mirror of https://gitee.com/openkylin/linux.git
1917 lines
50 KiB
C
1917 lines
50 KiB
C
/*
|
|
* Copyright (C) 2011 Fujitsu. All rights reserved.
|
|
* Written by Miao Xie <miaox@cn.fujitsu.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include "delayed-inode.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
|
|
#define BTRFS_DELAYED_WRITEBACK 400
|
|
#define BTRFS_DELAYED_BACKGROUND 100
|
|
|
|
static struct kmem_cache *delayed_node_cache;
|
|
|
|
int __init btrfs_delayed_inode_init(void)
|
|
{
|
|
delayed_node_cache = kmem_cache_create("delayed_node",
|
|
sizeof(struct btrfs_delayed_node),
|
|
0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!delayed_node_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_delayed_inode_exit(void)
|
|
{
|
|
if (delayed_node_cache)
|
|
kmem_cache_destroy(delayed_node_cache);
|
|
}
|
|
|
|
static inline void btrfs_init_delayed_node(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_root *root, u64 inode_id)
|
|
{
|
|
delayed_node->root = root;
|
|
delayed_node->inode_id = inode_id;
|
|
atomic_set(&delayed_node->refs, 0);
|
|
delayed_node->count = 0;
|
|
delayed_node->in_list = 0;
|
|
delayed_node->inode_dirty = 0;
|
|
delayed_node->ins_root = RB_ROOT;
|
|
delayed_node->del_root = RB_ROOT;
|
|
mutex_init(&delayed_node->mutex);
|
|
delayed_node->index_cnt = 0;
|
|
INIT_LIST_HEAD(&delayed_node->n_list);
|
|
INIT_LIST_HEAD(&delayed_node->p_list);
|
|
delayed_node->bytes_reserved = 0;
|
|
memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
|
|
}
|
|
|
|
static inline int btrfs_is_continuous_delayed_item(
|
|
struct btrfs_delayed_item *item1,
|
|
struct btrfs_delayed_item *item2)
|
|
{
|
|
if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
|
|
item1->key.objectid == item2->key.objectid &&
|
|
item1->key.type == item2->key.type &&
|
|
item1->key.offset + 1 == item2->key.offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
|
|
struct btrfs_root *root)
|
|
{
|
|
return root->fs_info->delayed_root;
|
|
}
|
|
|
|
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
|
|
{
|
|
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
u64 ino = btrfs_ino(inode);
|
|
struct btrfs_delayed_node *node;
|
|
|
|
node = ACCESS_ONCE(btrfs_inode->delayed_node);
|
|
if (node) {
|
|
atomic_inc(&node->refs);
|
|
return node;
|
|
}
|
|
|
|
spin_lock(&root->inode_lock);
|
|
node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
|
|
if (node) {
|
|
if (btrfs_inode->delayed_node) {
|
|
atomic_inc(&node->refs); /* can be accessed */
|
|
BUG_ON(btrfs_inode->delayed_node != node);
|
|
spin_unlock(&root->inode_lock);
|
|
return node;
|
|
}
|
|
btrfs_inode->delayed_node = node;
|
|
atomic_inc(&node->refs); /* can be accessed */
|
|
atomic_inc(&node->refs); /* cached in the inode */
|
|
spin_unlock(&root->inode_lock);
|
|
return node;
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Will return either the node or PTR_ERR(-ENOMEM) */
|
|
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *node;
|
|
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
u64 ino = btrfs_ino(inode);
|
|
int ret;
|
|
|
|
again:
|
|
node = btrfs_get_delayed_node(inode);
|
|
if (node)
|
|
return node;
|
|
|
|
node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
|
|
if (!node)
|
|
return ERR_PTR(-ENOMEM);
|
|
btrfs_init_delayed_node(node, root, ino);
|
|
|
|
atomic_inc(&node->refs); /* cached in the btrfs inode */
|
|
atomic_inc(&node->refs); /* can be accessed */
|
|
|
|
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
|
|
if (ret) {
|
|
kmem_cache_free(delayed_node_cache, node);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
spin_lock(&root->inode_lock);
|
|
ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
|
|
if (ret == -EEXIST) {
|
|
kmem_cache_free(delayed_node_cache, node);
|
|
spin_unlock(&root->inode_lock);
|
|
radix_tree_preload_end();
|
|
goto again;
|
|
}
|
|
btrfs_inode->delayed_node = node;
|
|
spin_unlock(&root->inode_lock);
|
|
radix_tree_preload_end();
|
|
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* Call it when holding delayed_node->mutex
|
|
*
|
|
* If mod = 1, add this node into the prepared list.
