mirror of https://gitee.com/openkylin/linux.git
1482 lines
35 KiB
C
1482 lines
35 KiB
C
/*
|
|
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2x00lib
|
|
Abstract: rt2x00 generic device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00lib.h"
|
|
#include "rt2x00dump.h"
|
|
|
|
/*
|
|
* Ring handler.
|
|
*/
|
|
struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int queue)
|
|
{
|
|
int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Check if we are requesting a reqular TX ring,
|
|
* or if we are requesting a Beacon or Atim ring.
|
|
* For Atim rings, we should check if it is supported.
|
|
*/
|
|
if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
|
|
return &rt2x00dev->tx[queue];
|
|
|
|
if (!rt2x00dev->bcn || !beacon)
|
|
return NULL;
|
|
|
|
if (queue == IEEE80211_TX_QUEUE_BEACON)
|
|
return &rt2x00dev->bcn[0];
|
|
else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
|
|
return &rt2x00dev->bcn[1];
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
|
|
|
|
/*
|
|
* Link tuning handlers
|
|
*/
|
|
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2x00dev->link.count = 0;
|
|
rt2x00dev->link.vgc_level = 0;
|
|
|
|
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
|
|
|
|
/*
|
|
* The RX and TX percentage should start at 50%
|
|
* this will assure we will get at least get some
|
|
* decent value when the link tuner starts.
|
|
* The value will be dropped and overwritten with
|
|
* the correct (measured )value anyway during the
|
|
* first run of the link tuner.
|
|
*/
|
|
rt2x00dev->link.qual.rx_percentage = 50;
|
|
rt2x00dev->link.qual.tx_percentage = 50;
|
|
|
|
/*
|
|
* Reset the link tuner.
|
|
*/
|
|
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
|
|
|
|
queue_delayed_work(rt2x00dev->hw->workqueue,
|
|
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
|
|
}
|
|
|
|
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
cancel_delayed_work_sync(&rt2x00dev->link.work);
|
|
}
|
|
|
|
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
rt2x00lib_stop_link_tuner(rt2x00dev);
|
|
rt2x00lib_start_link_tuner(rt2x00dev);
|
|
}
|
|
|
|
/*
|
|
* Ring initialization
|
|
*/
|
|
static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring = rt2x00dev->rx;
|
|
unsigned int i;
|
|
|
|
if (!rt2x00dev->ops->lib->init_rxentry)
|
|
return;
|
|
|
|
if (ring->data_addr)
|
|
memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
|
|
|
|
for (i = 0; i < ring->stats.limit; i++)
|
|
rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
|
|
|
|
rt2x00_ring_index_clear(ring);
|
|
}
|
|
|
|
static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring;
|
|
unsigned int i;
|
|
|
|
if (!rt2x00dev->ops->lib->init_txentry)
|
|
return;
|
|
|
|
txringall_for_each(rt2x00dev, ring) {
|
|
if (ring->data_addr)
|
|
memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
|
|
|
|
for (i = 0; i < ring->stats.limit; i++)
|
|
rt2x00dev->ops->lib->init_txentry(rt2x00dev,
|
|
&ring->entry[i]);
|
|
|
|
rt2x00_ring_index_clear(ring);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Radio control handlers.
|
|
*/
|
|
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Don't enable the radio twice.
|
|
* And check if the hardware button has been disabled.
|
|
*/
|
|
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
|
|
test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize all data rings.
|
|
*/
|
|
rt2x00lib_init_rxrings(rt2x00dev);
|
|
rt2x00lib_init_txrings(rt2x00dev);
|
|
|
|
/*
|
|
* Enable radio.
|
|
*/
|
|
status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
|
|
STATE_RADIO_ON);
|
|
if (status)
|
|
return status;
|
|
|
|
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
|
|
|
|
/*
|
|
* Start the TX queues.
|
|
*/
|
|
ieee80211_start_queues(rt2x00dev->hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Stop all scheduled work.
|
|
*/
|
|
if (work_pending(&rt2x00dev->beacon_work))
|
|
cancel_work_sync(&rt2x00dev->beacon_work);
|
|
if (work_pending(&rt2x00dev->filter_work))
|
|
cancel_work_sync(&rt2x00dev->filter_work);
|
|
if (work_pending(&rt2x00dev->config_work))
|
|
cancel_work_sync(&rt2x00dev->config_work);
|
|
|
|
/*
|
|
* Stop the TX queues.
