linux/drivers/spi/spi_stmp.c

680 lines
16 KiB
C

/*
* Freescale STMP378X SPI master driver
*
* Author: dmitry pervushin <dimka@embeddedalley.com>
*
* Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <mach/platform.h>
#include <mach/stmp3xxx.h>
#include <mach/dma.h>
#include <mach/regs-ssp.h>
#include <mach/regs-apbh.h>
/* 0 means DMA mode(recommended, default), !0 - PIO mode */
static int pio;
static int clock;
/* default timeout for busy waits is 2 seconds */
#define STMP_SPI_TIMEOUT (2 * HZ)
struct stmp_spi {
int id;
void * __iomem regs; /* vaddr of the control registers */
int irq, err_irq;
u32 dma;
struct stmp3xxx_dma_descriptor d;
u32 speed_khz;
u32 saved_timings;
u32 divider;
struct clk *clk;
struct device *master_dev;
struct work_struct work;
struct workqueue_struct *workqueue;
/* lock protects queue access */
spinlock_t lock;
struct list_head queue;
struct completion done;
};
#define busy_wait(cond) \
({ \
unsigned long end_jiffies = jiffies + STMP_SPI_TIMEOUT; \
bool succeeded = false; \
do { \
if (cond) { \
succeeded = true; \
break; \
} \
cpu_relax(); \
} while (time_before(end_jiffies, jiffies)); \
succeeded; \
})
/**
* stmp_spi_init_hw
* Initialize the SSP port
*/
static int stmp_spi_init_hw(struct stmp_spi *ss)
{
int err = 0;
void *pins = ss->master_dev->platform_data;
err = stmp3xxx_request_pin_group(pins, dev_name(ss->master_dev));
if (err)
goto out;
ss->clk = clk_get(NULL, "ssp");
if (IS_ERR(ss->clk)) {
err = PTR_ERR(ss->clk);
goto out_free_pins;
}
clk_enable(ss->clk);
stmp3xxx_reset_block(ss->regs, false);
stmp3xxx_dma_reset_channel(ss->dma);
return 0;
out_free_pins:
stmp3xxx_release_pin_group(pins, dev_name(ss->master_dev));
out:
return err;
}
static void stmp_spi_release_hw(struct stmp_spi *ss)
{
void *pins = ss->master_dev->platform_data;
if (ss->clk && !IS_ERR(ss->clk)) {
clk_disable(ss->clk);
clk_put(ss->clk);
}
stmp3xxx_release_pin_group(pins, dev_name(ss->master_dev));
}
static int stmp_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
u8 bits_per_word;
u32 hz;
struct stmp_spi *ss = spi_master_get_devdata(spi->master);
u16 rate;
bits_per_word = spi->bits_per_word;
if (t && t->bits_per_word)
bits_per_word = t->bits_per_word;
/*
* Calculate speed:
* - by default, use maximum speed from ssp clk
* - if device overrides it, use it
* - if transfer specifies other speed, use transfer's one
*/
hz = 1000 * ss->speed_khz / ss->divider;
if (spi->max_speed_hz)
hz = min(hz, spi->max_speed_hz);
if (t && t->speed_hz)
hz = min(hz, t->speed_hz);
if (hz == 0) {
dev_err(&spi->dev, "Cannot continue with zero clock\n");
return -EINVAL;
}
if (bits_per_word != 8) {
dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
__func__, bits_per_word);
return -EINVAL;
}
dev_dbg(&spi->dev, "Requested clk rate = %uHz, max = %uHz/%d = %uHz\n",
hz, ss->speed_khz, ss->divider,
ss->speed_khz * 1000 / ss->divider);