|
|
*/
|
|
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
|
|
struct btrfs_delayed_node *node,
|
|
int mod)
|
|
{
|
|
spin_lock(&root->lock);
|
|
if (node->in_list) {
|
|
if (!list_empty(&node->p_list))
|
|
list_move_tail(&node->p_list, &root->prepare_list);
|
|
else if (mod)
|
|
list_add_tail(&node->p_list, &root->prepare_list);
|
|
} else {
|
|
list_add_tail(&node->n_list, &root->node_list);
|
|
list_add_tail(&node->p_list, &root->prepare_list);
|
|
atomic_inc(&node->refs); /* inserted into list */
|
|
root->nodes++;
|
|
node->in_list = 1;
|
|
}
|
|
spin_unlock(&root->lock);
|
|
}
|
|
|
|
/* Call it when holding delayed_node->mutex */
|
|
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
spin_lock(&root->lock);
|
|
if (node->in_list) {
|
|
root->nodes--;
|
|
atomic_dec(&node->refs); /* not in the list */
|
|
list_del_init(&node->n_list);
|
|
if (!list_empty(&node->p_list))
|
|
list_del_init(&node->p_list);
|
|
node->in_list = 0;
|
|
}
|
|
spin_unlock(&root->lock);
|
|
}
|
|
|
|
struct btrfs_delayed_node *btrfs_first_delayed_node(
|
|
struct btrfs_delayed_root *delayed_root)
|
|
{
|
|
struct list_head *p;
|
|
struct btrfs_delayed_node *node = NULL;
|
|
|
|
spin_lock(&delayed_root->lock);
|
|
if (list_empty(&delayed_root->node_list))
|
|
goto out;
|
|
|
|
p = delayed_root->node_list.next;
|
|
node = list_entry(p, struct btrfs_delayed_node, n_list);
|
|
atomic_inc(&node->refs);
|
|
out:
|
|
spin_unlock(&delayed_root->lock);
|
|
|
|
return node;
|
|
}
|
|
|
|
struct btrfs_delayed_node *btrfs_next_delayed_node(
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
struct list_head *p;
|
|
struct btrfs_delayed_node *next = NULL;
|
|
|
|
delayed_root = node->root->fs_info->delayed_root;
|
|
spin_lock(&delayed_root->lock);
|
|
if (!node->in_list) { /* not in the list */
|
|
if (list_empty(&delayed_root->node_list))
|
|
goto out;
|
|
p = delayed_root->node_list.next;
|
|
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
|
|
goto out;
|
|
else
|
|
p = node->n_list.next;
|
|
|
|
next = list_entry(p, struct btrfs_delayed_node, n_list);
|
|
atomic_inc(&next->refs);
|
|
out:
|
|
spin_unlock(&delayed_root->lock);
|
|
|
|
return next;
|
|
}
|
|
|
|
static void __btrfs_release_delayed_node(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
int mod)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
|
|
if (!delayed_node)
|
|
return;
|
|
|
|
delayed_root = delayed_node->root->fs_info->delayed_root;
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
if (delayed_node->count)
|
|
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
|
|
else
|
|
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
|
|
mutex_unlock(&delayed_node->mutex);
|
|
|
|
if (atomic_dec_and_test(&delayed_node->refs)) {
|
|
struct btrfs_root *root = delayed_node->root;
|
|
spin_lock(&root->inode_lock);
|
|
if (atomic_read(&delayed_node->refs) == 0) {
|
|
radix_tree_delete(&root->delayed_nodes_tree,
|
|
delayed_node->inode_id);
|
|
kmem_cache_free(delayed_node_cache, delayed_node);
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
}
|
|
}
|
|
|
|
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
|
|
{
|
|
__btrfs_release_delayed_node(node, 0);
|
|
}
|
|
|
|
struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
|
|
struct btrfs_delayed_root *delayed_root)
|
|
{
|
|
struct list_head *p;
|
|
struct btrfs_delayed_node *node = NULL;
|
|
|
|
spin_lock(&delayed_root->lock);
|
|
if (list_empty(&delayed_root->prepare_list))
|
|
goto out;
|
|
|
|
p = delayed_root->prepare_list.next;
|
|
list_del_init(p);
|
|
node = list_entry(p, struct btrfs_delayed_node, p_list);
|
|
atomic_inc(&node->refs);
|
|
out:
|
|
spin_unlock(&delayed_root->lock);
|
|
|
|
return node;
|
|
}
|
|
|
|
static inline void btrfs_release_prepared_delayed_node(
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
__btrfs_release_delayed_node(node, 1);
|
|
}
|
|
|
|
struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
|
|
{
|
|
struct btrfs_delayed_item *item;
|
|
item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
|
|
if (item) {
|
|
item->data_len = data_len;
|
|
item->ins_or_del = 0;
|
|
item->bytes_reserved = 0;
|
|
item->delayed_node = NULL;
|
|
atomic_set(&item->refs, 1);
|
|
}
|
|
return item;
|
|
}
|
|
|
|
/*
|
|
* __btrfs_lookup_delayed_item - look up the delayed item by key
|
|
* @delayed_node: pointer to the delayed node
|
|
* @key: the key to look up
|
|
* @prev: used to store the prev item if the right item isn't found
|
|
* @next: used to store the next item if the right item isn't found
|
|
*
|
|
* Note: if we don't find the right item, we will return the prev item and
|
|
* the next item.
