDPOINTS; i++) {
struct lpc32xx_ep *ep = &udc->ep[i];
ep->req_pending = 0;
}
}
/* Send a ZLP on EP0 */
static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
{
udc_write_hwep(udc, EP_IN, NULL, 0);
}
/* Get current frame number */
static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
{
u16 flo, fhi;
udc_protocol_cmd_w(udc, CMD_RD_FRAME);
flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
return (fhi << 8) | flo;
}
/* Set the device as configured - enables all endpoints */
static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
{
udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
}
/* Set the device as unconfigured - disables all endpoints */
static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
{
udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
}
/* reinit == restore initial software state */
static void udc_reinit(struct lpc32xx_udc *udc)
{
u32 i;
INIT_LIST_HEAD(&udc->gadget.ep_list);
INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct lpc32xx_ep *ep = &udc->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
INIT_LIST_HEAD(&ep->queue);
ep->req_pending = 0;
}
udc->ep0state = WAIT_FOR_SETUP;
}
/* Must be called with lock */
static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
{
struct lpc32xx_udc *udc = ep->udc;
list_del_init(&req->queue);
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
if (ep->lep) {
usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
/* Free DDs */
udc_dd_free(udc, req->dd_desc_ptr);
}
if (status && status != -ESHUTDOWN)
ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
ep->req_pending = 0;
spin_unlock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
}
/* Must be called with lock */
static void nuke(struct lpc32xx_ep *ep, int status)
{
struct lpc32xx_request *req;
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
done(ep, req, status);
}
if (status == -ESHUTDOWN) {
uda_disable_hwepint(ep->udc, ep->hwep_num);
udc_disable_hwep(ep->udc, ep->hwep_num);
}
}
/* IN endpoint 0 transfer */
static int udc_ep0_in_req(struct lpc32xx_udc *udc)
{
struct lpc32xx_request *req;
struct lpc32xx_ep *ep0 = &udc->ep[0];
u32 tsend, ts = 0;
if (list_empty(&ep0->queue))
/* Nothing to send */
return 0;
else
req = list_entry(ep0->queue.next, struct lpc32xx_request,
queue);
tsend = ts = req->req.length - req->req.actual;
if (ts == 0) {
/* Send a ZLP */
udc_ep0_send_zlp(udc);
done(ep0, req, 0);
return 1;
} else if (ts > ep0->ep.maxpacket)
ts = ep0->ep.maxpacket; /* Just send what we can */
/* Write data to the EP0 FIFO and start transfer */
udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
/* Increment data pointer */
req->req.actual += ts;
if (tsend >= ep0->ep.maxpacket)
return 0; /* Stay in data transfer state */
/* Transfer request is complete */
udc->ep0state = WAIT_FOR_SETUP;
done(ep0, req, 0);
return 1;
}
/* OUT endpoint 0 transfer */
static int udc_ep0_out_req(struct lpc32xx_udc *udc)
{
struct lpc32xx_request *req;
struct lpc32xx_ep *ep0 = &udc->ep[0];
u32 tr, bufferspace;
if (list_empty(&ep0->queue))
return 0;
else
req = list_entry(ep0->queue.next, struct lpc32xx_request,
queue);
if (req) {
if (req->req.length == 0) {
/* Just dequeue request */
done(ep0, req, 0);
udc->ep0state = WAIT_FOR_SETUP;
return 1;
}
/* Get data from FIFO */
bufferspace = req->req.length - req->req.actual;
if (bufferspace > ep0->ep.maxpacket)
bufferspace = ep0->ep.maxpacket;
/* Copy data to buffer */
prefetchw(req->req.buf + req->req.actual);
tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
bufferspace);
req->req.actual += bufferspace;
if (tr < ep0->ep.maxpacket) {
/* This is the last packet */
done(ep0, req, 0);
udc->ep0state = WAIT_FOR_SETUP;
return 1;
}
}
return 0;
}
/* Must be called with lock */
static void stop_activity(struct lpc32xx_udc *udc)
{
struct usb_gadget_driver *driver = udc->driver;
int i;
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->suspended = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct lpc32xx_ep *ep = &udc->ep[i];
nuke(ep, -ESHUTDOWN);
}
if (driver) {
spin_unlock(&udc->lock);
driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
isp1301_pullup_enable(udc, 0, 0);
udc_disable(udc);
udc_reinit(udc);
}
/*
* Activate or kill host pullup
* Can be called with or without lock
*/
static void pullup(struct lpc32xx_udc *udc, int is_on)
{
if (!udc->clocked)
return;
if (!udc->enabled || !udc->vbus)
is_on = 0;
if (is_on != udc->pullup)
isp1301_pullup_enable(udc, is_on, 0);
}
/* Must be called without lock */
static int lpc32xx_ep_disable(struct usb_ep *_ep)
{
struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
struct lpc32xx_udc *udc = ep->udc;
unsigned long flags;
if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
nuke(ep, -ESHUTDOWN);
/* Clear all DMA statuses for this EP */
udc_ep_dma_disable(udc, ep->hwep_num);
writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
/* Remove the DD pointer in the UDCA */
udc->udca_v_base[ep->hwep_num] = 0;
/* Disable and reset endpoint and interrupt */
uda_clear_hwepint(udc, ep->hwep_num);
udc_unrealize_hwep(udc, ep->hwep_num);
ep->hwep_num = 0;
spin_unlock_irqrestore(&udc->lock, flags);
atomic_dec(&udc->enabled_ep_cnt);
wake_up(&udc->ep_disable_wait_queue);
return 0;
}
/* Must be called without lock */