if (ss->speed_khz * 1000 / ss->divider < hz) {
dev_err(&spi->dev, "%s, unsupported clock rate %uHz\n",
__func__, hz);
return -EINVAL;
}
rate = 1000 * ss->speed_khz/ss->divider/hz;
writel(BF(ss->divider, SSP_TIMING_CLOCK_DIVIDE) |
BF(rate - 1, SSP_TIMING_CLOCK_RATE),
HW_SSP_TIMING + ss->regs);
writel(BF(1 /* mode SPI */, SSP_CTRL1_SSP_MODE) |
BF(4 /* 8 bits */, SSP_CTRL1_WORD_LENGTH) |
((spi->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
((spi->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0) |
(pio ? 0 : BM_SSP_CTRL1_DMA_ENABLE),
ss->regs + HW_SSP_CTRL1);
return 0;
}
static int stmp_spi_setup(struct spi_device *spi)
{
/* spi_setup() does basic checks,
* stmp_spi_setup_transfer() does more later
*/
if (spi->bits_per_word != 8) {
dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
__func__, spi->bits_per_word);
return -EINVAL;
}
return 0;
}
static inline u32 stmp_spi_cs(unsigned cs)
{
return ((cs & 1) ? BM_SSP_CTRL0_WAIT_FOR_CMD : 0) |
((cs & 2) ? BM_SSP_CTRL0_WAIT_FOR_IRQ : 0);
}
static int stmp_spi_txrx_dma(struct stmp_spi *ss, int cs,
unsigned char *buf, dma_addr_t dma_buf, int len,
int first, int last, bool write)
{
u32 c0 = 0;
dma_addr_t spi_buf_dma = dma_buf;
int status = 0;
enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
c0 |= (first ? BM_SSP_CTRL0_LOCK_CS : 0);
c0 |= (last ? BM_SSP_CTRL0_IGNORE_CRC : 0);
c0 |= (write ? 0 : BM_SSP_CTRL0_READ);
c0 |= BM_SSP_CTRL0_DATA_XFER;
c0 |= stmp_spi_cs(cs);
c0 |= BF(len, SSP_CTRL0_XFER_COUNT);
if (!dma_buf)
spi_buf_dma = dma_map_single(ss->master_dev, buf, len, dir);
ss->d.command->cmd =
BF(len, APBH_CHn_CMD_XFER_COUNT) |
BF(1, APBH_CHn_CMD_CMDWORDS) |
BM_APBH_CHn_CMD_WAIT4ENDCMD |
BM_APBH_CHn_CMD_IRQONCMPLT |
BF(write ? BV_APBH_CHn_CMD_COMMAND__DMA_READ :
BV_APBH_CHn_CMD_COMMAND__DMA_WRITE,
APBH_CHn_CMD_COMMAND);
ss->d.command->pio_words[0] = c0;
ss->d.command->buf_ptr = spi_buf_dma;
stmp3xxx_dma_reset_channel(ss->dma);
stmp3xxx_dma_clear_interrupt(ss->dma);
stmp3xxx_dma_enable_interrupt(ss->dma);
init_completion(&ss->done);
stmp3xxx_dma_go(ss->dma, &ss->d, 1);
wait_for_completion(&ss->done);
if (!busy_wait(readl(ss->regs + HW_SSP_CTRL0) & BM_SSP_CTRL0_RUN))
status = -ETIMEDOUT;
if (!dma_buf)
dma_unmap_single(ss->master_dev, spi_buf_dma, len, dir);
return status;
}
static inline void stmp_spi_enable(struct stmp_spi *ss)
{
stmp3xxx_setl(BM_SSP_CTRL0_LOCK_CS, ss->regs + HW_SSP_CTRL0);
stmp3xxx_clearl(BM_SSP_CTRL0_IGNORE_CRC, ss->regs + HW_SSP_CTRL0);
}
static inline void stmp_spi_disable(struct stmp_spi *ss)
{
stmp3xxx_clearl(BM_SSP_CTRL0_LOCK_CS, ss->regs + HW_SSP_CTRL0);
stmp3xxx_setl(BM_SSP_CTRL0_IGNORE_CRC, ss->regs + HW_SSP_CTRL0);
}
static int stmp_spi_txrx_pio(struct stmp_spi *ss, int cs,
unsigned char *buf, int len,
bool first, bool last, bool write)
{
if (first)
stmp_spi_enable(ss);
stmp3xxx_setl(stmp_spi_cs(cs), ss->regs + HW_SSP_CTRL0);