|
|
*/
|
|
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
|
|
struct rb_root *root,
|
|
struct btrfs_key *key,
|
|
struct btrfs_delayed_item **prev,
|
|
struct btrfs_delayed_item **next)
|
|
{
|
|
struct rb_node *node, *prev_node = NULL;
|
|
struct btrfs_delayed_item *delayed_item = NULL;
|
|
int ret = 0;
|
|
|
|
node = root->rb_node;
|
|
|
|
while (node) {
|
|
delayed_item = rb_entry(node, struct btrfs_delayed_item,
|
|
rb_node);
|
|
prev_node = node;
|
|
ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
|
|
if (ret < 0)
|
|
node = node->rb_right;
|
|
else if (ret > 0)
|
|
node = node->rb_left;
|
|
else
|
|
return delayed_item;
|
|
}
|
|
|
|
if (prev) {
|
|
if (!prev_node)
|
|
*prev = NULL;
|
|
else if (ret < 0)
|
|
*prev = delayed_item;
|
|
else if ((node = rb_prev(prev_node)) != NULL) {
|
|
*prev = rb_entry(node, struct btrfs_delayed_item,
|
|
rb_node);
|
|
} else
|
|
*prev = NULL;
|
|
}
|
|
|
|
if (next) {
|
|
if (!prev_node)
|
|
*next = NULL;
|
|
else if (ret > 0)
|
|
*next = delayed_item;
|
|
else if ((node = rb_next(prev_node)) != NULL) {
|
|
*next = rb_entry(node, struct btrfs_delayed_item,
|
|
rb_node);
|
|
} else
|
|
*next = NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_delayed_item *item;
|
|
|
|
item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
|
|
NULL, NULL);
|
|
return item;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_delayed_item *item;
|
|
|
|
item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
|
|
NULL, NULL);
|
|
return item;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_delayed_item *item, *next;
|
|
|
|
item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
|
|
NULL, &next);
|
|
if (!item)
|
|
item = next;
|
|
|
|
return item;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
|
|
struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_delayed_item *item, *next;
|
|
|
|
item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
|
|
NULL, &next);
|
|
if (!item)
|
|
item = next;
|
|
|
|
return item;
|
|
}
|
|
|
|
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
|
|
struct btrfs_delayed_item *ins,
|
|
int action)
|
|
{
|
|
struct rb_node **p, *node;
|
|
struct rb_node *parent_node = NULL;
|
|
struct rb_root *root;
|
|
struct btrfs_delayed_item *item;
|
|
int cmp;
|
|
|
|
if (action == BTRFS_DELAYED_INSERTION_ITEM)
|
|
root = &delayed_node->ins_root;
|
|
else if (action == BTRFS_DELAYED_DELETION_ITEM)
|
|
root = &delayed_node->del_root;
|
|
else
|
|
BUG();
|
|
p = &root->rb_node;
|
|
node = &ins->rb_node;
|
|
|
|
while (*p) {
|
|
parent_node = *p;
|
|
item = rb_entry(parent_node, struct btrfs_delayed_item,
|
|
rb_node);
|
|
|
|
cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
|
|
if (cmp < 0)
|
|
p = &(*p)->rb_right;
|
|
else if (cmp > 0)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
rb_link_node(node, parent_node, p);
|
|
rb_insert_color(node, root);
|
|
ins->delayed_node = delayed_node;
|
|
ins->ins_or_del = action;
|
|
|
|
if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
|
|
action == BTRFS_DELAYED_INSERTION_ITEM &&
|
|
ins->key.offset >= delayed_node->index_cnt)
|
|
delayed_node->index_cnt = ins->key.offset + 1;
|
|
|
|
delayed_node->count++;
|
|
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
|
|
return 0;
|
|
}
|
|
|
|
static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
return __btrfs_add_delayed_item(node, item,
|
|
BTRFS_DELAYED_INSERTION_ITEM);
|
|
}
|
|
|
|
static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
return __btrfs_add_delayed_item(node, item,
|
|
BTRFS_DELAYED_DELETION_ITEM);
|
|
}
|
|
|
|
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
|
|
{
|
|
struct rb_root *root;
|
|
struct btrfs_delayed_root *delayed_root;
|
|
|
|
delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
|
|
|
|
BUG_ON(!delayed_root);
|
|
BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
|
|
delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
|
|
|
|
if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
|
|
root = &delayed_item->delayed_node->ins_root;
|
|
else
|
|
root = &delayed_item->delayed_node->del_root;
|
|
|
|
rb_erase(&delayed_item->rb_node, root);
|
|
delayed_item->delayed_node->count--;
|
|
atomic_dec(&delayed_root->items);
|
|
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
|
|
waitqueue_active(&delayed_root->wait))
|
|
wake_up(&delayed_root->wait);
|
|
}
|
|
|
|
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
|
|
{
|
|
if (item) {
|
|
__btrfs_remove_delayed_item(item);
|
|
if (atomic_dec_and_test(&item->refs))
|
|
kfree(item);
|
|
}
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
|
|
struct btrfs_delayed_node *delayed_node)
|
|
{
|
|
struct rb_node *p;
|
|
struct btrfs_delayed_item *item = NULL;
|
|
|
|
p = rb_first(&delayed_node->ins_root);
|
|
if (p)
|
|
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
|
|
|
return item;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
|
|
struct btrfs_delayed_node *delayed_node)
|
|
{
|
|
struct rb_node *p;
|
|
struct btrfs_delayed_item *item = NULL;
|
|
|
|
p = rb_first(&delayed_node->del_root);
|
|
if (p)
|
|
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
|
|
|
return item;
|
|
}
|
|
|
|
struct btrfs_delayed_item *__btrfs_next_delayed_item(
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
struct rb_node *p;
|
|
struct btrfs_delayed_item *next = NULL;
|
|
|
|
p = rb_next(&item->rb_node);
|
|
if (p)
|
|
next = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
|
|
|
return next;
|
|
}
|
|
|
|
static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
|
|
u64 root_id)
|
|
{
|
|
struct btrfs_key root_key;
|
|
|
|
if (root->objectid == root_id)
|
|
return root;
|
|
|
|
root_key.objectid = root_id;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
|
|
}
|
|
|
|
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
struct btrfs_block_rsv *src_rsv;
|
|
struct btrfs_block_rsv *dst_rsv;
|
|
u64 num_bytes;
|
|
int ret;
|
|
|
|
if (!trans->bytes_reserved)
|
|
return 0;
|
|
|
|
src_rsv = trans->block_rsv;
|
|
dst_rsv = &root->fs_info->delayed_block_rsv;
|
|
|
|
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
|
|
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
|
|
if (!ret) {
|
|
trace_btrfs_space_reservation(root->fs_info, "delayed_item",
|
|
item->key.objectid,
|
|
num_bytes, 1);
|
|
item->bytes_reserved = num_bytes;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
struct btrfs_block_rsv *rsv;
|
|
|
|
if (!item->bytes_reserved)
|
|
return;
|
|
|
|
rsv = &root->fs_info->delayed_block_rsv;
|
|
trace_btrfs_space_reservation(root->fs_info, "delayed_item",
|
|
item->key.objectid, item->bytes_reserved,
|
|
0);
|
|
btrfs_block_rsv_release(root, rsv,
|
|
item->bytes_reserved);
|
|
}
|
|
|
|
static int btrfs_delayed_inode_reserve_metadata(
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_block_rsv *src_rsv;
|
|
struct btrfs_block_rsv *dst_rsv;
|
|
u64 num_bytes;
|
|
int ret;
|
|
bool release = false;
|
|
|
|
src_rsv = trans->block_rsv;
|
|
dst_rsv = &root->fs_info->delayed_block_rsv;
|
|
|
|
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
|
|
|
|
/*
|
|
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
|
|
* which doesn't reserve space for speed. This is a problem since we
|
|
* still need to reserve space for this update, so try to reserve the
|
|
* space.