|
|
*/
|
|
ieee80211_stop_queues(rt2x00dev->hw);
|
|
|
|
/*
|
|
* Disable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
|
|
}
|
|
|
|
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
|
|
{
|
|
/*
|
|
* When we are disabling the RX, we should also stop the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_OFF)
|
|
rt2x00lib_stop_link_tuner(rt2x00dev);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
|
|
/*
|
|
* When we are enabling the RX, we should also start the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_ON &&
|
|
is_interface_present(&rt2x00dev->interface))
|
|
rt2x00lib_start_link_tuner(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
enum antenna rx = rt2x00dev->link.ant.active.rx;
|
|
enum antenna tx = rt2x00dev->link.ant.active.tx;
|
|
int sample_a =
|
|
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
|
|
int sample_b =
|
|
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
|
|
|
|
/*
|
|
* We are done sampling. Now we should evaluate the results.
|
|
*/
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
|
|
|
|
/*
|
|
* During the last period we have sampled the RSSI
|
|
* from both antenna's. It now is time to determine
|
|
* which antenna demonstrated the best performance.
|
|
* When we are already on the antenna with the best
|
|
* performance, then there really is nothing for us
|
|
* left to do.
|
|
*/
|
|
if (sample_a == sample_b)
|
|
return;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
|
|
rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
|
|
tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
|
|
|
|
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
enum antenna rx = rt2x00dev->link.ant.active.rx;
|
|
enum antenna tx = rt2x00dev->link.ant.active.tx;
|
|
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
|
|
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
|
|
|
|
/*
|
|
* Legacy driver indicates that we should swap antenna's
|
|
* when the difference in RSSI is greater that 5. This
|
|
* also should be done when the RSSI was actually better
|
|
* then the previous sample.
|
|
* When the difference exceeds the threshold we should
|
|
* sample the rssi from the other antenna to make a valid
|
|
* comparison between the 2 antennas.
|
|
*/
|
|
if (abs(rssi_curr - rssi_old) < 5)
|
|
return;
|
|
|
|
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
|
|
rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
|
|
tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
|
|
|
|
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Determine if software diversity is enabled for
|
|
* either the TX or RX antenna (or both).
|
|
* Always perform this check since within the link
|
|
* tuner interval the configuration might have changed.
|
|
*/
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
|
|
|
|
if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
|
|
rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
|
|
if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
|
|
rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
|
|
|
|
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
|
|
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
|
|
rt2x00dev->link.ant.flags = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have only sampled the data over the last period
|
|
* we should now harvest the data. Otherwise just evaluate
|
|
* the data. The latter should only be performed once
|
|
* every 2 seconds.
|
|
*/
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
|
|
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
|
|
else if (rt2x00dev->link.count & 1)
|
|
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
|
|
{
|
|
int avg_rssi = rssi;
|
|
|
|
/*
|
|
* Update global RSSI
|
|
*/
|
|
if (link->qual.avg_rssi)
|
|
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
|
|
link->qual.avg_rssi = avg_rssi;
|
|
|
|
/*
|
|
* Update antenna RSSI
|
|
*/
|
|
if (link->ant.rssi_ant)
|
|
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
|
|
link->ant.rssi_ant = rssi;
|
|
}
|
|
|
|
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
|
|
{
|
|
if (qual->rx_failed || qual->rx_success)
|
|
qual->rx_percentage =
|
|
(qual->rx_success * 100) /
|
|
(qual->rx_failed + qual->rx_success);
|
|
else
|
|
qual->rx_percentage = 50;
|
|
|
|
if (qual->tx_failed || qual->tx_success)
|
|
qual->tx_percentage =
|
|
(qual->tx_success * 100) /
|
|
(qual->tx_failed + qual->tx_success);
|
|
else
|
|
qual->tx_percentage = 50;
|
|
|
|
qual->rx_success = 0;
|
|
qual->rx_failed = 0;
|
|
qual->tx_success = 0;
|
|
qual->tx_failed = 0;
|
|
}
|
|
|
|
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
|
|
int rssi)
|
|
{
|
|
int rssi_percentage = 0;
|
|
int signal;
|
|
|
|
/*
|
|
* We need a positive value for the RSSI.
|
|
*/
|
|
if (rssi < 0)
|
|
rssi += rt2x00dev->rssi_offset;
|
|
|
|
/*
|
|
* Calculate the different percentages,
|
|
* which will be used for the signal.
