linux/net/rds/af_rds.c

837 lines
20 KiB
C

/*
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/poll.h>
#include <net/sock.h>
#include "rds.h"
/* this is just used for stats gathering :/ */
static DEFINE_SPINLOCK(rds_sock_lock);
static unsigned long rds_sock_count;
static LIST_HEAD(rds_sock_list);
DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
/*
* This is called as the final descriptor referencing this socket is closed.
* We have to unbind the socket so that another socket can be bound to the
* address it was using.
*
* We have to be careful about racing with the incoming path. sock_orphan()
* sets SOCK_DEAD and we use that as an indicator to the rx path that new
* messages shouldn't be queued.
*/
static int rds_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct rds_sock *rs;
if (!sk)
goto out;
rs = rds_sk_to_rs(sk);
sock_orphan(sk);
/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
* that ensures the recv path has completed messing
* with the socket. */
rds_clear_recv_queue(rs);
rds_cong_remove_socket(rs);
rds_remove_bound(rs);
rds_send_drop_to(rs, NULL);
rds_rdma_drop_keys(rs);
rds_notify_queue_get(rs, NULL);
rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
spin_lock_bh(&rds_sock_lock);
list_del_init(&rs->rs_item);
rds_sock_count--;
spin_unlock_bh(&rds_sock_lock);
rds_trans_put(rs->rs_transport);
sock->sk = NULL;
sock_put(sk);
out:
return 0;
}
/*
* Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
* _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
* to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
* this seems more conservative.
* NB - normally, one would use sk_callback_lock for this, but we can
* get here from interrupts, whereas the network code grabs sk_callback_lock
* with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
*/
void rds_wake_sk_sleep(struct rds_sock *rs)
{
unsigned long flags;
read_lock_irqsave(&rs->rs_recv_lock, flags);
__rds_wake_sk_sleep(rds_rs_to_sk(rs));
read_unlock_irqrestore(&rs->rs_recv_lock, flags);
}
static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
int peer)
{
struct rds_sock *rs = rds_sk_to_rs(sock->sk);
struct sockaddr_in6 *sin6;
struct sockaddr_in *sin;
int uaddr_len;
/* racey, don't care */
if (peer) {
if (ipv6_addr_any(&rs->rs_conn_addr))
return -ENOTCONN;
if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
sin = (struct sockaddr_in *)uaddr;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
sin->sin_family = AF_INET;
sin->sin_port = rs->rs_conn_port;
sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
uaddr_len = sizeof(*sin);
} else {
sin6 = (struct sockaddr_in6 *)uaddr;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = rs->rs_conn_port;
sin6->sin6_addr = rs->rs_conn_addr;
sin6->sin6_flowinfo = 0;
/* scope_id is the same as in the bound address. */
sin6->sin6_scope_id = rs->rs_bound_scope_id;
uaddr_len = sizeof(*sin6);
}
} else {
/* If socket is not yet bound and the socket is connected,
* set the return address family to be the same as the
* connected address, but with 0 address value. If it is not
* connected, set the family to be AF_UNSPEC (value 0) and
* the address size to be that of an IPv4 address.
*/
if (ipv6_addr_any(&rs->rs_bound_addr)) {
if (ipv6_addr_any(&rs->rs_conn_addr)) {
sin = (struct sockaddr_in *)uaddr;
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_UNSPEC;
return sizeof(*sin);
}
#if IS_ENABLED(CONFIG_IPV6)
if (!(ipv6_addr_type(&rs->rs_conn_addr) &
IPV6_ADDR_MAPPED)) {
sin6 = (struct sockaddr_in6 *)uaddr;
memset(sin6, 0, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
return sizeof(*sin6);
}
#endif
sin = (struct sockaddr_in *)uaddr;
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
return sizeof(*sin);
}
if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
sin = (struct sockaddr_in *)uaddr;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
sin->sin_family = AF_INET;
sin->sin_port = rs->rs_bound_port;
sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
uaddr_len = sizeof(*sin);
} else {
sin6 = (struct sockaddr_in6 *)uaddr;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = rs->rs_bound_port;
sin6->sin6_addr = rs->rs_bound_addr;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = rs->rs_bound_scope_id;
uaddr_len = sizeof(*sin6);
}
}
return uaddr_len;
}
/*
* RDS' poll is without a doubt the least intuitive part of the interface,
* as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
* a network protocol.
*
* EPOLLIN is asserted if
* - there is data on the receive queue.
* - to signal that a previously congested destination may have become
* uncongested
* - A notification has been queued to the socket (this can be a congestion
* update, or a RDMA completion, or a MSG_ZEROCOPY completion).
*
* EPOLLOUT is asserted if there is room on the send queue. This does not mean
* however, that the next sendmsg() call will succeed. If the application tries
* to send to a congested destination, the system call may still fail (and
* return ENOBUFS).