|
|
*
|
|
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
|
|
* we're accounted for.
|
|
*/
|
|
if (!src_rsv || (!trans->bytes_reserved &&
|
|
src_rsv != &root->fs_info->delalloc_block_rsv)) {
|
|
ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
|
|
/*
|
|
* Since we're under a transaction reserve_metadata_bytes could
|
|
* try to commit the transaction which will make it return
|
|
* EAGAIN to make us stop the transaction we have, so return
|
|
* ENOSPC instead so that btrfs_dirty_inode knows what to do.
|
|
*/
|
|
if (ret == -EAGAIN)
|
|
ret = -ENOSPC;
|
|
if (!ret) {
|
|
node->bytes_reserved = num_bytes;
|
|
trace_btrfs_space_reservation(root->fs_info,
|
|
"delayed_inode",
|
|
btrfs_ino(inode),
|
|
num_bytes, 1);
|
|
}
|
|
return ret;
|
|
} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
|
|
&BTRFS_I(inode)->runtime_flags)) {
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
release = true;
|
|
goto migrate;
|
|
}
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
|
|
/* Ok we didn't have space pre-reserved. This shouldn't happen
|
|
* too often but it can happen if we do delalloc to an existing
|
|
* inode which gets dirtied because of the time update, and then
|
|
* isn't touched again until after the transaction commits and
|
|
* then we try to write out the data. First try to be nice and
|
|
* reserve something strictly for us. If not be a pain and try
|
|
* to steal from the delalloc block rsv.
|
|
*/
|
|
ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Ok this is a problem, let's just steal from the global rsv
|
|
* since this really shouldn't happen that often.
|
|
*/
|
|
WARN_ON(1);
|
|
ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
|
|
dst_rsv, num_bytes);
|
|
goto out;
|
|
}
|
|
|
|
migrate:
|
|
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
|
|
|
|
out:
|
|
/*
|
|
* Migrate only takes a reservation, it doesn't touch the size of the
|
|
* block_rsv. This is to simplify people who don't normally have things
|
|
* migrated from their block rsv. If they go to release their
|
|
* reservation, that will decrease the size as well, so if migrate
|
|
* reduced size we'd end up with a negative size. But for the
|
|
* delalloc_meta_reserved stuff we will only know to drop 1 reservation,
|
|
* but we could in fact do this reserve/migrate dance several times
|
|
* between the time we did the original reservation and we'd clean it
|
|
* up. So to take care of this, release the space for the meta
|
|
* reservation here. I think it may be time for a documentation page on
|
|
* how block rsvs. work.
|
|
*/
|
|
if (!ret) {
|
|
trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
|
|
btrfs_ino(inode), num_bytes, 1);
|
|
node->bytes_reserved = num_bytes;
|
|
}
|
|
|
|
if (release) {
|
|
trace_btrfs_space_reservation(root->fs_info, "delalloc",
|
|
btrfs_ino(inode), num_bytes, 0);
|
|
btrfs_block_rsv_release(root, src_rsv, num_bytes);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_block_rsv *rsv;
|
|
|
|
if (!node->bytes_reserved)
|
|
return;
|
|
|
|
rsv = &root->fs_info->delayed_block_rsv;
|
|
trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
|
|
node->inode_id, node->bytes_reserved, 0);
|
|
btrfs_block_rsv_release(root, rsv,
|
|
node->bytes_reserved);
|
|
node->bytes_reserved = 0;
|
|
}
|
|
|
|
/*
|
|
* This helper will insert some continuous items into the same leaf according
|
|
* to the free space of the leaf.