|
|
*/
|
|
if (rt2x00dev->rssi_offset)
|
|
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
|
|
|
|
/*
|
|
* Add the individual percentages and use the WEIGHT
|
|
* defines to calculate the current link signal.
|
|
*/
|
|
signal = ((WEIGHT_RSSI * rssi_percentage) +
|
|
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
|
|
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
|
|
|
|
return (signal > 100) ? 100 : signal;
|
|
}
|
|
|
|
static void rt2x00lib_link_tuner(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, link.work.work);
|
|
|
|
/*
|
|
* When the radio is shutting down we should
|
|
* immediately cease all link tuning.
|
|
*/
|
|
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Update statistics.
|
|
*/
|
|
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
|
|
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
|
|
rt2x00dev->link.qual.rx_failed;
|
|
|
|
/*
|
|
* Only perform the link tuning when Link tuning
|
|
* has been enabled (This could have been disabled from the EEPROM).
|
|
*/
|
|
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
|
|
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
|
|
|
|
/*
|
|
* Evaluate antenna setup.
|
|
*/
|
|
rt2x00lib_evaluate_antenna(rt2x00dev);
|
|
|
|
/*
|
|
* Precalculate a portion of the link signal which is
|
|
* in based on the tx/rx success/failure counters.
|
|
*/
|
|
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
|
|
|
|
/*
|
|
* Increase tuner counter, and reschedule the next link tuner run.
|
|
*/
|
|
rt2x00dev->link.count++;
|
|
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
|
|
LINK_TUNE_INTERVAL);
|
|
}
|
|
|
|
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, filter_work);
|
|
unsigned int filter = rt2x00dev->packet_filter;
|
|
|
|
/*
|
|
* Since we had stored the filter inside interface.filter,
|
|
* we should now clear that field. Otherwise the driver will
|
|
* assume nothing has changed (*total_flags will be compared
|
|
* to interface.filter to determine if any action is required).
|
|
*/
|
|
rt2x00dev->packet_filter = 0;
|
|
|
|
rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
|
|
filter, &filter, 0, NULL);
|
|
}
|
|
|
|
static void rt2x00lib_configuration_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, config_work);
|
|
struct ieee80211_bss_conf bss_conf;
|
|
|
|
bss_conf.use_short_preamble =
|
|
test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* FIXME: shouldn't invoke it this way because all other contents
|
|
* of bss_conf is invalid.
|
|
*/
|
|
rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
|
|
&bss_conf, BSS_CHANGED_ERP_PREAMBLE);
|
|
}
|
|
|
|
/*
|
|
* Interrupt context handlers.
|
|
*/
|
|
static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, beacon_work);
|
|
struct data_ring *ring =
|
|
rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
|
|
struct data_entry *entry = rt2x00_get_data_entry(ring);
|
|
struct sk_buff *skb;
|
|
|
|
skb = ieee80211_beacon_get(rt2x00dev->hw,
|
|
rt2x00dev->interface.id,
|
|
&entry->tx_status.control);
|
|
if (!skb)
|
|
return;
|
|
|
|
rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
|
|
&entry->tx_status.control);
|
|
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
|
|
|
|
void rt2x00lib_txdone(struct data_entry *entry,
|
|
const int status, const int retry)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
|
|
struct ieee80211_tx_status *tx_status = &entry->tx_status;
|
|
struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
|
|
int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
|
|
int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
|
|
status == TX_FAIL_OTHER);
|
|
|
|
/*
|
|
* Update TX statistics.
|
|
*/
|
|
tx_status->flags = 0;
|
|
tx_status->ack_signal = 0;
|
|
tx_status->excessive_retries = (status == TX_FAIL_RETRY);
|
|
tx_status->retry_count = retry;
|
|
rt2x00dev->link.qual.tx_success += success;
|
|
rt2x00dev->link.qual.tx_failed += retry + fail;
|
|
|
|
if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
|
|
if (success)
|
|
tx_status->flags |= IEEE80211_TX_STATUS_ACK;
|
|
else
|
|
stats->dot11ACKFailureCount++;
|
|
}
|
|
|
|
tx_status->queue_length = entry->ring->stats.limit;
|
|
tx_status->queue_number = tx_status->control.queue;
|
|
|
|
if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
|
|
if (success)
|
|
stats->dot11RTSSuccessCount++;
|
|
else
|
|
stats->dot11RTSFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Send the tx_status to mac80211 & debugfs.