while (len--) {
if (last && len <= 0)
stmp_spi_disable(ss);
stmp3xxx_clearl(BM_SSP_CTRL0_XFER_COUNT,
ss->regs + HW_SSP_CTRL0);
stmp3xxx_setl(1, ss->regs + HW_SSP_CTRL0);
if (write)
stmp3xxx_clearl(BM_SSP_CTRL0_READ,
ss->regs + HW_SSP_CTRL0);
else
stmp3xxx_setl(BM_SSP_CTRL0_READ,
ss->regs + HW_SSP_CTRL0);
/* Run! */
stmp3xxx_setl(BM_SSP_CTRL0_RUN, ss->regs + HW_SSP_CTRL0);
if (!busy_wait(readl(ss->regs + HW_SSP_CTRL0) &
BM_SSP_CTRL0_RUN))
break;
if (write)
writel(*buf, ss->regs + HW_SSP_DATA);
/* Set TRANSFER */
stmp3xxx_setl(BM_SSP_CTRL0_DATA_XFER, ss->regs + HW_SSP_CTRL0);
if (!write) {
if (busy_wait((readl(ss->regs + HW_SSP_STATUS) &
BM_SSP_STATUS_FIFO_EMPTY)))
break;
*buf = readl(ss->regs + HW_SSP_DATA) & 0xFF;
}
if (!busy_wait(readl(ss->regs + HW_SSP_CTRL0) &
BM_SSP_CTRL0_RUN))
break;
/* advance to the next byte */
buf++;
}
return len < 0 ? 0 : -ETIMEDOUT;
}
static int stmp_spi_handle_message(struct stmp_spi *ss, struct spi_message *m)
{
bool first, last;
struct spi_transfer *t, *tmp_t;
int status = 0;
int cs;
cs = m->spi->chip_select;
list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
first = (&t->transfer_list == m->transfers.next);
last = (&t->transfer_list == m->transfers.prev);
if (first || t->speed_hz || t->bits_per_word)
stmp_spi_setup_transfer(m->spi, t);
/* reject "not last" transfers which request to change cs */
if (t->cs_change && !last) {
dev_err(&m->spi->dev,
"Message with t->cs_change has been skipped\n");
continue;
}
if (t->tx_buf) {
status = pio ?
stmp_spi_txrx_pio(ss, cs, (void *)t->tx_buf,
t->len, first, last, true) :
stmp_spi_txrx_dma(ss, cs, (void *)t->tx_buf,
t->tx_dma, t->len, first, last, true);
#ifdef DEBUG
if (t->len < 0x10)
print_hex_dump_bytes("Tx ",
DUMP_PREFIX_OFFSET,
t->tx_buf, t->len);
else
pr_debug("Tx: %d bytes\n", t->len);
#endif
}
if (t->rx_buf) {
status = pio ?
stmp_spi_txrx_pio(ss, cs, t->rx_buf,
t->len, first, last, false) :
stmp_spi_txrx_dma(ss, cs, t->rx_buf,
t->rx_dma, t->len, first, last, false);
#ifdef DEBUG
if (t->len < 0x10)
print_hex_dump_bytes("Rx ",
DUMP_PREFIX_OFFSET,
t->rx_buf, t->len);
else
pr_debug("Rx: %d bytes\n", t->len);
#endif
}
if (t->delay_usecs)
udelay(t->delay_usecs);
if (status)
break;
}
return status;
}
/**
* stmp_spi_handle - handle messages from the queue
*/
static void stmp_spi_handle(struct work_struct *w)
{
struct stmp_spi *ss = container_of(w, struct stmp_spi, work);
unsigned long flags;
struct spi_message *m;
spin_lock_irqsave(&ss->lock, flags);
while (!list_empty(&ss->queue)) {
m = list_entry(ss->queue.next, struct spi_message, queue);
list_del_init(&m->queue);
spin_unlock_irqrestore(&ss->lock, flags);
m->status = stmp_spi_handle_message(ss, m);
m->complete(m->context);
spin_lock_irqsave(&ss->lock, flags);
}
spin_unlock_irqrestore(&ss->lock, flags);
return;
}
/**
* stmp_spi_transfer - perform message transfer.