static int lpc32xx_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
struct lpc32xx_udc *udc = ep->udc;
u16 maxpacket;
u32 tmp;
unsigned long flags;
/* Verify EP data */
if ((!_ep) || (!ep) || (!desc) ||
(desc->bDescriptorType != USB_DT_ENDPOINT)) {
dev_dbg(udc->dev, "bad ep or descriptor\n");
return -EINVAL;
}
maxpacket = usb_endpoint_maxp(desc);
if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
return -EINVAL;
}
/* Don't touch EP0 */
if (ep->hwep_num_base == 0) {
dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
return -EINVAL;
}
/* Is driver ready? */
if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
dev_dbg(udc->dev, "bogus device state\n");
return -ESHUTDOWN;
}
tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
switch (tmp) {
case USB_ENDPOINT_XFER_CONTROL:
return -EINVAL;
case USB_ENDPOINT_XFER_INT:
if (maxpacket > ep->maxpacket) {
dev_dbg(udc->dev,
"Bad INT endpoint maxpacket %d\n", maxpacket);
return -EINVAL;
}
break;
case USB_ENDPOINT_XFER_BULK:
switch (maxpacket) {
case 8:
case 16:
case 32:
case 64:
break;
default:
dev_dbg(udc->dev,
"Bad BULK endpoint maxpacket %d\n", maxpacket);
return -EINVAL;
}
break;
case USB_ENDPOINT_XFER_ISOC:
break;
}
spin_lock_irqsave(&udc->lock, flags);
/* Initialize endpoint to match the selected descriptor */
ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
ep->ep.maxpacket = maxpacket;
/* Map hardware endpoint from base and direction */
if (ep->is_in)
/* IN endpoints are offset 1 from the OUT endpoint */
ep->hwep_num = ep->hwep_num_base + EP_IN;
else
ep->hwep_num = ep->hwep_num_base;
ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
ep->hwep_num, maxpacket, (ep->is_in == 1));
/* Realize the endpoint, interrupt is enabled later when
* buffers are queued, IN EPs will NAK until buffers are ready */
udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
udc_clr_buffer_hwep(udc, ep->hwep_num);
uda_disable_hwepint(udc, ep->hwep_num);
udc_clrstall_hwep(udc, ep->hwep_num);
/* Clear all DMA statuses for this EP */
udc_ep_dma_disable(udc, ep->hwep_num);
writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
spin_unlock_irqrestore(&udc->lock, flags);
atomic_inc(&udc->enabled_ep_cnt);
return 0;
}
/*
* Allocate a USB request list
* Can be called with or without lock
*/
static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
gfp_t gfp_flags)
{
struct lpc32xx_request *req;
req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
/*
* De-allocate a USB request list
* Can be called with or without lock
*/
static void lpc32xx_ep_free_request(struct usb_ep *_ep,
struct usb_request *_req)
{
struct lpc32xx_request *req;
req = container_of(_req, struct lpc32xx_request, req);
BUG_ON(!list_empty(&req->queue));
kfree(req);
}
/* Must be called without lock */
static int lpc32xx_ep_queue(struct usb_ep *_ep,
struct usb_request *_req, gfp_t gfp_flags)
{
struct lpc32xx_request *req;
struct lpc32xx_ep *ep;
struct lpc32xx_udc *udc;
unsigned long flags;
int status = 0;
req = container_of(_req, struct lpc32xx_request, req);
ep = container_of(_ep, struct lpc32xx_ep, ep);
if (!_req || !_req->complete || !_req->buf ||
!list_empty(&req->queue))
return -EINVAL;
udc = ep->udc;
if (!_ep) {
dev_dbg(udc->dev, "invalid ep\n");
return -EINVAL;
}
if ((!udc) || (!udc->driver) ||
(udc->gadget.speed == USB_SPEED_UNKNOWN)) {
dev_dbg(udc->dev, "invalid device\n");
return -EINVAL;
}
if (ep->lep) {
struct lpc32xx_usbd_dd_gad *dd;
status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
if (status)
return status;
/* For the request, build a list of DDs */
dd = udc_dd_alloc(udc);
if (!dd) {
/* Error allocating DD */
return -ENOMEM;
}
req->dd_desc_ptr = dd;
/* Setup the DMA descriptor */
dd->dd_next_phy = dd->dd_next_v = 0;
dd->dd_buffer_addr = req->req.dma;
dd->dd_status = 0;
/* Special handling for ISO EPs */
if (ep->eptype == EP_ISO_TYPE) {
dd->dd_setup = DD_SETUP_ISO_EP |
DD_SETUP_PACKETLEN(0) |
DD_SETUP_DMALENBYTES(1);
dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
if (ep->is_in)
dd->iso_status[0] = req->req.length;
else
dd->iso_status[0] = 0;
} else
dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
DD_SETUP_DMALENBYTES(req->req.length);
}
ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
_req, _req->length, _req->buf, ep->is_in, _req->zero);
spin_lock_irqsave(&udc->lock, flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
req->send_zlp = _req->zero;
/* Kickstart empty queues */
if (list_empty(&ep->queue)) {
list_add_tail(&req->queue, &ep->queue);
if (ep->hwep_num_base == 0) {
/* Handle expected data direction */
if (ep->is_in) {
/* IN packet to host */
udc->ep0state = DATA_IN;
status = udc_ep0_in_req(udc);
} else {
/* OUT packet from host */
udc->ep0state = DATA_OUT;
status = udc_ep0_out_req(udc);
}
} else if (ep->is_in) {
/* IN packet to host and kick off transfer */
if (!ep->req_pending)
udc_ep_in_req_dma(udc, ep);
} else
/* OUT packet from host and kick off list */
if (!ep->req_pending)
udc_ep_out_req_dma(udc, ep);
} else
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&udc->lock, flags);
return (status < 0) ? status : 0;
}
/* Must be called without lock */
static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct lpc32xx_ep *ep;
struct lpc32xx_request *req;