|
|
* mac80211 will clean up the skb structure.
|
|
*/
|
|
get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
|
|
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
|
|
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
|
|
entry->skb = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
|
|
|
|
void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
|
|
struct rxdata_entry_desc *desc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
|
|
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
|
|
struct ieee80211_hw_mode *mode;
|
|
struct ieee80211_rate *rate;
|
|
struct ieee80211_hdr *hdr;
|
|
unsigned int i;
|
|
int val = 0;
|
|
u16 fc;
|
|
|
|
/*
|
|
* Update RX statistics.
|
|
*/
|
|
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
|
|
for (i = 0; i < mode->num_rates; i++) {
|
|
rate = &mode->rates[i];
|
|
|
|
/*
|
|
* When frame was received with an OFDM bitrate,
|
|
* the signal is the PLCP value. If it was received with
|
|
* a CCK bitrate the signal is the rate in 0.5kbit/s.
|
|
*/
|
|
if (!desc->ofdm)
|
|
val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
|
|
else
|
|
val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
|
|
|
|
if (val == desc->signal) {
|
|
val = rate->val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only update link status if this is a beacon frame carrying our bssid.
|
|
*/
|
|
hdr = (struct ieee80211_hdr*)skb->data;
|
|
fc = le16_to_cpu(hdr->frame_control);
|
|
if (is_beacon(fc) && desc->my_bss)
|
|
rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
|
|
|
|
rt2x00dev->link.qual.rx_success++;
|
|
|
|
rx_status->rate = val;
|
|
rx_status->signal =
|
|
rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
|
|
rx_status->ssi = desc->rssi;
|
|
rx_status->flag = desc->flags;
|
|
rx_status->antenna = rt2x00dev->link.ant.active.rx;
|
|
|
|
/*
|
|
* Send frame to mac80211 & debugfs
|
|
*/
|
|
get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
|
|
rt2x00debug_dump_frame(rt2x00dev, skb);
|
|
ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
|
|
|
|
/*
|
|
* TX descriptor initializer
|
|
*/
|
|
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
|
|
struct sk_buff *skb,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
struct txdata_entry_desc desc;
|
|
struct skb_desc *skbdesc = get_skb_desc(skb);
|
|
struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
|
|
int tx_rate;
|
|
int bitrate;
|
|
int length;
|
|
int duration;
|
|
int residual;
|
|
u16 frame_control;
|
|
u16 seq_ctrl;
|
|
|
|
memset(&desc, 0, sizeof(desc));
|
|
|
|
desc.cw_min = skbdesc->ring->tx_params.cw_min;
|
|
desc.cw_max = skbdesc->ring->tx_params.cw_max;
|
|
desc.aifs = skbdesc->ring->tx_params.aifs;
|
|
|
|
/*
|
|
* Identify queue
|
|
*/
|
|
if (control->queue < rt2x00dev->hw->queues)
|
|
desc.queue = control->queue;
|
|
else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
|
|
control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
|
|
desc.queue = QUEUE_MGMT;
|
|
else
|
|
desc.queue = QUEUE_OTHER;
|
|
|
|
/*
|
|
* Read required fields from ieee80211 header.
|
|
*/
|
|
frame_control = le16_to_cpu(ieee80211hdr->frame_control);
|
|
seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
|
|
|
|
tx_rate = control->tx_rate;
|
|
|
|
/*
|
|
* Check whether this frame is to be acked
|
|
*/
|
|
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
|
|
__set_bit(ENTRY_TXD_ACK, &desc.flags);
|
|
|
|
/*
|
|
* Check if this is a RTS/CTS frame
|
|
*/
|
|
if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
|
|
__set_bit(ENTRY_TXD_BURST, &desc.flags);
|
|
if (is_rts_frame(frame_control)) {
|
|
__set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
|
|
__set_bit(ENTRY_TXD_ACK, &desc.flags);
|
|
} else
|
|
__clear_bit(ENTRY_TXD_ACK, &desc.flags);
|
|
if (control->rts_cts_rate)
|
|
tx_rate = control->rts_cts_rate;
|
|
}
|
|
|
|
/*
|
|
* Check for OFDM
|
|
*/
|
|
if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
|
|
__set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
|
|
|
|
/*
|
|
* Check if more fragments are pending
|
|
*/
|
|
if (ieee80211_get_morefrag(ieee80211hdr)) {
|
|
__set_bit(ENTRY_TXD_BURST, &desc.flags);
|
|
__set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
|
|
}
|
|
|
|
/*
|
|
* Beacons and probe responses require the tsf timestamp
|
|
* to be inserted into the frame.
