linux/drivers/net/ethernet/cavium/thunder/thunder_bgx.c

1157 lines
29 KiB
C

/*
* Copyright (C) 2015 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include "nic_reg.h"
#include "nic.h"
#include "thunder_bgx.h"
#define DRV_NAME "thunder-BGX"
#define DRV_VERSION "1.0"
struct lmac {
struct bgx *bgx;
int dmac;
u8 mac[ETH_ALEN];
bool link_up;
int lmacid; /* ID within BGX */
int lmacid_bd; /* ID on board */
struct net_device netdev;
struct phy_device *phydev;
unsigned int last_duplex;
unsigned int last_link;
unsigned int last_speed;
bool is_sgmii;
struct delayed_work dwork;
struct workqueue_struct *check_link;
};
struct bgx {
u8 bgx_id;
u8 qlm_mode;
struct lmac lmac[MAX_LMAC_PER_BGX];
int lmac_count;
int lmac_type;
int lane_to_sds;
int use_training;
void __iomem *reg_base;
struct pci_dev *pdev;
};
static struct bgx *bgx_vnic[MAX_BGX_THUNDER];
static int lmac_count; /* Total no of LMACs in system */
static int bgx_xaui_check_link(struct lmac *lmac);
/* Supported devices */
static const struct pci_device_id bgx_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_BGX) },
{ 0, } /* end of table */
};
MODULE_AUTHOR("Cavium Inc");
MODULE_DESCRIPTION("Cavium Thunder BGX/MAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, bgx_id_table);
/* The Cavium ThunderX network controller can *only* be found in SoCs
* containing the ThunderX ARM64 CPU implementation. All accesses to the device
* registers on this platform are implicitly strongly ordered with respect
* to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
* with no memory barriers in this driver. The readq()/writeq() functions add
* explicit ordering operation which in this case are redundant, and only
* add overhead.
*/
/* Register read/write APIs */
static u64 bgx_reg_read(struct bgx *bgx, u8 lmac, u64 offset)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
return readq_relaxed(addr);
}
static void bgx_reg_write(struct bgx *bgx, u8 lmac, u64 offset, u64 val)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
writeq_relaxed(val, addr);
}
static void bgx_reg_modify(struct bgx *bgx, u8 lmac, u64 offset, u64 val)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
writeq_relaxed(val | readq_relaxed(addr), addr);
}
static int bgx_poll_reg(struct bgx *bgx, u8 lmac, u64 reg, u64 mask, bool zero)
{
int timeout = 100;
u64 reg_val;
while (timeout) {
reg_val = bgx_reg_read(bgx, lmac, reg);
if (zero && !(reg_val & mask))
return 0;
if (!zero && (reg_val & mask))
return 0;
usleep_range(1000, 2000);
timeout--;
}
return 1;
}
/* Return number of BGX present in HW */
unsigned bgx_get_map(int node)
{
int i;
unsigned map = 0;
for (i = 0; i < MAX_BGX_PER_CN88XX; i++) {
if (bgx_vnic[(node * MAX_BGX_PER_CN88XX) + i])
map |= (1 << i);
}
return map;
}
EXPORT_SYMBOL(bgx_get_map);
/* Return number of LMAC configured for this BGX */
int bgx_get_lmac_count(int node, int bgx_idx)
{
struct bgx *bgx;
bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (bgx)
return bgx->lmac_count;
return 0;
}
EXPORT_SYMBOL(bgx_get_lmac_count);
/* Returns the current link status of LMAC */
void bgx_get_lmac_link_state(int node, int bgx_idx, int lmacid, void *status)
{
struct bgx_link_status *link = (struct bgx_link_status *)status;
struct bgx *bgx;
struct lmac *lmac;
bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
link->link_up = lmac->link_up;
link->duplex = lmac->last_duplex;
link->speed = lmac->last_speed;
}
EXPORT_SYMBOL(bgx_get_lmac_link_state);
const u8 *bgx_get_lmac_mac(int node, int bgx_idx, int lmacid)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (bgx)
return bgx->lmac[lmacid].mac;
return NULL;
}
EXPORT_SYMBOL(bgx_get_lmac_mac);
void bgx_set_lmac_mac(int node, int bgx_idx, int lmacid, const u8 *mac)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (!bgx)
return;
ether_addr_copy(bgx->lmac[lmacid].mac, mac);
}
EXPORT_SYMBOL(bgx_set_lmac_mac);
void bgx_lmac_rx_tx_enable(int node, int bgx_idx, int lmacid, bool enable)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
u64 cfg;
if (!bgx)
return;
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
if (enable)
cfg |= CMR_PKT_RX_EN | CMR_PKT_TX_EN;
else
cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN);
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
}
EXPORT_SYMBOL(bgx_lmac_rx_tx_enable);
static void bgx_sgmii_change_link_state(struct lmac *lmac)
{
struct bgx *bgx = lmac->bgx;
u64 cmr_cfg;
u64 port_cfg = 0;
u64 misc_ctl = 0;
cmr_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG);
cmr_cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg);
port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG);
misc_ctl = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL);
if (lmac->link_up) {
misc_ctl &= ~PCS_MISC_CTL_GMX_ENO;
port_cfg &= ~GMI_PORT_CFG_DUPLEX;
port_cfg |= (lmac->last_duplex << 2);
} else {
misc_ctl |= PCS_MISC_CTL_GMX_ENO;
}
switch (lmac->last_speed) {
case 10:
port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */
port_cfg |= GMI_PORT_CFG_SPEED_MSB; /* speed_msb 1 */
port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 50; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 100:
port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */
port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */
port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 5; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 1000:
port_cfg |= GMI_PORT_CFG_SPEED; /* speed 1 */
port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */
port_cfg |= GMI_PORT_CFG_SLOT_TIME; /* slottime 1 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 1; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 512);
if (lmac->last_duplex)
bgx_reg_write(bgx, lmac->lmacid,
BGX_GMP_GMI_TXX_BURST, 0);
else
bgx_reg_write(bgx, lmac->lmacid,
BGX_GMP_GMI_TXX_BURST, 8192);
break;
default:
break;
}
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL, misc_ctl);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, port_cfg);
port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG);
/* renable lmac */
cmr_cfg |= CMR_EN;
bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg);
}
static void bgx_lmac_handler(struct net_device *netdev)
{
struct lmac *lmac = container_of(netdev, struct lmac, netdev);
struct phy_device *phydev = lmac->phydev;
int link_changed = 0;
if (!lmac)
return;
if (!phydev->link && lmac->last_link)
link_changed = -1;
if (phydev->link &&
(lmac->last_duplex != phydev->duplex ||
lmac->last_link != phydev->link ||
lmac->last_speed != phydev->speed)) {
link_changed = 1;
}
lmac->last_link = phydev->link;