*/
static __poll_t rds_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct rds_sock *rs = rds_sk_to_rs(sk);
__poll_t mask = 0;
unsigned long flags;
poll_wait(file, sk_sleep(sk), wait);
if (rs->rs_seen_congestion)
poll_wait(file, &rds_poll_waitq, wait);
read_lock_irqsave(&rs->rs_recv_lock, flags);
if (!rs->rs_cong_monitor) {
/* When a congestion map was updated, we signal EPOLLIN for
* "historical" reasons. Applications can also poll for
* WRBAND instead. */
if (rds_cong_updated_since(&rs->rs_cong_track))
mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
} else {
spin_lock(&rs->rs_lock);
if (rs->rs_cong_notify)
mask |= (EPOLLIN | EPOLLRDNORM);
spin_unlock(&rs->rs_lock);
}
if (!list_empty(&rs->rs_recv_queue) ||
!list_empty(&rs->rs_notify_queue) ||
!list_empty(&rs->rs_zcookie_queue.zcookie_head))
mask |= (EPOLLIN | EPOLLRDNORM);
if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
mask |= (EPOLLOUT | EPOLLWRNORM);
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= POLLERR;
read_unlock_irqrestore(&rs->rs_recv_lock, flags);
/* clear state any time we wake a seen-congested socket */
if (mask)
rs->rs_seen_congestion = 0;
return mask;
}
static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
return -ENOIOCTLCMD;
}
static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
int len)
{
struct sockaddr_in6 sin6;
struct sockaddr_in sin;
int ret = 0;
/* racing with another thread binding seems ok here */
if (ipv6_addr_any(&rs->rs_bound_addr)) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out;
}
if (len < sizeof(struct sockaddr_in)) {
ret = -EINVAL;
goto out;
} else if (len < sizeof(struct sockaddr_in6)) {
/* Assume IPv4 */
if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
ret = -EFAULT;
goto out;
}
ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
sin6.sin6_port = sin.sin_port;
} else {
if (copy_from_user(&sin6, optval,
sizeof(struct sockaddr_in6))) {
ret = -EFAULT;
goto out;
}
}
rds_send_drop_to(rs, &sin6);
out:
return ret;
}
static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
int optlen)
{
int value;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(value, (int __user *) optval))
return -EFAULT;
*optvar = !!value;
return 0;
}
static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
int optlen)
{
int ret;
ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
if (ret == 0) {
if (rs->rs_cong_monitor) {
rds_cong_add_socket(rs);
} else {
rds_cong_remove_socket(rs);
rs->rs_cong_mask = 0;
rs->rs_cong_notify = 0;
}
}
return ret;
}
static int rds_set_transport(struct rds_sock *rs, char __user *optval,
int optlen)
{
int t_type;
if (rs->rs_transport)
return -EOPNOTSUPP; /* previously attached to transport */
if (optlen != sizeof(int))
return -EINVAL;
if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
return -EFAULT;
if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
return -EINVAL;
rs->rs_transport = rds_trans_get(t_type);
return rs->rs_transport ? 0 : -ENOPROTOOPT;
}
static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
int optlen)
{
int val, valbool;
if (optlen != sizeof(int))
return -EFAULT;
if (get_user(val, (int __user *)optval))
return -EFAULT;
valbool = val ? 1 : 0;
if (valbool)
sock_set_flag(sk, SOCK_RCVTSTAMP);
else
sock_reset_flag(sk, SOCK_RCVTSTAMP);
return 0;
}
static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
int optlen)
{
struct rds_rx_trace_so trace;
int i;
if (optlen != sizeof(struct rds_rx_trace_so))
return -EFAULT;
if (copy_from_user(&trace, optval, sizeof(trace)))
return -EFAULT;
if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
return -EFAULT;
rs->rs_rx_traces = trace.rx_traces;
for (i = 0; i < rs->rs_rx_traces; i++) {