|
|
*/
|
|
if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
|
|
is_probe_resp(frame_control))
|
|
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
|
|
|
|
/*
|
|
* Determine with what IFS priority this frame should be send.
|
|
* Set ifs to IFS_SIFS when the this is not the first fragment,
|
|
* or this fragment came after RTS/CTS.
|
|
*/
|
|
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
|
|
test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
|
|
desc.ifs = IFS_SIFS;
|
|
else
|
|
desc.ifs = IFS_BACKOFF;
|
|
|
|
/*
|
|
* PLCP setup
|
|
* Length calculation depends on OFDM/CCK rate.
|
|
*/
|
|
desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
|
|
desc.service = 0x04;
|
|
|
|
length = skbdesc->data_len + FCS_LEN;
|
|
if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
|
|
desc.length_high = (length >> 6) & 0x3f;
|
|
desc.length_low = length & 0x3f;
|
|
} else {
|
|
bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
|
|
|
|
/*
|
|
* Convert length to microseconds.
|
|
*/
|
|
residual = get_duration_res(length, bitrate);
|
|
duration = get_duration(length, bitrate);
|
|
|
|
if (residual != 0) {
|
|
duration++;
|
|
|
|
/*
|
|
* Check if we need to set the Length Extension
|
|
*/
|
|
if (bitrate == 110 && residual <= 30)
|
|
desc.service |= 0x80;
|
|
}
|
|
|
|
desc.length_high = (duration >> 8) & 0xff;
|
|
desc.length_low = duration & 0xff;
|
|
|
|
/*
|
|
* When preamble is enabled we should set the
|
|
* preamble bit for the signal.
|
|
*/
|
|
if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
|
|
desc.signal |= 0x08;
|
|
}
|
|
|
|
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
|
|
|
|
/*
|
|
* Update ring entry.
|
|
*/
|
|
skbdesc->entry->skb = skb;
|
|
memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
|
|
|
|
/*
|
|
* The frame has been completely initialized and ready
|
|
* for sending to the device. The caller will push the
|
|
* frame to the device, but we are going to push the
|
|
* frame to debugfs here.
|
|
*/
|
|
skbdesc->frame_type = DUMP_FRAME_TX;
|
|
rt2x00debug_dump_frame(rt2x00dev, skb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
|
|
|
|
/*
|
|
* Driver initialization handlers.
|
|
*/
|
|
static void rt2x00lib_channel(struct ieee80211_channel *entry,
|
|
const int channel, const int tx_power,
|
|
const int value)
|
|
{
|
|
entry->chan = channel;
|
|
if (channel <= 14)
|
|
entry->freq = 2407 + (5 * channel);
|
|
else
|
|
entry->freq = 5000 + (5 * channel);
|
|
entry->val = value;
|
|
entry->flag =
|
|
IEEE80211_CHAN_W_IBSS |
|
|
IEEE80211_CHAN_W_ACTIVE_SCAN |
|
|
IEEE80211_CHAN_W_SCAN;
|
|
entry->power_level = tx_power;
|
|
entry->antenna_max = 0xff;
|
|
}
|
|
|
|
static void rt2x00lib_rate(struct ieee80211_rate *entry,
|
|
const int rate, const int mask,
|
|
const int plcp, const int flags)
|
|
{
|
|
entry->rate = rate;
|
|
entry->val =
|
|
DEVICE_SET_RATE_FIELD(rate, RATE) |
|
|
DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
|
|
DEVICE_SET_RATE_FIELD(plcp, PLCP);
|
|
entry->flags = flags;
|
|
entry->val2 = entry->val;
|
|
if (entry->flags & IEEE80211_RATE_PREAMBLE2)
|
|
entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
|
|
entry->min_rssi_ack = 0;
|
|
entry->min_rssi_ack_delta = 0;
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
|
|
struct hw_mode_spec *spec)
|
|
{
|
|
struct ieee80211_hw *hw = rt2x00dev->hw;
|
|
struct ieee80211_hw_mode *hwmodes;
|
|
struct ieee80211_channel *channels;
|
|
struct ieee80211_rate *rates;
|
|
unsigned int i;
|
|
unsigned char tx_power;
|
|
|
|
hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
|
|
if (!hwmodes)
|
|
goto exit;
|
|
|
|
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
|
|
if (!channels)
|
|
goto exit_free_modes;
|
|
|
|
rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
|
|
if (!rates)
|
|
goto exit_free_channels;
|
|
|
|
/*
|
|
* Initialize Rate list.