unsigned long flags;
ep = container_of(_ep, struct lpc32xx_ep, ep);
if (!_ep || ep->hwep_num_base == 0)
return -EINVAL;
spin_lock_irqsave(&ep->udc->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&ep->udc->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&ep->udc->lock, flags);
return 0;
}
/* Must be called without lock */
static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
{
struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
struct lpc32xx_udc *udc = ep->udc;
unsigned long flags;
if ((!ep) || (ep->hwep_num <= 1))
return -EINVAL;
/* Don't halt an IN EP */
if (ep->is_in)
return -EAGAIN;
spin_lock_irqsave(&udc->lock, flags);
if (value == 1) {
/* stall */
udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
DAT_WR_BYTE(EP_STAT_ST));
} else {
/* End stall */
ep->wedge = 0;
udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
DAT_WR_BYTE(0));
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/* set the halt feature and ignores clear requests */
static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
{
struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
if (!_ep || !ep->udc)
return -EINVAL;
ep->wedge = 1;
return usb_ep_set_halt(_ep);
}
static const struct usb_ep_ops lpc32xx_ep_ops = {
.enable = lpc32xx_ep_enable,
.disable = lpc32xx_ep_disable,
.alloc_request = lpc32xx_ep_alloc_request,
.free_request = lpc32xx_ep_free_request,
.queue = lpc32xx_ep_queue,
.dequeue = lpc32xx_ep_dequeue,
.set_halt = lpc32xx_ep_set_halt,
.set_wedge = lpc32xx_ep_set_wedge,
};
/* Send a ZLP on a non-0 IN EP */
void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
/* Clear EP status */
udc_clearep_getsts(udc, ep->hwep_num);
/* Send ZLP via FIFO mechanism */
udc_write_hwep(udc, ep->hwep_num, NULL, 0);
}
/*
* Handle EP completion for ZLP
* This function will only be called when a delayed ZLP needs to be sent out
* after a DMA transfer has filled both buffers.
*/
void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
u32 epstatus;
struct lpc32xx_request *req;
if (ep->hwep_num <= 0)
return;
uda_clear_hwepint(udc, ep->hwep_num);
/* If this interrupt isn't enabled, return now */
if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
return;
/* Get endpoint status */
epstatus = udc_clearep_getsts(udc, ep->hwep_num);
/*
* This should never happen, but protect against writing to the
* buffer when full.
*/
if (epstatus & EP_SEL_F)
return;
if (ep->is_in) {
udc_send_in_zlp(udc, ep);
uda_disable_hwepint(udc, ep->hwep_num);
} else
return;
/* If there isn't a request waiting, something went wrong */
req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
if (req) {
done(ep, req, 0);
/* Start another request if ready */
if (!list_empty(&ep->queue)) {
if (ep->is_in)
udc_ep_in_req_dma(udc, ep);
else
udc_ep_out_req_dma(udc, ep);
} else
ep->req_pending = 0;
}
}
/* DMA end of transfer completion */
static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
u32 status, epstatus;
struct lpc32xx_request *req;
struct lpc32xx_usbd_dd_gad *dd;
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
ep->totalints++;
#endif
req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
if (!req) {
ep_err(ep, "DMA interrupt on no req!\n");
return;
}
dd = req->dd_desc_ptr;
/* DMA descriptor should always be retired for this call */
if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
ep_warn(ep, "DMA descriptor did not retire\n");
/* Disable DMA */
udc_ep_dma_disable(udc, ep->hwep_num);
writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
/* System error? */
if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
(1 << ep->hwep_num)) {
writel((1 << ep->hwep_num),
USBD_SYSERRTINTCLR(udc->udp_baseaddr));
ep_err(ep, "AHB critical error!\n");
ep->req_pending = 0;
/* The error could have occurred on a packet of a multipacket
* transfer, so recovering the transfer is not possible. Close
* the request with an error */
done(ep, req, -ECONNABORTED);
return;
}
/* Handle the current DD's status */
status = dd->dd_status;
switch (status & DD_STATUS_STS_MASK) {
case DD_STATUS_STS_NS:
/* DD not serviced? This shouldn't happen! */
ep->req_pending = 0;
ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
status);
done(ep, req, -ECONNABORTED);
return;
case DD_STATUS_STS_BS:
/* Interrupt only fires on EOT - This shouldn't happen! */
ep->req_pending = 0;
ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
status);
done(ep, req, -ECONNABORTED);
return;
case DD_STATUS_STS_NC:
case DD_STATUS_STS_DUR:
/* Really just a short packet, not an underrun */
/* This is a good status and what we expect */
break;
default:
/* Data overrun, system error, or unknown */
ep->req_pending = 0;
ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
status);
done(ep, req, -ECONNABORTED);
return;
}
/* ISO endpoints are handled differently */
if (ep->eptype == EP_ISO_TYPE) {
if (ep->is_in)
req->req.actual = req->req.length;
else
req->req.actual = dd->iso_status[0] & 0xFFFF;
} else
req->req.actual += DD_STATUS_CURDMACNT(status);
/* Send a ZLP if necessary. This will be done for non-int
* packets which have a size that is a divisor of MAXP */
if (req->send_zlp) {
/*
* If at least 1 buffer is available, send the ZLP now.
* Otherwise, the ZLP send needs to be deferred until a
* buffer is available.