|
|
*/
|
|
static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
struct btrfs_delayed_item *curr, *next;
|
|
int free_space;
|
|
int total_data_size = 0, total_size = 0;
|
|
struct extent_buffer *leaf;
|
|
char *data_ptr;
|
|
struct btrfs_key *keys;
|
|
u32 *data_size;
|
|
struct list_head head;
|
|
int slot;
|
|
int nitems;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!path->nodes[0]);
|
|
|
|
leaf = path->nodes[0];
|
|
free_space = btrfs_leaf_free_space(root, leaf);
|
|
INIT_LIST_HEAD(&head);
|
|
|
|
next = item;
|
|
nitems = 0;
|
|
|
|
/*
|
|
* count the number of the continuous items that we can insert in batch
|
|
*/
|
|
while (total_size + next->data_len + sizeof(struct btrfs_item) <=
|
|
free_space) {
|
|
total_data_size += next->data_len;
|
|
total_size += next->data_len + sizeof(struct btrfs_item);
|
|
list_add_tail(&next->tree_list, &head);
|
|
nitems++;
|
|
|
|
curr = next;
|
|
next = __btrfs_next_delayed_item(curr);
|
|
if (!next)
|
|
break;
|
|
|
|
if (!btrfs_is_continuous_delayed_item(curr, next))
|
|
break;
|
|
}
|
|
|
|
if (!nitems) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* we need allocate some memory space, but it might cause the task
|
|
* to sleep, so we set all locked nodes in the path to blocking locks
|
|
* first.
|
|
*/
|
|
btrfs_set_path_blocking(path);
|
|
|
|
keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
|
|
if (!keys) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
|
|
if (!data_size) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/* get keys of all the delayed items */
|
|
i = 0;
|
|
list_for_each_entry(next, &head, tree_list) {
|
|
keys[i] = next->key;
|
|
data_size[i] = next->data_len;
|
|
i++;
|
|
}
|
|
|
|
/* reset all the locked nodes in the patch to spinning locks. */
|
|
btrfs_clear_path_blocking(path, NULL, 0);
|
|
|
|
/* insert the keys of the items */
|
|
setup_items_for_insert(trans, root, path, keys, data_size,
|
|
total_data_size, total_size, nitems);
|
|
|
|
/* insert the dir index items */
|
|
slot = path->slots[0];
|
|
list_for_each_entry_safe(curr, next, &head, tree_list) {
|
|
data_ptr = btrfs_item_ptr(leaf, slot, char);
|
|
write_extent_buffer(leaf, &curr->data,
|
|
(unsigned long)data_ptr,
|
|
curr->data_len);
|
|
slot++;
|
|
|
|
btrfs_delayed_item_release_metadata(root, curr);
|
|
|
|
list_del(&curr->tree_list);
|
|
btrfs_release_delayed_item(curr);
|
|
}
|
|
|
|
error:
|
|
kfree(data_size);
|
|
kfree(keys);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This helper can just do simple insertion that needn't extend item for new
|
|
* data, such as directory name index insertion, inode insertion.
|
|
*/
|
|
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_delayed_item *delayed_item)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_item *item;
|
|
char *ptr;
|
|
int ret;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
|
|
delayed_item->data_len);
|
|
if (ret < 0 && ret != -EEXIST)
|
|
return ret;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
item = btrfs_item_nr(leaf, path->slots[0]);
|
|
ptr = btrfs_item_ptr(leaf, path->slots[0], char);
|
|
|
|
write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
|
|
delayed_item->data_len);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_delayed_item_release_metadata(root, delayed_item);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we insert an item first, then if there are some continuous items, we try
|
|
* to insert those items into the same leaf.
|
|
*/
|
|
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_delayed_item *curr, *prev;
|
|
int ret = 0;
|
|
|
|
do_again:
|
|
mutex_lock(&node->mutex);
|
|
curr = __btrfs_first_delayed_insertion_item(node);
|
|
if (!curr)
|
|
goto insert_end;
|
|
|
|
ret = btrfs_insert_delayed_item(trans, root, path, curr);
|
|
if (ret < 0) {
|
|
btrfs_release_path(path);
|
|
goto insert_end;
|
|
}
|
|
|
|
prev = curr;
|
|
curr = __btrfs_next_delayed_item(prev);
|
|
if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
|
|
/* insert the continuous items into the same leaf */
|
|
path->slots[0]++;
|
|
btrfs_batch_insert_items(trans, root, path, curr);
|
|
}
|
|
btrfs_release_delayed_item(prev);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
|
|
btrfs_release_path(path);
|
|
mutex_unlock(&node->mutex);
|
|
goto do_again;
|
|
|
|
insert_end:
|
|
mutex_unlock(&node->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_delayed_item *item)
|
|
{
|
|
struct btrfs_delayed_item *curr, *next;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct list_head head;
|
|
int nitems, i, last_item;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!path->nodes[0]);
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
i = path->slots[0];
|
|
last_item = btrfs_header_nritems(leaf) - 1;
|
|
if (i > last_item)
|
|
return -ENOENT; /* FIXME: Is errno suitable? */
|
|
|
|
next = item;
|
|
INIT_LIST_HEAD(&head);
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
nitems = 0;
|
|
/*
|
|
* count the number of the dir index items that we can delete in batch
|
|
*/
|
|
while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
|
|
list_add_tail(&next->tree_list, &head);
|
|
nitems++;
|
|
|
|
curr = next;
|
|
next = __btrfs_next_delayed_item(curr);
|
|
if (!next)
|
|
break;
|
|
|
|
if (!btrfs_is_continuous_delayed_item(curr, next))
|
|
break;
|
|
|
|
i++;
|
|
if (i > last_item)
|
|
break;
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
}
|
|
|
|
if (!nitems)
|
|
return 0;
|
|
|
|
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
|
|
if (ret)
|
|
goto out;
|
|
|
|
list_for_each_entry_safe(curr, next, &head, tree_list) {
|
|
btrfs_delayed_item_release_metadata(root, curr);
|
|
list_del(&curr->tree_list);
|
|
btrfs_release_delayed_item(curr);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_delayed_item *curr, *prev;
|
|
int ret = 0;
|
|
|
|
do_again:
|
|
mutex_lock(&node->mutex);
|
|
curr = __btrfs_first_delayed_deletion_item(node);
|
|
if (!curr)
|
|
goto delete_fail;
|
|
|
|
ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto delete_fail;
|
|
else if (ret > 0) {
|
|
/*
|
|
* can't find the item which the node points to, so this node
|
|
* is invalid, just drop it.
