mirror of https://gitee.com/openkylin/linux.git
590 lines
16 KiB
C
590 lines
16 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mutex.h>
|
|
|
|
/*
|
|
* dbs is used in this file as a shortform for demandbased switching
|
|
* It helps to keep variable names smaller, simpler
|
|
*/
|
|
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
/*
|
|
* The polling frequency of this governor depends on the capability of
|
|
* the processor. Default polling frequency is 1000 times the transition
|
|
* latency of the processor. The governor will work on any processor with
|
|
* transition latency <= 10mS, using appropriate sampling
|
|
* rate.
|
|
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
|
|
* this governor will not work.
|
|
* All times here are in uS.
|
|
*/
|
|
static unsigned int def_sampling_rate;
|
|
#define MIN_SAMPLING_RATE_RATIO (2)
|
|
/* for correct statistics, we need at least 10 ticks between each measure */
|
|
#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
|
|
#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
|
|
#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
|
|
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
|
|
#define TRANSITION_LATENCY_LIMIT (10 * 1000)
|
|
|
|
static void do_dbs_timer(struct work_struct *work);
|
|
|
|
/* Sampling types */
|
|
enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
|
|
|
|
struct cpu_dbs_info_s {
|
|
cputime64_t prev_cpu_idle;
|
|
cputime64_t prev_cpu_wall;
|
|
struct cpufreq_policy *cur_policy;
|
|
struct delayed_work work;
|
|
enum dbs_sample sample_type;
|
|
unsigned int enable;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int freq_lo;
|
|
unsigned int freq_lo_jiffies;
|
|
unsigned int freq_hi_jiffies;
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
|
|
|
|
static unsigned int dbs_enable; /* number of CPUs using this policy */
|
|
|
|
/*
|
|
* DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
|
|
* lock and dbs_mutex. cpu_hotplug lock should always be held before
|
|
* dbs_mutex. If any function that can potentially take cpu_hotplug lock
|
|
* (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
|
|
* cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
|
|
* is recursive for the same process. -Venki
|
|
*/
|
|
static DEFINE_MUTEX(dbs_mutex);
|
|
|
|
static struct workqueue_struct *kondemand_wq;
|
|
|
|
static struct dbs_tuners {
|
|
unsigned int sampling_rate;
|
|
unsigned int up_threshold;
|
|
unsigned int ignore_nice;
|
|
unsigned int powersave_bias;
|
|
} dbs_tuners_ins = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.ignore_nice = 0,
|
|
.powersave_bias = 0,
|
|
};
|
|
|
|
static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
|
|
{
|
|
cputime64_t retval;
|
|
|
|
retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
|
|
kstat_cpu(cpu).cpustat.iowait);
|
|
|
|
if (dbs_tuners_ins.ignore_nice)
|
|
retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Find right freq to be set now with powersave_bias on.
|
|
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
|
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
|
*/
|
|
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
|
|
unsigned int freq_next,
|
|
unsigned int relation)
|
|
{
|
|
unsigned int freq_req, freq_reduc, freq_avg;
|
|
unsigned int freq_hi, freq_lo;
|
|
unsigned int index = 0;
|
|
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
|
|
|
|
if (!dbs_info->freq_table) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_next;
|
|
}
|
|
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
|
|
relation, &index);
|
|
freq_req = dbs_info->freq_table[index].frequency;
|
|
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
|
|
freq_avg = freq_req - freq_reduc;
|
|
|
|
/* Find freq bounds for freq_avg in freq_table */
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_H, &index);
|
|
freq_lo = dbs_info->freq_table[index].frequency;
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_L, &index);
|
|
freq_hi = dbs_info->freq_table[index].frequency;
|
|
|
|
/* Find out how long we have to be in hi and lo freqs */
|
|
if (freq_hi == freq_lo) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_lo;
|
|
}
|
|
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
|
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
|
jiffies_hi /= (freq_hi - freq_lo);
|
|
jiffies_lo = jiffies_total - jiffies_hi;
|
|
dbs_info->freq_lo = freq_lo;
|
|
dbs_info->freq_lo_jiffies = jiffies_lo;
|
|