*/
if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
udc_clearep_getsts(udc, ep->hwep_num);
uda_enable_hwepint(udc, ep->hwep_num);
epstatus = udc_clearep_getsts(udc, ep->hwep_num);
/* Let the EP interrupt handle the ZLP */
return;
} else
udc_send_in_zlp(udc, ep);
}
/* Transfer request is complete */
done(ep, req, 0);
/* Start another request if ready */
udc_clearep_getsts(udc, ep->hwep_num);
if (!list_empty((&ep->queue))) {
if (ep->is_in)
udc_ep_in_req_dma(udc, ep);
else
udc_ep_out_req_dma(udc, ep);
} else
ep->req_pending = 0;
}
/*
*
* Endpoint 0 functions
*
*/
static void udc_handle_dev(struct lpc32xx_udc *udc)
{
u32 tmp;
udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
if (tmp & DEV_RST)
uda_usb_reset(udc);
else if (tmp & DEV_CON_CH)
uda_power_event(udc, (tmp & DEV_CON));
else if (tmp & DEV_SUS_CH) {
if (tmp & DEV_SUS) {
if (udc->vbus == 0)
stop_activity(udc);
else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
udc->driver) {
/* Power down transceiver */
udc->poweron = 0;
schedule_work(&udc->pullup_job);
uda_resm_susp_event(udc, 1);
}
} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
udc->driver && udc->vbus) {
uda_resm_susp_event(udc, 0);
/* Power up transceiver */
udc->poweron = 1;
schedule_work(&udc->pullup_job);
}
}
}
static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
{
struct lpc32xx_ep *ep;
u32 ep0buff = 0, tmp;
switch (reqtype & USB_RECIP_MASK) {
case USB_RECIP_INTERFACE:
break; /* Not supported */
case USB_RECIP_DEVICE:
ep0buff = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
break;
case USB_RECIP_ENDPOINT:
tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
return -EOPNOTSUPP;
if (wIndex & USB_DIR_IN) {
if (!ep->is_in)
return -EOPNOTSUPP; /* Something's wrong */
} else if (ep->is_in)
return -EOPNOTSUPP; /* Not an IN endpoint */
/* Get status of the endpoint */
udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
if (tmp & EP_SEL_ST)
ep0buff = (1 << USB_ENDPOINT_HALT);
else
ep0buff = 0;
break;
default:
break;
}
/* Return data */
udc_write_hwep(udc, EP_IN, &ep0buff, 2);
return 0;
}
static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
{
struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
struct usb_ctrlrequest ctrlpkt;
int i, bytes;
u16 wIndex, wValue, wLength, reqtype, req, tmp;
/* Nuke previous transfers */
nuke(ep0, -EPROTO);
/* Get setup packet */
bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
if (bytes != 8) {
ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
bytes);
return;
}
/* Native endianness */
wIndex = le16_to_cpu(ctrlpkt.wIndex);
wValue = le16_to_cpu(ctrlpkt.wValue);
wLength = le16_to_cpu(ctrlpkt.wLength);
reqtype = le16_to_cpu(ctrlpkt.bRequestType);
/* Set direction of EP0 */
if (likely(reqtype & USB_DIR_IN))
ep0->is_in = 1;
else
ep0->is_in = 0;
/* Handle SETUP packet */
req = le16_to_cpu(ctrlpkt.bRequest);
switch (req) {
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
switch (reqtype) {
case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
if (wValue != USB_DEVICE_REMOTE_WAKEUP)
goto stall; /* Nothing else handled */
/* Tell board about event */
if (req == USB_REQ_CLEAR_FEATURE)
udc->dev_status &=
~(1 << USB_DEVICE_REMOTE_WAKEUP);
else
udc->dev_status |=
(1 << USB_DEVICE_REMOTE_WAKEUP);
uda_remwkp_cgh(udc);
goto zlp_send;
case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
if ((wValue != USB_ENDPOINT_HALT) ||
(tmp >= NUM_ENDPOINTS))
break;
/* Find hardware endpoint from logical endpoint */
ep = &udc->ep[tmp];
tmp = ep->hwep_num;
if (tmp == 0)
break;
if (req == USB_REQ_SET_FEATURE)
udc_stall_hwep(udc, tmp);
else if (!ep->wedge)
udc_clrstall_hwep(udc, tmp);
goto zlp_send;
default:
break;
}
case USB_REQ_SET_ADDRESS:
if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
udc_set_address(udc, wValue);
goto zlp_send;
}
break;
case USB_REQ_GET_STATUS:
udc_get_status(udc, reqtype, wIndex);
return;
default:
break; /* Let GadgetFS handle the descriptor instead */
}
if (likely(udc->driver)) {
/* device-2-host (IN) or no data setup command, process
* immediately */
spin_unlock(&udc->lock);
i = udc->driver->setup(&udc->gadget, &ctrlpkt);
spin_lock(&udc->lock);
if (req == USB_REQ_SET_CONFIGURATION) {
/* Configuration is set after endpoints are realized */
if (wValue) {
/* Set configuration */
udc_set_device_configured(udc);
udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
DAT_WR_BYTE(AP_CLK |
INAK_BI | INAK_II));
} else {
/* Clear configuration */
udc_set_device_unconfigured(udc);
/* Disable NAK interrupts */
udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
DAT_WR_BYTE(AP_CLK));
}
}
if (i < 0) {
/* setup processing failed, force stall */
dev_dbg(udc->dev,
"req %02x.%02x protocol STALL; stat %d\n",
reqtype, req, i);
udc->ep0state = WAIT_FOR_SETUP;
goto stall;
}
}
if (!ep0->is_in)
udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
return;
stall:
udc_stall_hwep(udc, EP_IN);
return;
zlp_send:
udc_ep0_send_zlp(udc);
return;
}
/* IN endpoint 0 transfer */
static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
{
struct lpc32xx_ep *ep0 = &udc->ep[0];
u32 epstatus;
/* Clear EP interrupt */
epstatus = udc_clearep_getsts(udc, EP_IN);
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
ep0->totalints++;
#endif
/* Stalled? Clear stall and reset buffers */
if (epstatus & EP_SEL_ST) {
udc_clrstall_hwep(udc, EP_IN);
nuke(ep0, -ECONNABORTED);
udc->ep0state = WAIT_FOR_SETUP;
return;
}