|
|
*/
|
|
prev = curr;
|
|
curr = __btrfs_next_delayed_item(prev);
|
|
btrfs_release_delayed_item(prev);
|
|
ret = 0;
|
|
btrfs_release_path(path);
|
|
if (curr)
|
|
goto do_again;
|
|
else
|
|
goto delete_fail;
|
|
}
|
|
|
|
btrfs_batch_delete_items(trans, root, path, curr);
|
|
btrfs_release_path(path);
|
|
mutex_unlock(&node->mutex);
|
|
goto do_again;
|
|
|
|
delete_fail:
|
|
btrfs_release_path(path);
|
|
mutex_unlock(&node->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
|
|
if (delayed_node && delayed_node->inode_dirty) {
|
|
BUG_ON(!delayed_node->root);
|
|
delayed_node->inode_dirty = 0;
|
|
delayed_node->count--;
|
|
|
|
delayed_root = delayed_node->root->fs_info->delayed_root;
|
|
atomic_dec(&delayed_root->items);
|
|
if (atomic_read(&delayed_root->items) <
|
|
BTRFS_DELAYED_BACKGROUND &&
|
|
waitqueue_active(&delayed_root->wait))
|
|
wake_up(&delayed_root->wait);
|
|
}
|
|
}
|
|
|
|
static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
mutex_lock(&node->mutex);
|
|
if (!node->inode_dirty) {
|
|
mutex_unlock(&node->mutex);
|
|
return 0;
|
|
}
|
|
|
|
key.objectid = node->inode_id;
|
|
btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
|
|
key.offset = 0;
|
|
ret = btrfs_lookup_inode(trans, root, path, &key, 1);
|
|
if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
mutex_unlock(&node->mutex);
|
|
return -ENOENT;
|
|
} else if (ret < 0) {
|
|
mutex_unlock(&node->mutex);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_unlock_up_safe(path, 1);
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
|
|
sizeof(struct btrfs_inode_item));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
btrfs_delayed_inode_release_metadata(root, node);
|
|
btrfs_release_delayed_inode(node);
|
|
mutex_unlock(&node->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called when committing the transaction.
|
|
* Returns 0 on success.
|
|
* Returns < 0 on error and returns with an aborted transaction with any
|
|
* outstanding delayed items cleaned up.
|
|
*/
|
|
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int nr)
|
|
{
|
|
struct btrfs_root *curr_root = root;
|
|
struct btrfs_delayed_root *delayed_root;
|
|
struct btrfs_delayed_node *curr_node, *prev_node;
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_rsv *block_rsv;
|
|
int ret = 0;
|
|
bool count = (nr > 0);
|
|
|
|
if (trans->aborted)
|
|
return -EIO;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->leave_spinning = 1;
|
|
|
|
block_rsv = trans->block_rsv;
|
|
trans->block_rsv = &root->fs_info->delayed_block_rsv;
|
|
|
|
delayed_root = btrfs_get_delayed_root(root);
|
|
|
|
curr_node = btrfs_first_delayed_node(delayed_root);
|
|
while (curr_node && (!count || (count && nr--))) {
|
|
curr_root = curr_node->root;
|
|
ret = btrfs_insert_delayed_items(trans, path, curr_root,
|
|
curr_node);
|
|
if (!ret)
|
|
ret = btrfs_delete_delayed_items(trans, path,
|
|
curr_root, curr_node);
|
|
if (!ret)
|
|
ret = btrfs_update_delayed_inode(trans, curr_root,
|
|
path, curr_node);
|
|
if (ret) {
|
|
btrfs_release_delayed_node(curr_node);
|
|
curr_node = NULL;
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
break;
|
|
}
|
|
|
|
prev_node = curr_node;
|
|
curr_node = btrfs_next_delayed_node(curr_node);
|
|
btrfs_release_delayed_node(prev_node);
|
|
}
|
|
|
|
if (curr_node)
|
|
btrfs_release_delayed_node(curr_node);
|
|
btrfs_free_path(path);
|
|
trans->block_rsv = block_rsv;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
return __btrfs_run_delayed_items(trans, root, -1);
|
|
}
|
|
|
|
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int nr)
|
|
{
|
|
return __btrfs_run_delayed_items(trans, root, nr);
|
|
}
|
|
|
|
static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_node *node)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_rsv *block_rsv;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->leave_spinning = 1;
|
|
|
|
block_rsv = trans->block_rsv;
|
|
trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
|
|
|
|
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
|
|
if (!ret)
|
|
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
|
|
if (!ret)
|
|
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
|
|
btrfs_free_path(path);
|
|
|
|
trans->block_rsv = block_rsv;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
|
|
int ret;
|
|
|
|
if (!delayed_node)
|
|
return 0;
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
if (!delayed_node->count) {
|
|
mutex_unlock(&delayed_node->mutex);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return 0;
|
|
}
|
|
mutex_unlock(&delayed_node->mutex);
|
|
|
|
ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_remove_delayed_node(struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
|
|
delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
|
|
if (!delayed_node)
|
|
return;
|
|
|
|
BTRFS_I(inode)->delayed_node = NULL;
|
|
btrfs_release_delayed_node(delayed_node);
|
|
}
|
|
|
|
struct btrfs_async_delayed_node {
|
|
struct btrfs_root *root;
|
|
struct btrfs_delayed_node *delayed_node;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_async_delayed_node *async_node;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_delayed_node *delayed_node = NULL;
|
|
struct btrfs_root *root;
|
|
struct btrfs_block_rsv *block_rsv;
|
|
unsigned long nr = 0;
|
|
int need_requeue = 0;
|
|
int ret;
|
|
|
|
async_node = container_of(work, struct btrfs_async_delayed_node, work);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
goto out;
|
|
path->leave_spinning = 1;
|
|
|
|
delayed_node = async_node->delayed_node;
|
|
root = delayed_node->root;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
goto free_path;
|
|
|
|
block_rsv = trans->block_rsv;
|
|
trans->block_rsv = &root->fs_info->delayed_block_rsv;
|
|
|
|
ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
|
|
if (!ret)
|
|
ret = btrfs_delete_delayed_items(trans, path, root,
|
|
delayed_node);
|
|
|
|
if (!ret)
|
|
btrfs_update_delayed_inode(trans, root, path, delayed_node);
|
|
|
|
/*
|
|
* Maybe new delayed items have been inserted, so we need requeue
|
|
* the work. Besides that, we must dequeue the empty delayed nodes
|
|
* to avoid the race between delayed items balance and the worker.