if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
rs->rs_rx_traces = 0;
return -EFAULT;
}
rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
}
return 0;
}
static int rds_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct rds_sock *rs = rds_sk_to_rs(sock->sk);
int ret;
if (level != SOL_RDS) {
ret = -ENOPROTOOPT;
goto out;
}
switch (optname) {
case RDS_CANCEL_SENT_TO:
ret = rds_cancel_sent_to(rs, optval, optlen);
break;
case RDS_GET_MR:
ret = rds_get_mr(rs, optval, optlen);
break;
case RDS_GET_MR_FOR_DEST:
ret = rds_get_mr_for_dest(rs, optval, optlen);
break;
case RDS_FREE_MR:
ret = rds_free_mr(rs, optval, optlen);
break;
case RDS_RECVERR:
ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
break;
case RDS_CONG_MONITOR:
ret = rds_cong_monitor(rs, optval, optlen);
break;
case SO_RDS_TRANSPORT:
lock_sock(sock->sk);
ret = rds_set_transport(rs, optval, optlen);
release_sock(sock->sk);
break;
case SO_TIMESTAMP:
lock_sock(sock->sk);
ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
release_sock(sock->sk);
break;
case SO_RDS_MSG_RXPATH_LATENCY:
ret = rds_recv_track_latency(rs, optval, optlen);
break;
default:
ret = -ENOPROTOOPT;
}
out:
return ret;
}
static int rds_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct rds_sock *rs = rds_sk_to_rs(sock->sk);
int ret = -ENOPROTOOPT, len;
int trans;
if (level != SOL_RDS)
goto out;
if (get_user(len, optlen)) {
ret = -EFAULT;
goto out;
}
switch (optname) {
case RDS_INFO_FIRST ... RDS_INFO_LAST:
ret = rds_info_getsockopt(sock, optname, optval,
optlen);
break;
case RDS_RECVERR:
if (len < sizeof(int))
ret = -EINVAL;
else
if (put_user(rs->rs_recverr, (int __user *) optval) ||
put_user(sizeof(int), optlen))
ret = -EFAULT;
else
ret = 0;
break;
case SO_RDS_TRANSPORT:
if (len < sizeof(int)) {
ret = -EINVAL;
break;
}
trans = (rs->rs_transport ? rs->rs_transport->t_type :
RDS_TRANS_NONE); /* unbound */
if (put_user(trans, (int __user *)optval) ||
put_user(sizeof(int), optlen))
ret = -EFAULT;
else
ret = 0;
break;
default:
break;
}
out:
return ret;
}
static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
struct sockaddr_in *sin;
struct rds_sock *rs = rds_sk_to_rs(sk);
int ret = 0;
lock_sock(sk);
switch (uaddr->sa_family) {
case AF_INET:
sin = (struct sockaddr_in *)uaddr;
if (addr_len < sizeof(struct sockaddr_in)) {
ret = -EINVAL;
break;
}
if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
ret = -EDESTADDRREQ;
break;
}
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) ||
sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
ret = -EINVAL;
break;
}
ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
rs->rs_conn_port = sin->sin_port;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6: {
struct sockaddr_in6 *sin6;
int addr_type;
sin6 = (struct sockaddr_in6 *)uaddr;
if (addr_len < sizeof(struct sockaddr_in6)) {
ret = -EINVAL;
break;
}
addr_type = ipv6_addr_type(&sin6->sin6_addr);
if (!(addr_type & IPV6_ADDR_UNICAST)) {
__be32 addr4;
if (!(addr_type & IPV6_ADDR_MAPPED)) {
ret = -EPROTOTYPE;
break;
}
/* It is a mapped address. Need to do some sanity
* checks.
*/
addr4 = sin6->sin6_addr.s6_addr32[3];
if (addr4 == htonl(INADDR_ANY) ||
addr4 == htonl(INADDR_BROADCAST) ||
IN_MULTICAST(ntohl(addr4))) {
ret = -EPROTOTYPE;
break;
}
}
if (addr_type & IPV6_ADDR_LINKLOCAL) {
/* If socket is arleady bound to a link local address,
* the peer address must be on the same link.
*/
if (sin6->sin6_scope_id == 0 ||
(!ipv6_addr_any(&rs->rs_bound_addr) &&
rs->rs_bound_scope_id &&
sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
ret = -EINVAL;
break;
}
/* Remember the connected address scope ID. It will
* be checked against the binding local address when
* the socket is bound.