/* Is a buffer available? */
if (!(epstatus & EP_SEL_F)) {
/* Handle based on current state */
if (udc->ep0state == DATA_IN)
udc_ep0_in_req(udc);
else {
/* Unknown state for EP0 oe end of DATA IN phase */
nuke(ep0, -ECONNABORTED);
udc->ep0state = WAIT_FOR_SETUP;
}
}
}
/* OUT endpoint 0 transfer */
static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
{
struct lpc32xx_ep *ep0 = &udc->ep[0];
u32 epstatus;
/* Clear EP interrupt */
epstatus = udc_clearep_getsts(udc, EP_OUT);
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
ep0->totalints++;
#endif
/* Stalled? */
if (epstatus & EP_SEL_ST) {
udc_clrstall_hwep(udc, EP_OUT);
nuke(ep0, -ECONNABORTED);
udc->ep0state = WAIT_FOR_SETUP;
return;
}
/* A NAK may occur if a packet couldn't be received yet */
if (epstatus & EP_SEL_EPN)
return;
/* Setup packet incoming? */
if (epstatus & EP_SEL_STP) {
nuke(ep0, 0);
udc->ep0state = WAIT_FOR_SETUP;
}
/* Data available? */
if (epstatus & EP_SEL_F)
/* Handle based on current state */
switch (udc->ep0state) {
case WAIT_FOR_SETUP:
udc_handle_ep0_setup(udc);
break;
case DATA_OUT:
udc_ep0_out_req(udc);
break;
default:
/* Unknown state for EP0 */
nuke(ep0, -ECONNABORTED);
udc->ep0state = WAIT_FOR_SETUP;
}
}
/* Must be called without lock */
static int lpc32xx_get_frame(struct usb_gadget *gadget)
{
int frame;
unsigned long flags;
struct lpc32xx_udc *udc = to_udc(gadget);
if (!udc->clocked)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
frame = (int) udc_get_current_frame(udc);
spin_unlock_irqrestore(&udc->lock, flags);
return frame;
}
static int lpc32xx_wakeup(struct usb_gadget *gadget)
{
return -ENOTSUPP;
}
static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
{
struct lpc32xx_udc *udc = to_udc(gadget);
/* Always self-powered */
udc->selfpowered = (is_on != 0);
return 0;
}
/*
* vbus is here! turn everything on that's ready
* Must be called without lock
*/
static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
{
unsigned long flags;
struct lpc32xx_udc *udc = to_udc(gadget);
spin_lock_irqsave(&udc->lock, flags);
/* Doesn't need lock */
if (udc->driver) {
udc_clk_set(udc, 1);
udc_enable(udc);
pullup(udc, is_active);
} else {
stop_activity(udc);
pullup(udc, 0);
spin_unlock_irqrestore(&udc->lock, flags);
/*
* Wait for all the endpoints to disable,
* before disabling clocks. Don't wait if
* endpoints are not enabled.
*/
if (atomic_read(&udc->enabled_ep_cnt))
wait_event_interruptible(udc->ep_disable_wait_queue,
(atomic_read(&udc->enabled_ep_cnt) == 0));
spin_lock_irqsave(&udc->lock, flags);
udc_clk_set(udc, 0);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/* Can be called with or without lock */
static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
{
struct lpc32xx_udc *udc = to_udc(gadget);
/* Doesn't need lock */
pullup(udc, is_on);
return 0;
}
static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
static int lpc32xx_stop(struct usb_gadget *, struct usb_gadget_driver *);
static const struct usb_gadget_ops lpc32xx_udc_ops = {
.get_frame = lpc32xx_get_frame,
.wakeup = lpc32xx_wakeup,
.set_selfpowered = lpc32xx_set_selfpowered,
.vbus_session = lpc32xx_vbus_session,
.pullup = lpc32xx_pullup,
.udc_start = lpc32xx_start,
.udc_stop = lpc32xx_stop,
};
static void nop_release(struct device *dev)
{
/* nothing to free */
}
static const struct lpc32xx_udc controller_template = {
.gadget = {
.ops = &lpc32xx_udc_ops,
.name = driver_name,
.dev = {
.init_name = "gadget",
.release = nop_release,
}
},
.ep[0] = {
.ep = {
.name = "ep0",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 0,
.hwep_num = 0, /* Can be 0 or 1, has special handling */
.lep = 0,
.eptype = EP_CTL_TYPE,
},
.ep[1] = {
.ep = {
.name = "ep1-int",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 2,
.hwep_num = 0, /* 2 or 3, will be set later */
.lep = 1,
.eptype = EP_INT_TYPE,
},
.ep[2] = {
.ep = {
.name = "ep2-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 4,
.hwep_num = 0, /* 4 or 5, will be set later */
.lep = 2,
.eptype = EP_BLK_TYPE,
},
.ep[3] = {
.ep = {
.name = "ep3-iso",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 1023,
.hwep_num_base = 6,
.hwep_num = 0, /* 6 or 7, will be set later */
.lep = 3,
.eptype = EP_ISO_TYPE,
},
.ep[4] = {
.ep = {
.name = "ep4-int",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 8,
.hwep_num = 0, /* 8 or 9, will be set later */
.lep = 4,
.eptype = EP_INT_TYPE,
},
.ep[5] = {
.ep = {
.name = "ep5-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 10,
.hwep_num = 0, /* 10 or 11, will be set later */
.lep = 5,
.eptype = EP_BLK_TYPE,
},
.ep[6] = {
.ep = {
.name = "ep6-iso",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 1023,
.hwep_num_base = 12,
.hwep_num = 0, /* 12 or 13, will be set later */
.lep = 6,
.eptype = EP_ISO_TYPE,
},
.ep[7] = {
.ep = {
.name = "ep7-int",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 14,
.hwep_num = 0,
.lep = 7,
.eptype = EP_INT_TYPE,
},
.ep[8] = {
.ep = {
.name = "ep8-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 16,
.hwep_num = 0,
.lep = 8,
.eptype = EP_BLK_TYPE,
},
.ep[9] = {
.ep = {
.name = "ep9-iso",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 1023,
.hwep_num_base = 18,
.hwep_num = 0,
.lep = 9,
.eptype = EP_ISO_TYPE,
},
.ep[10] = {
.ep = {
.name = "ep10-int",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 20,
.hwep_num = 0,
.lep = 10,
.eptype = EP_INT_TYPE,
},
.ep[11] = {
.ep = {