dbs_info->freq_hi_jiffies = jiffies_hi;
|
|
return freq_hi;
|
|
}
|
|
|
|
static void ondemand_powersave_bias_init(void)
|
|
{
|
|
int i;
|
|
for_each_online_cpu(i) {
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
|
|
dbs_info->freq_table = cpufreq_frequency_get_table(i);
|
|
dbs_info->freq_lo = 0;
|
|
}
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
|
|
}
|
|
|
|
static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
|
|
}
|
|
|
|
#define define_one_ro(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0444, show_##_name, NULL)
|
|
|
|
define_one_ro(sampling_rate_max);
|
|
define_one_ro(sampling_rate_min);
|
|
|
|
/* cpufreq_ondemand Governor Tunables */
|
|
#define show_one(file_name, object) \
|
|
static ssize_t show_##file_name \
|
|
(struct cpufreq_policy *unused, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
|
|
}
|
|
show_one(sampling_rate, sampling_rate);
|
|
show_one(up_threshold, up_threshold);
|
|
show_one(ignore_nice_load, ignore_nice);
|
|
show_one(powersave_bias, powersave_bias);
|
|
|
|
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbs_tuners_ins.sampling_rate = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbs_tuners_ins.up_threshold = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if ( ret != 1 )
|
|
return -EINVAL;
|
|
|
|
if ( input > 1 )
|
|
input = 1;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
|
|
mutex_unlock(&dbs_mutex);
|
|
return count;
|
|
}
|
|
dbs_tuners_ins.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
|
|
dbs_info->prev_cpu_wall = get_jiffies_64();
|
|
}
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1000)
|
|
input = 1000;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_tuners_ins.powersave_bias = input;
|
|
ondemand_powersave_bias_init();
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
#define define_one_rw(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0644, show_##_name, store_##_name)
|
|
|
|
define_one_rw(sampling_rate);
|
|
define_one_rw(up_threshold);
|
|
define_one_rw(ignore_nice_load);
|
|
define_one_rw(powersave_bias);
|
|
|
|
static struct attribute * dbs_attributes[] = {
|
|
&sampling_rate_max.attr,
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&up_threshold.attr,
|
|
&ignore_nice_load.attr,
|
|
&powersave_bias.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group dbs_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
|
|
{
|
|
unsigned int idle_ticks, total_ticks;
|
|
unsigned int load;
|
|
cputime64_t cur_jiffies;
|
|
|
|
struct cpufreq_policy *policy;
|
|
unsigned int j;
|
|
|
|
if (!this_dbs_info->enable)
|
|
return;
|
|
|
|
this_dbs_info->freq_lo = 0;
|
|
policy = this_dbs_info->cur_policy;
|
|
cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
|
|
total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
|
|
this_dbs_info->prev_cpu_wall);
|
|
this_dbs_info->prev_cpu_wall = cur_jiffies;
|
|
if (!total_ticks)
|
|
return;
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less
|
|
* than 20% (default), then we try to increase frequency
|
|
* Every sampling_rate, we look for a the lowest
|
|
* frequency which can sustain the load while keeping idle time over
|
|
* 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency.
|
|
* Frequency reduction happens at minimum steps of
|
|
* 5% (default) of current frequency
|
|
*/
|
|
|
|
/* Get Idle Time */
|
|
idle_ticks = UINT_MAX;
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
cputime64_t total_idle_ticks;
|
|
unsigned int tmp_idle_ticks;
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
total_idle_ticks = get_cpu_idle_time(j);
|
|
tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
|
|
j_dbs_info->prev_cpu_idle);
|
|
j_dbs_info->prev_cpu_idle = total_idle_ticks;
|
|
|
|
if (tmp_idle_ticks < idle_ticks)
|
|
idle_ticks = tmp_idle_ticks;
|
|
}
|
|
load = (100 * (total_ticks - idle_ticks)) / total_ticks;
|
|
|
|
/* Check for frequency increase */
|
|
if (load > dbs_tuners_ins.up_threshold) {
|
|
/* if we are already at full speed then break out early */
|
|
if (!dbs_tuners_ins.powersave_bias) {
|
|
if (policy->cur == policy->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Check for frequency decrease */
|
|
/* if we cannot reduce the frequency anymore, break out early */
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that
|
|
* can support the current CPU usage without triggering the up
|
|
* policy. To be safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (load < (dbs_tuners_ins.up_threshold - 10)) {