lmac->last_speed = phydev->speed;
lmac->last_duplex = phydev->duplex;
if (!link_changed)
return;
if (link_changed > 0)
lmac->link_up = true;
else
lmac->link_up = false;
if (lmac->is_sgmii)
bgx_sgmii_change_link_state(lmac);
else
bgx_xaui_check_link(lmac);
}
u64 bgx_get_rx_stats(int node, int bgx_idx, int lmac, int idx)
{
struct bgx *bgx;
bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (!bgx)
return 0;
if (idx > 8)
lmac = 0;
return bgx_reg_read(bgx, lmac, BGX_CMRX_RX_STAT0 + (idx * 8));
}
EXPORT_SYMBOL(bgx_get_rx_stats);
u64 bgx_get_tx_stats(int node, int bgx_idx, int lmac, int idx)
{
struct bgx *bgx;
bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (!bgx)
return 0;
return bgx_reg_read(bgx, lmac, BGX_CMRX_TX_STAT0 + (idx * 8));
}
EXPORT_SYMBOL(bgx_get_tx_stats);
static void bgx_flush_dmac_addrs(struct bgx *bgx, int lmac)
{
u64 offset;
while (bgx->lmac[lmac].dmac > 0) {
offset = ((bgx->lmac[lmac].dmac - 1) * sizeof(u64)) +
(lmac * MAX_DMAC_PER_LMAC * sizeof(u64));
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + offset, 0);
bgx->lmac[lmac].dmac--;
}
}
/* Configure BGX LMAC in internal loopback mode */
void bgx_lmac_internal_loopback(int node, int bgx_idx,
int lmac_idx, bool enable)
{
struct bgx *bgx;
struct lmac *lmac;
u64 cfg;
bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx];
if (!bgx)
return;
lmac = &bgx->lmac[lmac_idx];
if (lmac->is_sgmii) {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL);
if (enable)
cfg |= PCS_MRX_CTL_LOOPBACK1;
else
cfg &= ~PCS_MRX_CTL_LOOPBACK1;
bgx_reg_write(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL, cfg);
} else {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_SPUX_CONTROL1);
if (enable)
cfg |= SPU_CTL_LOOPBACK;
else
cfg &= ~SPU_CTL_LOOPBACK;
bgx_reg_write(bgx, lmac_idx, BGX_SPUX_CONTROL1, cfg);
}
}
EXPORT_SYMBOL(bgx_lmac_internal_loopback);
static int bgx_lmac_sgmii_init(struct bgx *bgx, int lmacid)
{
u64 cfg;
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_THRESH, 0x30);
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_RXX_JABBER, MAX_FRAME_SIZE);
/* Disable frame alignment if using preamble */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
if (cfg & 1)
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SGMII_CTL, 0);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
/* PCS reset */
bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_CTL,
PCS_MRX_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX PCS reset not completed\n");
return -1;
}
/* power down, reset autoneg, autoneg enable */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL);
cfg &= ~PCS_MRX_CTL_PWR_DN;
cfg |= (PCS_MRX_CTL_RST_AN | PCS_MRX_CTL_AN_EN);
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg);
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_STATUS,
PCS_MRX_STATUS_AN_CPT, false)) {
dev_err(&bgx->pdev->dev, "BGX AN_CPT not completed\n");
return -1;
}
return 0;
}
static int bgx_lmac_xaui_init(struct bgx *bgx, int lmacid, int lmac_type)
{
u64 cfg;
/* Reset SPU */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n");
return -1;
}
/* Disable LMAC */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER);
/* Set interleaved running disparity for RXAUI */
if (bgx->lmac_type != BGX_MODE_RXAUI)