.name = "ep11-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 22,
.hwep_num = 0,
.lep = 11,
.eptype = EP_BLK_TYPE,
},
.ep[12] = {
.ep = {
.name = "ep12-iso",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 1023,
.hwep_num_base = 24,
.hwep_num = 0,
.lep = 12,
.eptype = EP_ISO_TYPE,
},
.ep[13] = {
.ep = {
.name = "ep13-int",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 26,
.hwep_num = 0,
.lep = 13,
.eptype = EP_INT_TYPE,
},
.ep[14] = {
.ep = {
.name = "ep14-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 64,
.hwep_num_base = 28,
.hwep_num = 0,
.lep = 14,
.eptype = EP_BLK_TYPE,
},
.ep[15] = {
.ep = {
.name = "ep15-bulk",
.ops = &lpc32xx_ep_ops,
},
.maxpacket = 1023,
.hwep_num_base = 30,
.hwep_num = 0,
.lep = 15,
.eptype = EP_BLK_TYPE,
},
};
/* ISO and status interrupts */
static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
{
u32 tmp, devstat;
struct lpc32xx_udc *udc = _udc;
spin_lock(&udc->lock);
/* Read the device status register */
devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
devstat &= ~USBD_EP_FAST;
writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
devstat = devstat & udc->enabled_devints;
/* Device specific handling needed? */
if (devstat & USBD_DEV_STAT)
udc_handle_dev(udc);
/* Start of frame? (devstat & FRAME_INT):
* The frame interrupt isn't really needed for ISO support,
* as the driver will queue the necessary packets */
/* Error? */
if (devstat & ERR_INT) {
/* All types of errors, from cable removal during transfer to
* misc protocol and bit errors. These are mostly for just info,
* as the USB hardware will work around these. If these errors
* happen alot, something is wrong. */
udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
}
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
/* EP interrupts */
static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
{
u32 tmp;
struct lpc32xx_udc *udc = _udc;
spin_lock(&udc->lock);
/* Read the device status register */
writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
/* Endpoints */
tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
/* Special handling for EP0 */
if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
/* Handle EP0 IN */
if (tmp & (EP_MASK_SEL(0, EP_IN)))
udc_handle_ep0_in(udc);
/* Handle EP0 OUT */
if (tmp & (EP_MASK_SEL(0, EP_OUT)))
udc_handle_ep0_out(udc);
}
/* All other EPs */
if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
int i;
/* Handle other EP interrupts */
for (i = 1; i < NUM_ENDPOINTS; i++) {
if (tmp & (1 << udc->ep[i].hwep_num))
udc_handle_eps(udc, &udc->ep[i]);
}
}
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
{
struct lpc32xx_udc *udc = _udc;
int i;
u32 tmp;
spin_lock(&udc->lock);
/* Handle EP DMA EOT interrupts */
tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
for (i = 1; i < NUM_ENDPOINTS; i++) {
if (tmp & (1 << udc->ep[i].hwep_num))
udc_handle_dma_ep(udc, &udc->ep[i]);
}
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
/*
*
* VBUS detection, pullup handler, and Gadget cable state notification
*
*/
static void vbus_work(struct work_struct *work)
{
u8 value;
struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
vbus_job);
if (udc->enabled != 0) {
/* Discharge VBUS real quick */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
/* Give VBUS some time (100mS) to discharge */
msleep(100);
/* Disable VBUS discharge resistor */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
OTG1_VBUS_DISCHRG);
/* Clear interrupt */
i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_LATCH |
ISP1301_I2C_REG_CLEAR_ADDR, ~0);
/* Get the VBUS status from the transceiver */
value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
ISP1301_I2C_INTERRUPT_SOURCE);
/* VBUS on or off? */
if (value & INT_SESS_VLD)
udc->vbus = 1;
else
udc->vbus = 0;
/* VBUS changed? */
if (udc->last_vbus != udc->vbus) {
udc->last_vbus = udc->vbus;
lpc32xx_vbus_session(&udc->gadget, udc->vbus);
}
}
/* Re-enable after completion */
enable_irq(udc->udp_irq[IRQ_USB_ATX]);
}
static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
{
struct lpc32xx_udc *udc = _udc;
/* Defer handling of VBUS IRQ to work queue */
disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
schedule_work(&udc->vbus_job);
return IRQ_HANDLED;
}
static int lpc32xx_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct lpc32xx_udc *udc = to_udc(gadget);
int i;
if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
dev_err(udc->dev, "bad parameter.\n");
return -EINVAL;
}
if (udc->driver) {
dev_err(udc->dev, "UDC already has a gadget driver\n");
return -EBUSY;
}
udc->driver = driver;
udc->gadget.dev.of_node = udc->dev->of_node;
udc->enabled = 1;
udc->selfpowered = 1;
udc->vbus = 0;
/* Force VBUS process once to check for cable insertion */
udc->last_vbus = udc->vbus = 0;
schedule_work(&udc->vbus_job);
/* Do not re-enable ATX IRQ (3) */
for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
enable_irq(udc->udp_irq[i]);
return 0;
}
static int lpc32xx_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
int i;
struct lpc32xx_udc *udc = to_udc(gadget);
if (!driver || driver != udc->driver)
return -EINVAL;
for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
disable_irq(udc->udp_irq[i]);
if (udc->clocked) {
spin_lock(&udc->lock);
stop_activity(udc);
spin_unlock(&udc->lock);
/*
* Wait for all the endpoints to disable,
* before disabling clocks. Don't wait if
* endpoints are not enabled.