|
|
* The race like this:
|
|
* Task1 Worker thread
|
|
* count == 0, needn't requeue
|
|
* also needn't insert the
|
|
* delayed node into prepare
|
|
* list again.
|
|
* add lots of delayed items
|
|
* queue the delayed node
|
|
* already in the list,
|
|
* and not in the prepare
|
|
* list, it means the delayed
|
|
* node is being dealt with
|
|
* by the worker.
|
|
* do delayed items balance
|
|
* the delayed node is being
|
|
* dealt with by the worker
|
|
* now, just wait.
|
|
* the worker goto idle.
|
|
* Task1 will sleep until the transaction is commited.
|
|
*/
|
|
mutex_lock(&delayed_node->mutex);
|
|
if (delayed_node->count)
|
|
need_requeue = 1;
|
|
else
|
|
btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
|
|
delayed_node);
|
|
mutex_unlock(&delayed_node->mutex);
|
|
|
|
nr = trans->blocks_used;
|
|
|
|
trans->block_rsv = block_rsv;
|
|
btrfs_end_transaction_dmeta(trans, root);
|
|
__btrfs_btree_balance_dirty(root, nr);
|
|
free_path:
|
|
btrfs_free_path(path);
|
|
out:
|
|
if (need_requeue)
|
|
btrfs_requeue_work(&async_node->work);
|
|
else {
|
|
btrfs_release_prepared_delayed_node(delayed_node);
|
|
kfree(async_node);
|
|
}
|
|
}
|
|
|
|
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
|
|
struct btrfs_root *root, int all)
|
|
{
|
|
struct btrfs_async_delayed_node *async_node;
|
|
struct btrfs_delayed_node *curr;
|
|
int count = 0;
|
|
|
|
again:
|
|
curr = btrfs_first_prepared_delayed_node(delayed_root);
|
|
if (!curr)
|
|
return 0;
|
|
|
|
async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
|
|
if (!async_node) {
|
|
btrfs_release_prepared_delayed_node(curr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
async_node->root = root;
|
|
async_node->delayed_node = curr;
|
|
|
|
async_node->work.func = btrfs_async_run_delayed_node_done;
|
|
async_node->work.flags = 0;
|
|
|
|
btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
|
|
count++;
|
|
|
|
if (all || count < 4)
|
|
goto again;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
delayed_root = btrfs_get_delayed_root(root);
|
|
WARN_ON(btrfs_first_delayed_node(delayed_root));
|
|
}
|
|
|
|
void btrfs_balance_delayed_items(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
|
|
delayed_root = btrfs_get_delayed_root(root);
|
|
|
|
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
|
|
return;
|
|
|
|
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
|
|
int ret;
|
|
ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
|
|
if (ret)
|
|
return;
|
|
|
|
wait_event_interruptible_timeout(
|
|
delayed_root->wait,
|
|
(atomic_read(&delayed_root->items) <
|
|
BTRFS_DELAYED_BACKGROUND),
|
|
HZ);
|
|
return;
|
|
}
|
|
|
|
btrfs_wq_run_delayed_node(delayed_root, root, 0);
|
|
}
|
|
|
|
/* Will return 0 or -ENOMEM */
|
|
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, const char *name,
|
|
int name_len, struct inode *dir,
|
|
struct btrfs_disk_key *disk_key, u8 type,
|
|
u64 index)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
struct btrfs_delayed_item *delayed_item;
|
|
struct btrfs_dir_item *dir_item;
|
|
int ret;
|
|
|
|
delayed_node = btrfs_get_or_create_delayed_node(dir);
|
|
if (IS_ERR(delayed_node))
|
|
return PTR_ERR(delayed_node);
|
|
|
|
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
|
|
if (!delayed_item) {
|
|
ret = -ENOMEM;
|
|
goto release_node;
|
|
}
|
|
|
|
delayed_item->key.objectid = btrfs_ino(dir);
|
|
btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
|
|
delayed_item->key.offset = index;
|
|
|
|
dir_item = (struct btrfs_dir_item *)delayed_item->data;
|
|
dir_item->location = *disk_key;
|
|
dir_item->transid = cpu_to_le64(trans->transid);
|
|
dir_item->data_len = 0;
|
|
dir_item->name_len = cpu_to_le16(name_len);
|
|
dir_item->type = type;
|
|
memcpy((char *)(dir_item + 1), name, name_len);
|
|
|
|
ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
|
|
/*
|
|
* we have reserved enough space when we start a new transaction,
|
|
* so reserving metadata failure is impossible
|
|
*/
|
|
BUG_ON(ret);
|
|
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
|
|
if (unlikely(ret)) {
|
|
printk(KERN_ERR "err add delayed dir index item(name: %s) into "
|
|
"the insertion tree of the delayed node"
|
|
"(root id: %llu, inode id: %llu, errno: %d)\n",
|
|
name,
|
|