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS);
else
bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL,
SPU_MISC_CTL_RX_DIS | SPU_MISC_CTL_INTLV_RDISP);
/* clear all interrupts */
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_RX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
if (bgx->use_training) {
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LP_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_REP, 0x00);
/* training enable */
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, SPU_PMD_CRTL_TRAIN_EN);
}
/* Append FCS to each packet */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, SMU_TX_APPEND_FCS_D);
/* Disable forward error correction */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_FEC_CONTROL);
cfg &= ~SPU_FEC_CTL_FEC_EN;
bgx_reg_write(bgx, lmacid, BGX_SPUX_FEC_CONTROL, cfg);
/* Disable autoneg */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL);
cfg = cfg & ~(SPU_AN_CTL_AN_EN | SPU_AN_CTL_XNP_EN);
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_CONTROL, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_ADV);
if (bgx->lmac_type == BGX_MODE_10G_KR)
cfg |= (1 << 23);
else if (bgx->lmac_type == BGX_MODE_40G_KR)
cfg |= (1 << 24);
else
cfg &= ~((1 << 23) | (1 << 24));
cfg = cfg & (~((1ULL << 25) | (1ULL << 22) | (1ULL << 12)));
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_ADV, cfg);
cfg = bgx_reg_read(bgx, 0, BGX_SPU_DBG_CONTROL);
cfg &= ~SPU_DBG_CTL_AN_ARB_LINK_CHK_EN;
bgx_reg_write(bgx, 0, BGX_SPU_DBG_CONTROL, cfg);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_CONTROL1);
cfg &= ~SPU_CTL_LOW_POWER;
bgx_reg_write(bgx, lmacid, BGX_SPUX_CONTROL1, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_CTL);
cfg &= ~SMU_TX_CTL_UNI_EN;
cfg |= SMU_TX_CTL_DIC_EN;
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_CTL, cfg);
/* take lmac_count into account */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_THRESH, (0x100 - 1));
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_RX_JABBER, MAX_FRAME_SIZE);
return 0;
}
static int bgx_xaui_check_link(struct lmac *lmac)
{
struct bgx *bgx = lmac->bgx;
int lmacid = lmac->lmacid;
int lmac_type = bgx->lmac_type;
u64 cfg;
bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS);
if (bgx->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
/* wait for PCS to come out of reset */
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n");
return -1;
}
if ((lmac_type == BGX_MODE_10G_KR) || (lmac_type == BGX_MODE_XFI) ||
(lmac_type == BGX_MODE_40G_KR) || (lmac_type == BGX_MODE_XLAUI)) {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BR_STATUS1,
SPU_BR_STATUS_BLK_LOCK, false)) {
dev_err(&bgx->pdev->dev,
"SPU_BR_STATUS_BLK_LOCK not completed\n");
return -1;
}
} else {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BX_STATUS,
SPU_BX_STATUS_RX_ALIGN, false)) {
dev_err(&bgx->pdev->dev,
"SPU_BX_STATUS_RX_ALIGN not completed\n");
return -1;
}
}
/* Clear rcvflt bit (latching high) and read it back */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS2, SPU_STATUS2_RCVFLT);
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) {
dev_err(&bgx->pdev->dev, "Receive fault, retry training\n");
if (bgx->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
return -1;
}