*/
if (atomic_read(&udc->enabled_ep_cnt))
wait_event_interruptible(udc->ep_disable_wait_queue,
(atomic_read(&udc->enabled_ep_cnt) == 0));
spin_lock(&udc->lock);
udc_clk_set(udc, 0);
spin_unlock(&udc->lock);
}
udc->enabled = 0;
udc->driver = NULL;
return 0;
}
static void lpc32xx_udc_shutdown(struct platform_device *dev)
{
/* Force disconnect on reboot */
struct lpc32xx_udc *udc = platform_get_drvdata(dev);
pullup(udc, 0);
}
/*
* Callbacks to be overridden by options passed via OF (TODO)
*/
static void lpc32xx_usbd_conn_chg(int conn)
{
/* Do nothing, it might be nice to enable an LED
* based on conn state being !0 */
}
static void lpc32xx_usbd_susp_chg(int susp)
{
/* Device suspend if susp != 0 */
}
static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
{
/* Enable or disable USB remote wakeup */
}
struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
.vbus_drv_pol = 0,
.conn_chgb = &lpc32xx_usbd_conn_chg,
.susp_chgb = &lpc32xx_usbd_susp_chg,
.rmwk_chgb = &lpc32xx_rmwkup_chg,
};
static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
static int __init lpc32xx_udc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct lpc32xx_udc *udc;
int retval, i;
struct resource *res;
dma_addr_t dma_handle;
struct device_node *isp1301_node;
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (!udc)
return -ENOMEM;
memcpy(udc, &controller_template, sizeof(*udc));
for (i = 0; i <= 15; i++)
udc->ep[i].udc = udc;
udc->gadget.ep0 = &udc->ep[0].ep;
/* init software state */
udc->gadget.dev.parent = dev;
udc->pdev = pdev;
udc->dev = &pdev->dev;
udc->enabled = 0;
if (pdev->dev.of_node) {
isp1301_node = of_parse_phandle(pdev->dev.of_node,
"transceiver", 0);
} else {
isp1301_node = NULL;
}
udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
if (!udc->isp1301_i2c_client) {
retval = -EPROBE_DEFER;
goto phy_fail;
}
dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
udc->isp1301_i2c_client->addr);
pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (retval)
goto resource_fail;
udc->board = &lpc32xx_usbddata;
/*
* Resources are mapped as follows:
* IORESOURCE_MEM, base address and size of USB space
* IORESOURCE_IRQ, USB device low priority interrupt number
* IORESOURCE_IRQ, USB device high priority interrupt number
* IORESOURCE_IRQ, USB device interrupt number
* IORESOURCE_IRQ, USB transceiver interrupt number
*/
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
retval = -ENXIO;
goto resource_fail;
}
spin_lock_init(&udc->lock);
/* Get IRQs */
for (i = 0; i < 4; i++) {
udc->udp_irq[i] = platform_get_irq(pdev, i);
if (udc->udp_irq[i] < 0) {
dev_err(udc->dev,
"irq resource %d not available!\n", i);
retval = udc->udp_irq[i];
goto irq_fail;
}
}
udc->io_p_start = res->start;
udc->io_p_size = resource_size(res);
if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
dev_err(udc->dev, "someone's using UDC memory\n");
retval = -EBUSY;
goto request_mem_region_fail;
}
udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
if (!udc->udp_baseaddr) {
retval = -ENOMEM;
dev_err(udc->dev, "IO map failure\n");
goto io_map_fail;
}
/* Enable AHB slave USB clock, needed for further USB clock control */
writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);
/* Get required clocks */
udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
if (IS_ERR(udc->usb_pll_clk)) {
dev_err(udc->dev, "failed to acquire USB PLL\n");
retval = PTR_ERR(udc->usb_pll_clk);
goto pll_get_fail;
}
udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
if (IS_ERR(udc->usb_slv_clk)) {
dev_err(udc->dev, "failed to acquire USB device clock\n");
retval = PTR_ERR(udc->usb_slv_clk);
goto usb_clk_get_fail;
}
udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
if (IS_ERR(udc->usb_otg_clk)) {
dev_err(udc->dev, "failed to acquire USB otg clock\n");
retval = PTR_ERR(udc->usb_otg_clk);
goto usb_otg_clk_get_fail;
}
/* Setup PLL clock to 48MHz */
retval = clk_enable(udc->usb_pll_clk);
if (retval < 0) {
dev_err(udc->dev, "failed to start USB PLL\n");
goto pll_enable_fail;
}
retval = clk_set_rate(udc->usb_pll_clk, 48000);
if (retval < 0) {
dev_err(udc->dev, "failed to set USB clock rate\n");
goto pll_set_fail;
}
writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);
/* Enable USB device clock */
retval = clk_enable(udc->usb_slv_clk);
if (retval < 0) {
dev_err(udc->dev, "failed to start USB device clock\n");
goto usb_clk_enable_fail;
}
/* Enable USB OTG clock */
retval = clk_enable(udc->usb_otg_clk);
if (retval < 0) {
dev_err(udc->dev, "failed to start USB otg clock\n");
goto usb_otg_clk_enable_fail;
}
/* Setup deferred workqueue data */
udc->poweron = udc->pullup = 0;
INIT_WORK(&udc->pullup_job, pullup_work);
INIT_WORK(&udc->vbus_job, vbus_work);
#ifdef CONFIG_PM
INIT_WORK(&udc->power_job, power_work);
#endif
/* All clocks are now on */
udc->clocked = 1;
isp1301_udc_configure(udc);
/* Allocate memory for the UDCA */
udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
&dma_handle,
(GFP_KERNEL | GFP_DMA));
if (!udc->udca_v_base) {
dev_err(udc->dev, "error getting UDCA region\n");
retval = -ENOMEM;
goto i2c_fail;
}
udc->udca_p_base = dma_handle;
dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