*/
rs->rs_bound_scope_id = sin6->sin6_scope_id;
}
rs->rs_conn_addr = sin6->sin6_addr;
rs->rs_conn_port = sin6->sin6_port;
break;
}
#endif
default:
ret = -EAFNOSUPPORT;
break;
}
release_sock(sk);
return ret;
}
static struct proto rds_proto = {
.name = "RDS",
.owner = THIS_MODULE,
.obj_size = sizeof(struct rds_sock),
};
static const struct proto_ops rds_proto_ops = {
.family = AF_RDS,
.owner = THIS_MODULE,
.release = rds_release,
.bind = rds_bind,
.connect = rds_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = rds_getname,
.poll = rds_poll,
.ioctl = rds_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = rds_setsockopt,
.getsockopt = rds_getsockopt,
.sendmsg = rds_sendmsg,
.recvmsg = rds_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static void rds_sock_destruct(struct sock *sk)
{
struct rds_sock *rs = rds_sk_to_rs(sk);
WARN_ON((&rs->rs_item != rs->rs_item.next ||
&rs->rs_item != rs->rs_item.prev));
}
static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
{
struct rds_sock *rs;
sock_init_data(sock, sk);
sock->ops = &rds_proto_ops;
sk->sk_protocol = protocol;
sk->sk_destruct = rds_sock_destruct;
rs = rds_sk_to_rs(sk);
spin_lock_init(&rs->rs_lock);
rwlock_init(&rs->rs_recv_lock);
INIT_LIST_HEAD(&rs->rs_send_queue);
INIT_LIST_HEAD(&rs->rs_recv_queue);
INIT_LIST_HEAD(&rs->rs_notify_queue);
INIT_LIST_HEAD(&rs->rs_cong_list);
rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
spin_lock_init(&rs->rs_rdma_lock);
rs->rs_rdma_keys = RB_ROOT;
rs->rs_rx_traces = 0;
spin_lock_bh(&rds_sock_lock);
list_add_tail(&rs->rs_item, &rds_sock_list);
rds_sock_count++;
spin_unlock_bh(&rds_sock_lock);
return 0;
}
static int rds_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
if (sock->type != SOCK_SEQPACKET || protocol)
return -ESOCKTNOSUPPORT;
sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
if (!sk)
return -ENOMEM;
return __rds_create(sock, sk, protocol);
}
void rds_sock_addref(struct rds_sock *rs)
{
sock_hold(rds_rs_to_sk(rs));
}
void rds_sock_put(struct rds_sock *rs)
{
sock_put(rds_rs_to_sk(rs));
}
static const struct net_proto_family rds_family_ops = {
.family = AF_RDS,
.create = rds_create,
.owner = THIS_MODULE,
};
static void rds_sock_inc_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
struct rds_sock *rs;
struct rds_incoming *inc;
unsigned int total = 0;
len /= sizeof(struct rds_info_message);
spin_lock_bh(&rds_sock_lock);
list_for_each_entry(rs, &rds_sock_list, rs_item) {
read_lock(&rs->rs_recv_lock);
/* XXX too lazy to maintain counts.. */
list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
total++;
if (total <= len)
rds_inc_info_copy(inc, iter,
inc->i_saddr.s6_addr32[3],
rs->rs_bound_addr_v4,
1);
}
read_unlock(&rs->rs_recv_lock);
}
spin_unlock_bh(&rds_sock_lock);
lens->nr = total;
lens->each = sizeof(struct rds_info_message);
}
static void rds_sock_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
struct rds_info_socket sinfo;
struct rds_sock *rs;
len /= sizeof(struct rds_info_socket);
spin_lock_bh(&rds_sock_lock);
if (len < rds_sock_count)
goto out;
list_for_each_entry(rs, &rds_sock_list, rs_item) {
sinfo.sndbuf = rds_sk_sndbuf(rs);
sinfo.rcvbuf = rds_sk_rcvbuf(rs);
sinfo.bound_addr = rs->rs_bound_addr_v4;
sinfo.connected_addr = rs->rs_conn_addr_v4;
sinfo.bound_port = rs->rs_bound_port;
sinfo.connected_port = rs->rs_conn_port;
sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
rds_info_copy(iter, &sinfo, sizeof(sinfo));
}
out:
lens->nr = rds_sock_count;
lens->each = sizeof(struct rds_info_socket);
spin_unlock_bh(&rds_sock_lock);
}
static void rds_exit(void)
{
sock_unregister(rds_family_ops.family);
proto_unregister(&rds_proto);
rds_conn_exit();
rds_cong_exit();
rds_sysctl_exit();
rds_threads_exit();
rds_stats_exit();
rds_page_exit();
rds_bind_lock_destroy();
rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
}
module_exit(rds_exit);
u32 rds_gen_num;
static int rds_init(void)
{
int ret;
net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
ret = rds_bind_lock_init();
if (ret)
goto out;
ret = rds_conn_init();
if (ret)
goto out_bind;
ret = rds_threads_init();
if (ret)
goto out_conn;
ret = rds_sysctl_init();
if (ret)
goto out_threads;
ret = rds_stats_init();
if (ret)
goto out_sysctl;
ret = proto_register(&rds_proto, 1);
if (ret)
goto out_stats;
ret = sock_register(&rds_family_ops);
if (ret)
goto out_proto;
rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
goto out;
out_proto:
proto_unregister(&rds_proto);
out_stats:
rds_stats_exit();
out_sysctl:
rds_sysctl_exit();
out_threads:
rds_threads_exit();
out_conn:
rds_conn_exit();
rds_cong_exit();
rds_page_exit();
out_bind:
rds_bind_lock_destroy();
out:
return ret;
}
module_init(rds_init);
#define DRV_VERSION "4.0"
#define DRV_RELDATE "Feb 12, 2009"
MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
" v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS_NETPROTO(PF_RDS);