|
|
*/
|
|
rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
|
|
0x00, IEEE80211_RATE_CCK);
|
|
rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
|
|
0x01, IEEE80211_RATE_CCK_2);
|
|
rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
|
|
0x02, IEEE80211_RATE_CCK_2);
|
|
rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
|
|
0x03, IEEE80211_RATE_CCK_2);
|
|
|
|
if (spec->num_rates > 4) {
|
|
rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
|
|
0x0b, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
|
|
0x0f, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
|
|
0x0a, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
|
|
0x0e, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
|
|
0x09, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
|
|
0x0d, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
|
|
0x08, IEEE80211_RATE_OFDM);
|
|
rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
|
|
0x0c, IEEE80211_RATE_OFDM);
|
|
}
|
|
|
|
/*
|
|
* Initialize Channel list.
|
|
*/
|
|
for (i = 0; i < spec->num_channels; i++) {
|
|
if (spec->channels[i].channel <= 14)
|
|
tx_power = spec->tx_power_bg[i];
|
|
else if (spec->tx_power_a)
|
|
tx_power = spec->tx_power_a[i];
|
|
else
|
|
tx_power = spec->tx_power_default;
|
|
|
|
rt2x00lib_channel(&channels[i],
|
|
spec->channels[i].channel, tx_power, i);
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11b
|
|
* Rates: CCK.
|
|
* Channels: OFDM.
|
|
*/
|
|
if (spec->num_modes > HWMODE_B) {
|
|
hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
|
|
hwmodes[HWMODE_B].num_channels = 14;
|
|
hwmodes[HWMODE_B].num_rates = 4;
|
|
hwmodes[HWMODE_B].channels = channels;
|
|
hwmodes[HWMODE_B].rates = rates;
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11g
|
|
* Rates: CCK, OFDM.
|
|
* Channels: OFDM.
|
|
*/
|
|
if (spec->num_modes > HWMODE_G) {
|
|
hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
|
|
hwmodes[HWMODE_G].num_channels = 14;
|
|
hwmodes[HWMODE_G].num_rates = spec->num_rates;
|
|
hwmodes[HWMODE_G].channels = channels;
|
|
hwmodes[HWMODE_G].rates = rates;
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11a
|
|
* Rates: OFDM.
|
|
* Channels: OFDM, UNII, HiperLAN2.
|
|
*/
|
|
if (spec->num_modes > HWMODE_A) {
|
|
hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
|
|
hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
|
|
hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
|
|
hwmodes[HWMODE_A].channels = &channels[14];
|
|
hwmodes[HWMODE_A].rates = &rates[4];
|
|
}
|
|
|
|
if (spec->num_modes > HWMODE_G &&
|
|
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
|
|
goto exit_free_rates;
|
|
|
|
if (spec->num_modes > HWMODE_B &&
|
|
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
|
|
goto exit_free_rates;
|
|
|
|
if (spec->num_modes > HWMODE_A &&
|
|
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
|
|
goto exit_free_rates;
|
|
|
|
rt2x00dev->hwmodes = hwmodes;
|
|
|
|
return 0;
|
|
|
|
exit_free_rates:
|
|
kfree(rates);
|
|
|
|
exit_free_channels:
|
|
kfree(channels);
|
|
|
|
exit_free_modes:
|
|
kfree(hwmodes);
|
|
|
|
exit:
|
|
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
|
|
ieee80211_unregister_hw(rt2x00dev->hw);
|
|
|
|
if (likely(rt2x00dev->hwmodes)) {
|
|
kfree(rt2x00dev->hwmodes->channels);
|
|
kfree(rt2x00dev->hwmodes->rates);
|
|
kfree(rt2x00dev->hwmodes);
|
|
rt2x00dev->hwmodes = NULL;
|
|
}
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
int status;
|
|
|
|
/*
|
|
* Initialize HW modes.