/* Setup the DD DMA memory pool */
udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
sizeof(struct lpc32xx_usbd_dd_gad),
sizeof(u32), 0);
if (!udc->dd_cache) {
dev_err(udc->dev, "error getting DD DMA region\n");
retval = -ENOMEM;
goto dma_alloc_fail;
}
/* Clear USB peripheral and initialize gadget endpoints */
udc_disable(udc);
udc_reinit(udc);
/* Request IRQs - low and high priority USB device IRQs are routed to
* the same handler, while the DMA interrupt is routed elsewhere */
retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
0, "udc_lp", udc);
if (retval < 0) {
dev_err(udc->dev, "LP request irq %d failed\n",
udc->udp_irq[IRQ_USB_LP]);
goto irq_lp_fail;
}
retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
0, "udc_hp", udc);
if (retval < 0) {
dev_err(udc->dev, "HP request irq %d failed\n",
udc->udp_irq[IRQ_USB_HP]);
goto irq_hp_fail;
}
retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
if (retval < 0) {
dev_err(udc->dev, "DEV request irq %d failed\n",
udc->udp_irq[IRQ_USB_DEVDMA]);
goto irq_dev_fail;
}
/* The transceiver interrupt is used for VBUS detection and will
kick off the VBUS handler function */
retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
0, "udc_otg", udc);
if (retval < 0) {
dev_err(udc->dev, "VBUS request irq %d failed\n",
udc->udp_irq[IRQ_USB_ATX]);
goto irq_xcvr_fail;
}
/* Initialize wait queue */
init_waitqueue_head(&udc->ep_disable_wait_queue);
atomic_set(&udc->enabled_ep_cnt, 0);
/* Keep all IRQs disabled until GadgetFS starts up */
for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
disable_irq(udc->udp_irq[i]);
retval = usb_add_gadget_udc(dev, &udc->gadget);
if (retval < 0)
goto add_gadget_fail;
dev_set_drvdata(dev, udc);
device_init_wakeup(dev, 1);
create_debug_file(udc);
/* Disable clocks for now */
udc_clk_set(udc, 0);
dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
return 0;
add_gadget_fail:
free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
irq_xcvr_fail:
free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
irq_dev_fail:
free_irq(udc->udp_irq[IRQ_USB_HP], udc);
irq_hp_fail:
free_irq(udc->udp_irq[IRQ_USB_LP], udc);
irq_lp_fail:
dma_pool_destroy(udc->dd_cache);
dma_alloc_fail:
dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
udc->udca_v_base, udc->udca_p_base);
i2c_fail:
clk_disable(udc->usb_otg_clk);
usb_otg_clk_enable_fail:
clk_disable(udc->usb_slv_clk);
usb_clk_enable_fail:
pll_set_fail:
clk_disable(udc->usb_pll_clk);
pll_enable_fail:
clk_put(udc->usb_slv_clk);
usb_otg_clk_get_fail:
clk_put(udc->usb_otg_clk);
usb_clk_get_fail:
clk_put(udc->usb_pll_clk);
pll_get_fail:
iounmap(udc->udp_baseaddr);
io_map_fail:
release_mem_region(udc->io_p_start, udc->io_p_size);
dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
request_mem_region_fail:
irq_fail:
resource_fail:
phy_fail:
kfree(udc);
return retval;
}
static int lpc32xx_udc_remove(struct platform_device *pdev)
{
struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
usb_del_gadget_udc(&udc->gadget);
if (udc->driver)
return -EBUSY;
udc_clk_set(udc, 1);
udc_disable(udc);
pullup(udc, 0);
free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
device_init_wakeup(&pdev->dev, 0);
remove_debug_file(udc);
dma_pool_destroy(udc->dd_cache);
dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
udc->udca_v_base, udc->udca_p_base);
free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
free_irq(udc->udp_irq[IRQ_USB_HP], udc);
free_irq(udc->udp_irq[IRQ_USB_LP], udc);
clk_disable(udc->usb_otg_clk);
clk_put(udc->usb_otg_clk);
clk_disable(udc->usb_slv_clk);
clk_put(udc->usb_slv_clk);
clk_disable(udc->usb_pll_clk);
clk_put(udc->usb_pll_clk);
iounmap(udc->udp_baseaddr);
release_mem_region(udc->io_p_start, udc->io_p_size);
kfree(udc);
return 0;
}
#ifdef CONFIG_PM
static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
if (udc->clocked) {
/* Power down ISP */
udc->poweron = 0;
isp1301_set_powerstate(udc, 0);
/* Disable clocking */
udc_clk_set(udc, 0);
/* Keep clock flag on, so we know to re-enable clocks
on resume */
udc->clocked = 1;
/* Kill global USB clock */
clk_disable(udc->usb_slv_clk);
}
return 0;
}
static int lpc32xx_udc_resume(struct platform_device *pdev)
{
struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
if (udc->clocked) {
/* Enable global USB clock */
clk_enable(udc->usb_slv_clk);
/* Enable clocking */
udc_clk_set(udc, 1);
/* ISP back to normal power mode */
udc->poweron = 1;
isp1301_set_powerstate(udc, 1);
}
return 0;
}
#else
#define lpc32xx_udc_suspend NULL
#define lpc32xx_udc_resume NULL
#endif
#ifdef CONFIG_OF
static struct of_device_id lpc32xx_udc_of_match[] = {
{ .compatible = "nxp,lpc3220-udc", },
{ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
#endif
static struct platform_driver lpc32xx_udc_driver = {
.remove = lpc32xx_udc_remove,
.shutdown = lpc32xx_udc_shutdown,
.suspend = lpc32xx_udc_suspend,
.resume = lpc32xx_udc_resume,
.driver = {
.name = (char *) driver_name,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
},
};
module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
MODULE_DESCRIPTION("LPC32XX udc driver");
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:lpc32xx_udc");