linux/arch/tile/kernel/pci-dma.c

631 lines
18 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <asm/tlbflush.h>
#include <asm/homecache.h>
/* Generic DMA mapping functions: */
/*
* Allocate what Linux calls "coherent" memory. On TILEPro this is
* uncached memory; on TILE-Gx it is hash-for-home memory.
*/
#ifdef __tilepro__
#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
#else
#define PAGE_HOME_DMA PAGE_HOME_HASH
#endif
static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
u64 dma_mask = (dev && dev->coherent_dma_mask) ?
dev->coherent_dma_mask : DMA_BIT_MASK(32);
int node = dev ? dev_to_node(dev) : 0;
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
/*
* If the mask specifies that the memory be in the first 4 GB, then
* we force the allocation to come from the DMA zone. We also
* force the node to 0 since that's the only node where the DMA
* zone isn't empty. If the mask size is smaller than 32 bits, we
* may still not be able to guarantee a suitable memory address, in
* which case we will return NULL. But such devices are uncommon.
*/
if (dma_mask <= DMA_BIT_MASK(32)) {
gfp |= GFP_DMA;
node = 0;
}
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
if (addr + size > dma_mask) {
__homecache_free_pages(pg, order);
return NULL;
}
*dma_handle = addr;
return page_address(pg);
}
/*
* Free memory that was allocated with tile_dma_alloc_coherent.
*/
static void tile_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
/*
* The map routines "map" the specified address range for DMA
* accesses. The memory belongs to the device after this call is
* issued, until it is unmapped with dma_unmap_single.
*
* We don't need to do any mapping, we just flush the address range
* out of the cache and return a DMA address.
*
* The unmap routines do whatever is necessary before the processor
* accesses the memory again, and must be called before the driver
* touches the memory. We can get away with a cache invalidate if we
* can count on nothing having been touched.
*/
/* Set up a single page for DMA access. */
static void __dma_prep_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
/*
* Flush the page from cache if necessary.
* On tilegx, data is delivered to hash-for-home L3; on tilepro,
* data is delivered direct to memory.
*
* NOTE: If we were just doing DMA_TO_DEVICE we could optimize
* this to be a "flush" not a "finv" and keep some of the
* state in cache across the DMA operation, but it doesn't seem
* worth creating the necessary flush_buffer_xxx() infrastructure.
*/
int home = page_home(page);
switch (home) {
case PAGE_HOME_HASH:
#ifdef __tilegx__
return;
#endif
break;
case PAGE_HOME_UNCACHED:
#ifdef __tilepro__
return;
#endif
break;
case PAGE_HOME_IMMUTABLE:
/* Should be going to the device only. */
BUG_ON(direction == DMA_FROM_DEVICE ||
direction == DMA_BIDIRECTIONAL);
return;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
return;
default:
BUG_ON(home < 0 || home >= NR_CPUS);
break;
}
homecache_finv_page(page);
#ifdef DEBUG_ALIGNMENT
/* Warn if the region isn't cacheline aligned. */
if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
PFN_PHYS(page_to_pfn(page)) + offset, size);
#endif
}
/* Make the page ready to be read by the core. */
static void __dma_complete_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
#ifdef __tilegx__
switch (page_home(page)) {
case PAGE_HOME_HASH:
/* I/O device delivered data the way the cpu wanted it. */
break;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
break;
case PAGE_HOME_IMMUTABLE:
/* Extra read-only copies are not a problem. */
break;
default:
/* Flush the bogus hash-for-home I/O entries to memory. */
homecache_finv_map_page(page, PAGE_HOME_HASH);
break;
}
#endif
}
static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_prep_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_complete_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset;
}
static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & (PAGE_SIZE - 1), size, direction);
}
static void tile_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_handle, size, direction);
}
static void tile_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
__dma_prep_pa_range(dma_handle, size, direction);
}
static void tile_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static void tile_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static inline int
tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
static inline int
tile_dma_supported(struct device *dev, u64 mask)
{
return 1;
}
static struct dma_map_ops tile_default_dma_map_ops = {
.alloc = tile_dma_alloc_coherent,
.free = tile_dma_free_coherent,
.map_page = tile_dma_map_page,
.unmap_page = tile_dma_unmap_page,
.map_sg = tile_dma_map_sg,
.unmap_sg = tile_dma_unmap_sg,
.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
.sync_single_for_device = tile_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_dma_sync_sg_for_device,
.mapping_error = tile_dma_mapping_error,
.dma_supported = tile_dma_supported
};
struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
EXPORT_SYMBOL(tile_dma_map_ops);
/* Generic PCI DMA mapping functions */
static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
int node = dev_to_node(dev);
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
*dma_handle = addr + get_dma_offset(dev);
return page_address(pg);
}
/*
* Free memory that was allocated with tile_pci_dma_alloc_coherent.