|
|
unsigned int freq_next = (policy->cur * load) /
|
|
(dbs_tuners_ins.up_threshold - 10);
|
|
if (!dbs_tuners_ins.powersave_bias) {
|
|
__cpufreq_driver_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_dbs_timer(struct work_struct *work)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
enum dbs_sample sample_type = dbs_info->sample_type;
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
|
|
/* Permit rescheduling of this work item */
|
|
work_release(work);
|
|
|
|
delay -= jiffies % delay;
|
|
|
|
if (!dbs_info->enable)
|
|
return;
|
|
/* Common NORMAL_SAMPLE setup */
|
|
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
|
|
if (!dbs_tuners_ins.powersave_bias ||
|
|
sample_type == DBS_NORMAL_SAMPLE) {
|
|
lock_cpu_hotplug();
|
|
dbs_check_cpu(dbs_info);
|
|
unlock_cpu_hotplug();
|
|
if (dbs_info->freq_lo) {
|
|
/* Setup timer for SUB_SAMPLE */
|
|
dbs_info->sample_type = DBS_SUB_SAMPLE;
|
|
delay = dbs_info->freq_hi_jiffies;
|
|
}
|
|
} else {
|
|
__cpufreq_driver_target(dbs_info->cur_policy,
|
|
dbs_info->freq_lo,
|
|
CPUFREQ_RELATION_H);
|
|
}
|
|
queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
|
|
}
|
|
|
|
static inline void dbs_timer_init(unsigned int cpu)
|
|
{
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
delay -= jiffies % delay;
|
|
|
|
ondemand_powersave_bias_init();
|
|
INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
|
|
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
|
|
queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
|
|
}
|
|
|
|
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
|
|
{
|
|
dbs_info->enable = 0;
|
|
cancel_delayed_work(&dbs_info->work);
|
|
flush_workqueue(kondemand_wq);
|
|
}
|
|
|
|
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
unsigned int j;
|
|
|
|
this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if ((!cpu_online(cpu)) || (!policy->cur))
|
|
return -EINVAL;
|
|
|
|
if (policy->cpuinfo.transition_latency >
|
|
(TRANSITION_LATENCY_LIMIT * 1000)) {
|
|
printk(KERN_WARNING "ondemand governor failed to load "
|
|
"due to too long transition latency\n");
|
|
return -EINVAL;
|
|
}
|
|
if (this_dbs_info->enable) /* Already enabled */
|
|
break;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_enable++;
|
|
if (dbs_enable == 1) {
|
|
kondemand_wq = create_workqueue("kondemand");
|
|
if (!kondemand_wq) {
|
|
printk(KERN_ERR "Creation of kondemand failed\n");
|
|
dbs_enable--;
|
|
mutex_unlock(&dbs_mutex);
|
|
return -ENOSPC;
|
|
}
|
|
}
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
j_dbs_info->cur_policy = policy;
|
|
|
|
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
|
|
j_dbs_info->prev_cpu_wall = get_jiffies_64();
|
|
}
|
|
this_dbs_info->enable = 1;
|
|
sysfs_create_group(&policy->kobj, &dbs_attr_group);
|
|
/*
|
|
* Start the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 1) {
|
|
unsigned int latency;
|
|
/* policy latency is in nS. Convert it to uS first */
|
|
latency = policy->cpuinfo.transition_latency / 1000;
|
|
if (latency == 0)
|
|
latency = 1;
|
|
|
|
def_sampling_rate = latency *
|
|
DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
|
|
|
|
if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
|
|
def_sampling_rate = MIN_STAT_SAMPLING_RATE;
|
|
|
|
dbs_tuners_ins.sampling_rate = def_sampling_rate;
|
|
}
|
|
dbs_timer_init(policy->cpu);
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_timer_exit(this_dbs_info);
|
|
sysfs_remove_group(&policy->kobj, &dbs_attr_group);
|
|
dbs_enable--;
|
|
if (dbs_enable == 0)
|
|
destroy_workqueue(kondemand_wq);
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
mutex_lock(&dbs_mutex);
|
|
if (policy->max < this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(this_dbs_info->cur_policy,
|
|
policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
else if (policy->min > this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(this_dbs_info->cur_policy,
|
|
policy->min,
|
|
CPUFREQ_RELATION_L);
|
|
mutex_unlock(&dbs_mutex);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_governor cpufreq_gov_dbs = {
|
|
.name = "ondemand",
|
|
.governor = cpufreq_governor_dbs,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
return cpufreq_register_governor(&cpufreq_gov_dbs);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_dbs);
|
|
}
|
|
|
|
|
|
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_init(cpufreq_gov_dbs_init);
|
|
module_exit(cpufreq_gov_dbs_exit);
|