/* Wait for MAC RX to be ready */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_RX_CTL,
SMU_RX_CTL_STATUS, true)) {
dev_err(&bgx->pdev->dev, "SMU RX link not okay\n");
return -1;
}
/* Wait for BGX RX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_RX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "SMU RX not idle\n");
return -1;
}
/* Wait for BGX TX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_TX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "SMU TX not idle\n");
return -1;
}
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) {
dev_err(&bgx->pdev->dev, "Receive fault\n");
return -1;
}
/* Receive link is latching low. Force it high and verify it */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK);
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_STATUS1,
SPU_STATUS1_RCV_LNK, false)) {
dev_err(&bgx->pdev->dev, "SPU receive link down\n");
return -1;
}
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_MISC_CONTROL);
cfg &= ~SPU_MISC_CTL_RX_DIS;
bgx_reg_write(bgx, lmacid, BGX_SPUX_MISC_CONTROL, cfg);
return 0;
}
static void bgx_poll_for_link(struct work_struct *work)
{
struct lmac *lmac;
u64 link;
lmac = container_of(work, struct lmac, dwork.work);
/* Receive link is latching low. Force it high and verify it */
bgx_reg_modify(lmac->bgx, lmac->lmacid,
BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK);
bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1,
SPU_STATUS1_RCV_LNK, false);
link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1);
if (link & SPU_STATUS1_RCV_LNK) {
lmac->link_up = 1;
if (lmac->bgx->lmac_type == BGX_MODE_XLAUI)
lmac->last_speed = 40000;
else
lmac->last_speed = 10000;
lmac->last_duplex = 1;
} else {
lmac->link_up = 0;
lmac->last_speed = SPEED_UNKNOWN;
lmac->last_duplex = DUPLEX_UNKNOWN;
}
if (lmac->last_link != lmac->link_up) {
lmac->last_link = lmac->link_up;
if (lmac->link_up)
bgx_xaui_check_link(lmac);
}
queue_delayed_work(lmac->check_link, &lmac->dwork, HZ * 2);
}
static int bgx_lmac_enable(struct bgx *bgx, u8 lmacid)
{
struct lmac *lmac;
u64 cfg;
lmac = &bgx->lmac[lmacid];
lmac->bgx = bgx;
if (bgx->lmac_type == BGX_MODE_SGMII) {
lmac->is_sgmii = 1;
if (bgx_lmac_sgmii_init(bgx, lmacid))
return -1;
} else {
lmac->is_sgmii = 0;
if (bgx_lmac_xaui_init(bgx, lmacid, bgx->lmac_type))
return -1;
}
if (lmac->is_sgmii) {
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_MIN_PKT, 60 - 1);
} else {
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_MIN_PKT, 60 + 4);
}
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
/* Restore default cfg, incase low level firmware changed it */
bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, 0x03);
if ((bgx->lmac_type != BGX_MODE_XFI) &&
(bgx->lmac_type != BGX_MODE_XLAUI) &&
(bgx->lmac_type != BGX_MODE_40G_KR) &&
(bgx->lmac_type != BGX_MODE_10G_KR)) {
if (!lmac->phydev)
return -ENODEV;
lmac->phydev->dev_flags = 0;
if (phy_connect_direct(&lmac->netdev, lmac->phydev,
bgx_lmac_handler,
PHY_INTERFACE_MODE_SGMII))
return -ENODEV;
phy_start_aneg(lmac->phydev);
} else {
lmac->check_link = alloc_workqueue("check_link", WQ_UNBOUND |
WQ_MEM_RECLAIM, 1);
if (!lmac->check_link)
return -ENOMEM;
INIT_DELAYED_WORK(&lmac->dwork, bgx_poll_for_link);
queue_delayed_work(lmac->check_link, &lmac->dwork, 0);
}
return 0;
}