|
|
*/
|
|
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Register HW.
|
|
*/
|
|
status = ieee80211_register_hw(rt2x00dev->hw);
|
|
if (status) {
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
return status;
|
|
}
|
|
|
|
__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization/uninitialization handlers.
|
|
*/
|
|
static int rt2x00lib_alloc_entries(struct data_ring *ring,
|
|
const u16 max_entries, const u16 data_size,
|
|
const u16 desc_size)
|
|
{
|
|
struct data_entry *entry;
|
|
unsigned int i;
|
|
|
|
ring->stats.limit = max_entries;
|
|
ring->data_size = data_size;
|
|
ring->desc_size = desc_size;
|
|
|
|
/*
|
|
* Allocate all ring entries.
|
|
*/
|
|
entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ring->stats.limit; i++) {
|
|
entry[i].flags = 0;
|
|
entry[i].ring = ring;
|
|
entry[i].skb = NULL;
|
|
entry[i].entry_idx = i;
|
|
}
|
|
|
|
ring->entry = entry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring;
|
|
|
|
/*
|
|
* Allocate the RX ring.
|
|
*/
|
|
if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
|
|
rt2x00dev->ops->rxd_size))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* First allocate the TX rings.
|
|
*/
|
|
txring_for_each(rt2x00dev, ring) {
|
|
if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
|
|
rt2x00dev->ops->txd_size))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate the BEACON ring.
|
|
*/
|
|
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
|
|
MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Allocate the Atim ring.
|
|
*/
|
|
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
|
|
DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring;
|
|
|
|
ring_for_each(rt2x00dev, ring) {
|
|
kfree(ring->entry);
|
|
ring->entry = NULL;
|
|
}
|
|
}
|
|
|
|
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Unregister rfkill.
|
|
*/
|
|
rt2x00rfkill_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Allow the HW to uninitialize.
|
|
*/
|
|
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free allocated ring entries.
|
|
*/
|
|
rt2x00lib_free_ring_entries(rt2x00dev);
|
|
}
|
|
|
|
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate all ring entries.
|
|
*/
|
|
status = rt2x00lib_alloc_ring_entries(rt2x00dev);
|
|
if (status) {
|
|
ERROR(rt2x00dev, "Ring entries allocation failed.\n");
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
|
|
if (status)
|
|
goto exit;
|
|
|
|
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Register the rfkill handler.
|
|
*/
|
|
status = rt2x00rfkill_register(rt2x00dev);
|
|
if (status)
|
|
goto exit_unitialize;
|
|
|
|
return 0;
|
|
|
|
exit_unitialize:
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
exit:
|
|
rt2x00lib_free_ring_entries(rt2x00dev);
|
|
|
|
return status;
|
|
}
|
|
|
|
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is the first interface which is added,
|
|
* we should load the firmware now.
|
|
*/
|
|
if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
|
|
retval = rt2x00lib_load_firmware(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
retval = rt2x00lib_initialize(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Enable radio.
|
|
*/
|
|
retval = rt2x00lib_enable_radio(rt2x00dev);
|
|
if (retval) {
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
return retval;
|
|
}
|
|
|
|
__set_bit(DEVICE_STARTED, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Perhaps we can add something smarter here,
|
|
* but for now just disabling the radio should do.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
__clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
|
|
}
|
|
|
|
/*
|
|
* driver allocation handlers.
|
|
*/
|
|
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring;
|
|
unsigned int index;
|
|
|
|
/*
|
|
* We need the following rings:
|
|
* RX: 1
|
|
* TX: hw->queues
|
|
* Beacon: 1 (if required)
|
|
* Atim: 1 (if required)
|
|
*/
|
|
rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
|
|
(2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
|
|
|
|
ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
|
|
if (!ring) {
|
|
ERROR(rt2x00dev, "Ring allocation failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Initialize pointers
|
|
*/
|
|
rt2x00dev->rx = ring;
|
|
rt2x00dev->tx = &rt2x00dev->rx[1];
|
|
if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
|
|
rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
|
|
|
|
/*
|
|
* Initialize ring parameters.
|
|
* RX: queue_idx = 0
|
|
* TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
|
|
* TX: cw_min: 2^5 = 32.
|
|
* TX: cw_max: 2^10 = 1024.