*/
static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
sg->dma_address = sg->dma_address + get_dma_offset(dev);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
static void tile_pci_dma_unmap_sg(struct device *dev,
struct scatterlist *sglist, int nents,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset + get_dma_offset(dev);
}
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
dma_address -= get_dma_offset(dev);
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & (PAGE_SIZE - 1), size, direction);
}
static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
dma_handle -= get_dma_offset(dev);
__dma_complete_pa_range(dma_handle, size, direction);
}
static void tile_pci_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction
direction)
{
dma_handle -= get_dma_offset(dev);
__dma_prep_pa_range(dma_handle, size, direction);
}
static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static void tile_pci_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static inline int
tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
static inline int
tile_pci_dma_supported(struct device *dev, u64 mask)
{
return 1;
}
static struct dma_map_ops tile_pci_default_dma_map_ops = {
.alloc = tile_pci_dma_alloc_coherent,
.free = tile_pci_dma_free_coherent,
.map_page = tile_pci_dma_map_page,
.unmap_page = tile_pci_dma_unmap_page,
.map_sg = tile_pci_dma_map_sg,
.unmap_sg = tile_pci_dma_unmap_sg,
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
.mapping_error = tile_pci_dma_mapping_error,
.dma_supported = tile_pci_dma_supported
};
struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
EXPORT_SYMBOL(gx_pci_dma_map_ops);
/* PCI DMA mapping functions for legacy PCI devices */
#ifdef CONFIG_SWIOTLB
static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
gfp |= GFP_DMA;
return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
}
static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_addr,
struct dma_attrs *attrs)
{
swiotlb_free_coherent(dev, size, vaddr, dma_addr);
}
static struct dma_map_ops pci_swiotlb_dma_ops = {
.alloc = tile_swiotlb_alloc_coherent,
.free = tile_swiotlb_free_coherent,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = swiotlb_map_sg_attrs,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.dma_supported = swiotlb_dma_supported,
.mapping_error = swiotlb_dma_mapping_error,
};
static struct dma_map_ops pci_hybrid_dma_ops = {
.alloc = tile_swiotlb_alloc_coherent,
.free = tile_swiotlb_free_coherent,
.map_page = tile_pci_dma_map_page,
.unmap_page = tile_pci_dma_unmap_page,
.map_sg = tile_pci_dma_map_sg,
.unmap_sg = tile_pci_dma_unmap_sg,
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
.mapping_error = tile_pci_dma_mapping_error,
.dma_supported = tile_pci_dma_supported
};
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
#else
struct dma_map_ops *gx_legacy_pci_dma_map_ops;
struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
#endif
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
/*
* For PCI devices with 64-bit DMA addressing capability, promote
* the dma_ops to full capability for both streams and consistent
* memory access. For 32-bit capable devices, limit the consistent
* memory DMA range to max_direct_dma_addr.
*/
if (dma_ops == gx_pci_dma_map_ops ||
dma_ops == gx_hybrid_pci_dma_map_ops ||
dma_ops == gx_legacy_pci_dma_map_ops) {
if (mask == DMA_BIT_MASK(64))
set_dma_ops(dev, gx_pci_dma_map_ops);
else if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr;
}
if (!dma_supported(dev, mask))
return -EIO;
dev->coherent_dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
/*
* The generic dma_get_required_mask() uses the highest physical address
* (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
* 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
* DMAs to use the full 64-bit PCI address space and not limited by
* the physical memory space, we always let the PCI devices use
* 64-bit DMA if they have that capability, by returning the 64-bit
* DMA mask here. The device driver has the option to use 32-bit DMA if
* the device is not capable of 64-bit DMA.
*/
u64 dma_get_required_mask(struct device *dev)
{
return DMA_BIT_MASK(64);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
#endif