static void bgx_lmac_disable(struct bgx *bgx, u8 lmacid)
{
struct lmac *lmac;
u64 cmrx_cfg;
lmac = &bgx->lmac[lmacid];
if (lmac->check_link) {
/* Destroy work queue */
cancel_delayed_work_sync(&lmac->dwork);
destroy_workqueue(lmac->check_link);
}
cmrx_cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cmrx_cfg &= ~(1 << 15);
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cmrx_cfg);
bgx_flush_dmac_addrs(bgx, lmacid);
if ((bgx->lmac_type != BGX_MODE_XFI) &&
(bgx->lmac_type != BGX_MODE_XLAUI) &&
(bgx->lmac_type != BGX_MODE_40G_KR) &&
(bgx->lmac_type != BGX_MODE_10G_KR) && lmac->phydev)
phy_disconnect(lmac->phydev);
lmac->phydev = NULL;
}
static void bgx_set_num_ports(struct bgx *bgx)
{
u64 lmac_count;
switch (bgx->qlm_mode) {
case QLM_MODE_SGMII:
bgx->lmac_count = 4;
bgx->lmac_type = BGX_MODE_SGMII;
bgx->lane_to_sds = 0;
break;
case QLM_MODE_XAUI_1X4:
bgx->lmac_count = 1;
bgx->lmac_type = BGX_MODE_XAUI;
bgx->lane_to_sds = 0xE4;
break;
case QLM_MODE_RXAUI_2X2:
bgx->lmac_count = 2;
bgx->lmac_type = BGX_MODE_RXAUI;
bgx->lane_to_sds = 0xE4;
break;
case QLM_MODE_XFI_4X1:
bgx->lmac_count = 4;
bgx->lmac_type = BGX_MODE_XFI;
bgx->lane_to_sds = 0;
break;
case QLM_MODE_XLAUI_1X4:
bgx->lmac_count = 1;
bgx->lmac_type = BGX_MODE_XLAUI;
bgx->lane_to_sds = 0xE4;
break;
case QLM_MODE_10G_KR_4X1:
bgx->lmac_count = 4;
bgx->lmac_type = BGX_MODE_10G_KR;
bgx->lane_to_sds = 0;
bgx->use_training = 1;
break;
case QLM_MODE_40G_KR4_1X4:
bgx->lmac_count = 1;
bgx->lmac_type = BGX_MODE_40G_KR;
bgx->lane_to_sds = 0xE4;
bgx->use_training = 1;
break;
default:
bgx->lmac_count = 0;
break;
}
/* Check if low level firmware has programmed LMAC count
* based on board type, if yes consider that otherwise
* the default static values
*/
lmac_count = bgx_reg_read(bgx, 0, BGX_CMR_RX_LMACS) & 0x7;
if (lmac_count != 4)
bgx->lmac_count = lmac_count;
}
static void bgx_init_hw(struct bgx *bgx)
{
int i;
bgx_set_num_ports(bgx);
bgx_reg_modify(bgx, 0, BGX_CMR_GLOBAL_CFG, CMR_GLOBAL_CFG_FCS_STRIP);
if (bgx_reg_read(bgx, 0, BGX_CMR_BIST_STATUS))
dev_err(&bgx->pdev->dev, "BGX%d BIST failed\n", bgx->bgx_id);
/* Set lmac type and lane2serdes mapping */
for (i = 0; i < bgx->lmac_count; i++) {
if (bgx->lmac_type == BGX_MODE_RXAUI) {
if (i)
bgx->lane_to_sds = 0x0e;
else
bgx->lane_to_sds = 0x04;
bgx_reg_write(bgx, i, BGX_CMRX_CFG,
(bgx->lmac_type << 8) | bgx->lane_to_sds);
continue;
}
bgx_reg_write(bgx, i, BGX_CMRX_CFG,
(bgx->lmac_type << 8) | (bgx->lane_to_sds + i));
bgx->lmac[i].lmacid_bd = lmac_count;
lmac_count++;
}
bgx_reg_write(bgx, 0, BGX_CMR_TX_LMACS, bgx->lmac_count);
bgx_reg_write(bgx, 0, BGX_CMR_RX_LMACS, bgx->lmac_count);
/* Set the backpressure AND mask */
for (i = 0; i < bgx->lmac_count; i++)
bgx_reg_modify(bgx, 0, BGX_CMR_CHAN_MSK_AND,
((1ULL << MAX_BGX_CHANS_PER_LMAC) - 1) <<
(i * MAX_BGX_CHANS_PER_LMAC));
/* Disable all MAC filtering */
for (i = 0; i < RX_DMAC_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + (i * 8), 0x00);
/* Disable MAC steering (NCSI traffic) */
for (i = 0; i < RX_TRAFFIC_STEER_RULE_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_STREERING + (i * 8), 0x00);
}
static void bgx_get_qlm_mode(struct bgx *bgx)
{
struct device *dev = &bgx->pdev->dev;
int lmac_type;
int train_en;
/* Read LMAC0 type to figure out QLM mode