|
|
*/
|
|
rt2x00dev->rx->rt2x00dev = rt2x00dev;
|
|
rt2x00dev->rx->queue_idx = 0;
|
|
|
|
index = IEEE80211_TX_QUEUE_DATA0;
|
|
txring_for_each(rt2x00dev, ring) {
|
|
ring->rt2x00dev = rt2x00dev;
|
|
ring->queue_idx = index++;
|
|
ring->tx_params.aifs = 2;
|
|
ring->tx_params.cw_min = 5;
|
|
ring->tx_params.cw_max = 10;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
kfree(rt2x00dev->rx);
|
|
rt2x00dev->rx = NULL;
|
|
rt2x00dev->tx = NULL;
|
|
rt2x00dev->bcn = NULL;
|
|
}
|
|
|
|
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval = -ENOMEM;
|
|
|
|
/*
|
|
* Let the driver probe the device to detect the capabilities.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to allocate device.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Initialize configuration work.
|
|
*/
|
|
INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
|
|
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
|
|
INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
|
|
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
|
|
|
|
/*
|
|
* Reset current working type.
|
|
*/
|
|
rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
|
|
|
|
/*
|
|
* Allocate ring array.
|
|
*/
|
|
retval = rt2x00lib_alloc_rings(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Initialize ieee80211 structure.
|
|
*/
|
|
retval = rt2x00lib_probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to initialize hw.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Allocatie rfkill.
|
|
*/
|
|
retval = rt2x00rfkill_allocate(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Open the debugfs entry.
|
|
*/
|
|
rt2x00debug_register(rt2x00dev);
|
|
|
|
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_remove_dev(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
|
|
|
|
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
/*
|
|
* Uninitialize device.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Close debugfs entry.
|
|
*/
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
/*
|
|
* Free rfkill
|
|
*/
|
|
rt2x00rfkill_free(rt2x00dev);
|
|
|
|
/*
|
|
* Free ieee80211_hw memory.
|
|
*/
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
|
|
/*
|
|
* Free firmware image.
|
|
*/
|
|
rt2x00lib_free_firmware(rt2x00dev);
|
|
|
|
/*
|
|
* Free ring structures.
|
|
*/
|
|
rt2x00lib_free_rings(rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
|
|
|
|
/*
|
|
* Device state handlers
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
|
|
{
|
|
int retval;
|
|
|
|
NOTICE(rt2x00dev, "Going to sleep.\n");
|
|
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Only continue if mac80211 has open interfaces.
|
|
*/
|
|
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
|
|
goto exit;
|
|
__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Disable radio and unitialize all items
|
|
* that must be recreated on resume.
|
|
*/
|
|
rt2x00lib_stop(rt2x00dev);
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
exit:
|
|
/*
|
|
* Set device mode to sleep for power management.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
|
|
if (retval)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
|
|
|
|
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct interface *intf = &rt2x00dev->interface;
|
|
int retval;
|
|
|
|
NOTICE(rt2x00dev, "Waking up.\n");
|
|
|
|
/*
|
|
* Open the debugfs entry.
|
|
*/
|
|
rt2x00debug_register(rt2x00dev);
|
|
|
|
/*
|
|
* Only continue if mac80211 had open interfaces.
|
|
*/
|
|
if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Reinitialize device and all active interfaces.
|
|
*/
|
|
retval = rt2x00lib_start(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Reconfigure device.
|
|
*/
|
|
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
|
|
if (!rt2x00dev->hw->conf.radio_enabled)
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
|
|
rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
|
|
rt2x00lib_config_type(rt2x00dev, intf->type);
|
|
|
|
/*
|
|
* We are ready again to receive requests from mac80211.
|
|
*/
|
|
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* It is possible that during that mac80211 has attempted
|
|
* to send frames while we were suspending or resuming.
|
|
* In that case we have disabled the TX queue and should
|
|
* now enable it again
|
|
*/
|
|
ieee80211_start_queues(rt2x00dev->hw);
|
|
|
|
/*
|
|
* When in Master or Ad-hoc mode,
|
|
* restart Beacon transmitting by faking a beacondone event.
|
|
*/
|
|
if (intf->type == IEEE80211_IF_TYPE_AP ||
|
|
intf->type == IEEE80211_IF_TYPE_IBSS)
|
|
rt2x00lib_beacondone(rt2x00dev);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* rt2x00lib module information.
|
|
*/
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("rt2x00 library");
|
|
MODULE_LICENSE("GPL");
|