* Called indirectly from spi_async, queues all the messages to
* spi_handle_message.
* @spi: spi device
* @m: message to be queued
*/
static int stmp_spi_transfer(struct spi_device *spi, struct spi_message *m)
{
struct stmp_spi *ss = spi_master_get_devdata(spi->master);
unsigned long flags;
m->status = -EINPROGRESS;
spin_lock_irqsave(&ss->lock, flags);
list_add_tail(&m->queue, &ss->queue);
queue_work(ss->workqueue, &ss->work);
spin_unlock_irqrestore(&ss->lock, flags);
return 0;
}
static irqreturn_t stmp_spi_irq(int irq, void *dev_id)
{
struct stmp_spi *ss = dev_id;
stmp3xxx_dma_clear_interrupt(ss->dma);
complete(&ss->done);
return IRQ_HANDLED;
}
static irqreturn_t stmp_spi_irq_err(int irq, void *dev_id)
{
struct stmp_spi *ss = dev_id;
u32 c1, st;
c1 = readl(ss->regs + HW_SSP_CTRL1);
st = readl(ss->regs + HW_SSP_STATUS);
dev_err(ss->master_dev, "%s: status = 0x%08X, c1 = 0x%08X\n",
__func__, st, c1);
stmp3xxx_clearl(c1 & 0xCCCC0000, ss->regs + HW_SSP_CTRL1);
return IRQ_HANDLED;
}
static int __devinit stmp_spi_probe(struct platform_device *dev)
{
int err = 0;
struct spi_master *master;
struct stmp_spi *ss;
struct resource *r;
master = spi_alloc_master(&dev->dev, sizeof(struct stmp_spi));
if (master == NULL) {
err = -ENOMEM;
goto out0;
}
master->flags = SPI_MASTER_HALF_DUPLEX;
ss = spi_master_get_devdata(master);
platform_set_drvdata(dev, master);
/* Get resources(memory, IRQ) associated with the device */
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (r == NULL) {
err = -ENODEV;
goto out_put_master;
}
ss->regs = ioremap(r->start, resource_size(r));
if (!ss->regs) {
err = -EINVAL;
goto out_put_master;
}
ss->master_dev = &dev->dev;
ss->id = dev->id;
INIT_WORK(&ss->work, stmp_spi_handle);
INIT_LIST_HEAD(&ss->queue);
spin_lock_init(&ss->lock);
ss->workqueue = create_singlethread_workqueue(dev_name(&dev->dev));
if (!ss->workqueue) {
err = -ENXIO;
goto out_put_master;
}
master->transfer = stmp_spi_transfer;
master->setup = stmp_spi_setup;
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA;
ss->irq = platform_get_irq(dev, 0);
if (ss->irq < 0) {
err = ss->irq;
goto out_put_master;
}
ss->err_irq = platform_get_irq(dev, 1);
if (ss->err_irq < 0) {
err = ss->err_irq;
goto out_put_master;
}
r = platform_get_resource(dev, IORESOURCE_DMA, 0);
if (r == NULL) {
err = -ENODEV;
goto out_put_master;
}
ss->dma = r->start;
err = stmp3xxx_dma_request(ss->dma, &dev->dev, dev_name(&dev->dev));
if (err)
goto out_put_master;
err = stmp3xxx_dma_allocate_command(ss->dma, &ss->d);
if (err)
goto out_free_dma;
master->bus_num = dev->id;
master->num_chipselect = 1;
/* SPI controller initializations */
err = stmp_spi_init_hw(ss);
if (err) {
dev_dbg(&dev->dev, "cannot initialize hardware\n");
goto out_free_dma_desc;
}
if (clock) {
dev_info(&dev->dev, "clock rate forced to %d\n", clock);
clk_set_rate(ss->clk, clock);
}
ss->speed_khz = clk_get_rate(ss->clk);
ss->divider = 2;
dev_info(&dev->dev, "max possible speed %d = %ld/%d kHz\n",
ss->speed_khz, clk_get_rate(ss->clk), ss->divider);