* This is configured by low level firmware
*/
lmac_type = bgx_reg_read(bgx, 0, BGX_CMRX_CFG);
lmac_type = (lmac_type >> 8) & 0x07;
train_en = bgx_reg_read(bgx, 0, BGX_SPUX_BR_PMD_CRTL) &
SPU_PMD_CRTL_TRAIN_EN;
switch (lmac_type) {
case BGX_MODE_SGMII:
bgx->qlm_mode = QLM_MODE_SGMII;
dev_info(dev, "BGX%d QLM mode: SGMII\n", bgx->bgx_id);
break;
case BGX_MODE_XAUI:
bgx->qlm_mode = QLM_MODE_XAUI_1X4;
dev_info(dev, "BGX%d QLM mode: XAUI\n", bgx->bgx_id);
break;
case BGX_MODE_RXAUI:
bgx->qlm_mode = QLM_MODE_RXAUI_2X2;
dev_info(dev, "BGX%d QLM mode: RXAUI\n", bgx->bgx_id);
break;
case BGX_MODE_XFI:
if (!train_en) {
bgx->qlm_mode = QLM_MODE_XFI_4X1;
dev_info(dev, "BGX%d QLM mode: XFI\n", bgx->bgx_id);
} else {
bgx->qlm_mode = QLM_MODE_10G_KR_4X1;
dev_info(dev, "BGX%d QLM mode: 10G_KR\n", bgx->bgx_id);
}
break;
case BGX_MODE_XLAUI:
if (!train_en) {
bgx->qlm_mode = QLM_MODE_XLAUI_1X4;
dev_info(dev, "BGX%d QLM mode: XLAUI\n", bgx->bgx_id);
} else {
bgx->qlm_mode = QLM_MODE_40G_KR4_1X4;
dev_info(dev, "BGX%d QLM mode: 40G_KR4\n", bgx->bgx_id);
}
break;
default:
bgx->qlm_mode = QLM_MODE_SGMII;
dev_info(dev, "BGX%d QLM default mode: SGMII\n", bgx->bgx_id);
}
}
#ifdef CONFIG_ACPI
static int acpi_get_mac_address(struct device *dev, struct acpi_device *adev,
u8 *dst)
{
u8 mac[ETH_ALEN];
int ret;
ret = fwnode_property_read_u8_array(acpi_fwnode_handle(adev),
"mac-address", mac, ETH_ALEN);
if (ret)
goto out;
if (!is_valid_ether_addr(mac)) {
dev_err(dev, "MAC address invalid: %pM\n", mac);
ret = -EINVAL;
goto out;
}
dev_info(dev, "MAC address set to: %pM\n", mac);
memcpy(dst, mac, ETH_ALEN);
out:
return ret;
}
/* Currently only sets the MAC address. */
static acpi_status bgx_acpi_register_phy(acpi_handle handle,
u32 lvl, void *context, void **rv)
{
struct bgx *bgx = context;
struct device *dev = &bgx->pdev->dev;
struct acpi_device *adev;
if (acpi_bus_get_device(handle, &adev))
goto out;
acpi_get_mac_address(dev, adev, bgx->lmac[bgx->lmac_count].mac);
SET_NETDEV_DEV(&bgx->lmac[bgx->lmac_count].netdev, dev);
bgx->lmac[bgx->lmac_count].lmacid = bgx->lmac_count;
out:
bgx->lmac_count++;
return AE_OK;
}
static acpi_status bgx_acpi_match_id(acpi_handle handle, u32 lvl,
void *context, void **ret_val)
{
struct acpi_buffer string = { ACPI_ALLOCATE_BUFFER, NULL };
struct bgx *bgx = context;
char bgx_sel[5];
snprintf(bgx_sel, 5, "BGX%d", bgx->bgx_id);
if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &string))) {
pr_warn("Invalid link device\n");
return AE_OK;
}
if (strncmp(string.pointer, bgx_sel, 4))
return AE_OK;
acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
bgx_acpi_register_phy, NULL, bgx, NULL);
kfree(string.pointer);
return AE_CTRL_TERMINATE;
}
static int bgx_init_acpi_phy(struct bgx *bgx)
{
acpi_get_devices(NULL, bgx_acpi_match_id, bgx, (void **)NULL);
return 0;
}
#else
static int bgx_init_acpi_phy(struct bgx *bgx)
{
return -ENODEV;
}
#endif /* CONFIG_ACPI */
#if IS_ENABLED(CONFIG_OF_MDIO)
static int bgx_init_of_phy(struct bgx *bgx)
{
struct fwnode_handle *fwn;
struct device_node *node = NULL;
u8 lmac = 0;
device_for_each_child_node(&bgx->pdev->dev, fwn) {
struct phy_device *pd;
struct device_node *phy_np;
const char *mac;
/* Should always be an OF node. But if it is not, we
* cannot handle it, so exit the loop.