/* Register for SPI interrupt */
err = request_irq(ss->irq, stmp_spi_irq, 0,
dev_name(&dev->dev), ss);
if (err) {
dev_dbg(&dev->dev, "request_irq failed, %d\n", err);
goto out_release_hw;
}
/* ..and shared interrupt for all SSP controllers */
err = request_irq(ss->err_irq, stmp_spi_irq_err, IRQF_SHARED,
dev_name(&dev->dev), ss);
if (err) {
dev_dbg(&dev->dev, "request_irq(error) failed, %d\n", err);
goto out_free_irq;
}
err = spi_register_master(master);
if (err) {
dev_dbg(&dev->dev, "cannot register spi master, %d\n", err);
goto out_free_irq_2;
}
dev_info(&dev->dev, "at (mapped) 0x%08X, irq=%d, bus %d, %s mode\n",
(u32)ss->regs, ss->irq, master->bus_num,
pio ? "PIO" : "DMA");
return 0;
out_free_irq_2:
free_irq(ss->err_irq, ss);
out_free_irq:
free_irq(ss->irq, ss);
out_free_dma_desc:
stmp3xxx_dma_free_command(ss->dma, &ss->d);
out_free_dma:
stmp3xxx_dma_release(ss->dma);
out_release_hw:
stmp_spi_release_hw(ss);
out_put_master:
if (ss->workqueue)
destroy_workqueue(ss->workqueue);
if (ss->regs)
iounmap(ss->regs);
platform_set_drvdata(dev, NULL);
spi_master_put(master);
out0:
return err;
}
static int __devexit stmp_spi_remove(struct platform_device *dev)
{
struct stmp_spi *ss;
struct spi_master *master;
master = platform_get_drvdata(dev);
if (master == NULL)
goto out0;
ss = spi_master_get_devdata(master);
spi_unregister_master(master);
free_irq(ss->err_irq, ss);
free_irq(ss->irq, ss);
stmp3xxx_dma_free_command(ss->dma, &ss->d);
stmp3xxx_dma_release(ss->dma);
stmp_spi_release_hw(ss);
destroy_workqueue(ss->workqueue);
iounmap(ss->regs);
spi_master_put(master);
platform_set_drvdata(dev, NULL);
out0:
return 0;
}
#ifdef CONFIG_PM
static int stmp_spi_suspend(struct platform_device *pdev, pm_message_t pmsg)
{
struct stmp_spi *ss;
struct spi_master *master;
master = platform_get_drvdata(pdev);
ss = spi_master_get_devdata(master);
ss->saved_timings = readl(HW_SSP_TIMING + ss->regs);
clk_disable(ss->clk);
return 0;
}
static int stmp_spi_resume(struct platform_device *pdev)
{
struct stmp_spi *ss;
struct spi_master *master;
master = platform_get_drvdata(pdev);
ss = spi_master_get_devdata(master);
clk_enable(ss->clk);
stmp3xxx_reset_block(ss->regs, false);
writel(ss->saved_timings, ss->regs + HW_SSP_TIMING);
return 0;
}
#else
#define stmp_spi_suspend NULL
#define stmp_spi_resume NULL
#endif
static struct platform_driver stmp_spi_driver = {
.probe = stmp_spi_probe,
.remove = __devexit_p(stmp_spi_remove),
.driver = {
.name = "stmp3xxx_ssp",
.owner = THIS_MODULE,
},
.suspend = stmp_spi_suspend,
.resume = stmp_spi_resume,
};
static int __init stmp_spi_init(void)
{
return platform_driver_register(&stmp_spi_driver);
}
static void __exit stmp_spi_exit(void)
{
platform_driver_unregister(&stmp_spi_driver);
}
module_init(stmp_spi_init);
module_exit(stmp_spi_exit);
module_param(pio, int, S_IRUGO);
module_param(clock, int, S_IRUGO);
MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com>");
MODULE_DESCRIPTION("STMP3xxx SPI/SSP driver");
MODULE_LICENSE("GPL");