*/
node = to_of_node(fwn);
if (!node)
break;
mac = of_get_mac_address(node);
if (mac)
ether_addr_copy(bgx->lmac[lmac].mac, mac);
SET_NETDEV_DEV(&bgx->lmac[lmac].netdev, &bgx->pdev->dev);
bgx->lmac[lmac].lmacid = lmac;
phy_np = of_parse_phandle(node, "phy-handle", 0);
/* If there is no phy or defective firmware presents
* this cortina phy, for which there is no driver
* support, ignore it.
*/
if (phy_np &&
!of_device_is_compatible(phy_np, "cortina,cs4223-slice")) {
/* Wait until the phy drivers are available */
pd = of_phy_find_device(phy_np);
if (!pd)
goto defer;
bgx->lmac[lmac].phydev = pd;
}
lmac++;
if (lmac == MAX_LMAC_PER_BGX) {
of_node_put(node);
break;
}
}
return 0;
defer:
/* We are bailing out, try not to leak device reference counts
* for phy devices we may have already found.
*/
while (lmac) {
if (bgx->lmac[lmac].phydev) {
put_device(&bgx->lmac[lmac].phydev->mdio.dev);
bgx->lmac[lmac].phydev = NULL;
}
lmac--;
}
of_node_put(node);
return -EPROBE_DEFER;
}
#else
static int bgx_init_of_phy(struct bgx *bgx)
{
return -ENODEV;
}
#endif /* CONFIG_OF_MDIO */
static int bgx_init_phy(struct bgx *bgx)
{
if (!acpi_disabled)
return bgx_init_acpi_phy(bgx);
return bgx_init_of_phy(bgx);
}
static int bgx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err;
struct device *dev = &pdev->dev;
struct bgx *bgx = NULL;
u8 lmac;
bgx = devm_kzalloc(dev, sizeof(*bgx), GFP_KERNEL);
if (!bgx)
return -ENOMEM;
bgx->pdev = pdev;
pci_set_drvdata(pdev, bgx);
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
pci_set_drvdata(pdev, NULL);
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto err_disable_device;
}
/* MAP configuration registers */
bgx->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
if (!bgx->reg_base) {
dev_err(dev, "BGX: Cannot map CSR memory space, aborting\n");
err = -ENOMEM;
goto err_release_regions;
}
bgx->bgx_id = (pci_resource_start(pdev, PCI_CFG_REG_BAR_NUM) >> 24) & 1;
bgx->bgx_id += nic_get_node_id(pdev) * MAX_BGX_PER_CN88XX;
bgx_vnic[bgx->bgx_id] = bgx;
bgx_get_qlm_mode(bgx);
err = bgx_init_phy(bgx);
if (err)
goto err_enable;
bgx_init_hw(bgx);
/* Enable all LMACs */
for (lmac = 0; lmac < bgx->lmac_count; lmac++) {
err = bgx_lmac_enable(bgx, lmac);
if (err) {
dev_err(dev, "BGX%d failed to enable lmac%d\n",
bgx->bgx_id, lmac);
goto err_enable;
}
}
return 0;
err_enable:
bgx_vnic[bgx->bgx_id] = NULL;
err_release_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void bgx_remove(struct pci_dev *pdev)
{
struct bgx *bgx = pci_get_drvdata(pdev);
u8 lmac;
/* Disable all LMACs */
for (lmac = 0; lmac < bgx->lmac_count; lmac++)
bgx_lmac_disable(bgx, lmac);
bgx_vnic[bgx->bgx_id] = NULL;
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_driver bgx_driver = {
.name = DRV_NAME,
.id_table = bgx_id_table,
.probe = bgx_probe,
.remove = bgx_remove,
};
static int __init bgx_init_module(void)
{
pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
return pci_register_driver(&bgx_driver);
}
static void __exit bgx_cleanup_module(void)
{
pci_unregister_driver(&bgx_driver);
}
module_init(bgx_init_module);
module_exit(bgx_cleanup_module);