(unsigned long long)delayed_node->root->objectid,
|
|
(unsigned long long)delayed_node->inode_id,
|
|
ret);
|
|
BUG();
|
|
}
|
|
mutex_unlock(&delayed_node->mutex);
|
|
|
|
release_node:
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
|
|
struct btrfs_delayed_node *node,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_delayed_item *item;
|
|
|
|
mutex_lock(&node->mutex);
|
|
item = __btrfs_lookup_delayed_insertion_item(node, key);
|
|
if (!item) {
|
|
mutex_unlock(&node->mutex);
|
|
return 1;
|
|
}
|
|
|
|
btrfs_delayed_item_release_metadata(root, item);
|
|
btrfs_release_delayed_item(item);
|
|
mutex_unlock(&node->mutex);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *dir,
|
|
u64 index)
|
|
{
|
|
struct btrfs_delayed_node *node;
|
|
struct btrfs_delayed_item *item;
|
|
struct btrfs_key item_key;
|
|
int ret;
|
|
|
|
node = btrfs_get_or_create_delayed_node(dir);
|
|
if (IS_ERR(node))
|
|
return PTR_ERR(node);
|
|
|
|
item_key.objectid = btrfs_ino(dir);
|
|
btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
|
|
item_key.offset = index;
|
|
|
|
ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
|
|
if (!ret)
|
|
goto end;
|
|
|
|
item = btrfs_alloc_delayed_item(0);
|
|
if (!item) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
item->key = item_key;
|
|
|
|
ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
|
|
/*
|
|
* we have reserved enough space when we start a new transaction,
|
|
* so reserving metadata failure is impossible.
|
|
*/
|
|
BUG_ON(ret);
|
|
|
|
mutex_lock(&node->mutex);
|
|
ret = __btrfs_add_delayed_deletion_item(node, item);
|
|
if (unlikely(ret)) {
|
|
printk(KERN_ERR "err add delayed dir index item(index: %llu) "
|
|
"into the deletion tree of the delayed node"
|
|
"(root id: %llu, inode id: %llu, errno: %d)\n",
|
|
(unsigned long long)index,
|
|
(unsigned long long)node->root->objectid,
|
|
(unsigned long long)node->inode_id,
|
|
ret);
|
|
BUG();
|
|
}
|
|
mutex_unlock(&node->mutex);
|
|
end:
|
|
btrfs_release_delayed_node(node);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inode_delayed_dir_index_count(struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
|
|
|
|
if (!delayed_node)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Since we have held i_mutex of this directory, it is impossible that
|
|
* a new directory index is added into the delayed node and index_cnt
|
|
* is updated now. So we needn't lock the delayed node.
|
|
*/
|
|
if (!delayed_node->index_cnt) {
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
|
|
struct list_head *del_list)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
struct btrfs_delayed_item *item;
|
|
|
|
delayed_node = btrfs_get_delayed_node(inode);
|
|
if (!delayed_node)
|
|
return;
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
item = __btrfs_first_delayed_insertion_item(delayed_node);
|
|
while (item) {
|
|
atomic_inc(&item->refs);
|
|
list_add_tail(&item->readdir_list, ins_list);
|
|
item = __btrfs_next_delayed_item(item);
|
|
}
|
|
|
|
item = __btrfs_first_delayed_deletion_item(delayed_node);
|
|
while (item) {
|
|
atomic_inc(&item->refs);
|
|
list_add_tail(&item->readdir_list, del_list);
|
|
item = __btrfs_next_delayed_item(item);
|
|
}
|
|
mutex_unlock(&delayed_node->mutex);
|
|
/*
|
|
* This delayed node is still cached in the btrfs inode, so refs
|
|
* must be > 1 now, and we needn't check it is going to be freed
|
|
* or not.
|
|
*
|
|
* Besides that, this function is used to read dir, we do not
|
|
* insert/delete delayed items in this period. So we also needn't
|
|
* requeue or dequeue this delayed node.
|
|
*/
|
|
atomic_dec(&delayed_node->refs);
|
|
}
|
|
|
|
void btrfs_put_delayed_items(struct list_head *ins_list,
|
|
struct list_head *del_list)
|
|
{
|
|
struct btrfs_delayed_item *curr, *next;
|
|
|
|
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
|
|
list_del(&curr->readdir_list);
|
|
if (atomic_dec_and_test(&curr->refs))
|
|
kfree(curr);
|
|
}
|
|
|
|
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
|
|
list_del(&curr->readdir_list);
|
|
if (atomic_dec_and_test(&curr->refs))
|
|
kfree(curr);
|
|
}
|
|
}
|
|
|
|
int btrfs_should_delete_dir_index(struct list_head *del_list,
|
|
u64 index)
|
|
{
|
|
struct btrfs_delayed_item *curr, *next;
|
|
int ret;
|
|
|
|
if (list_empty(del_list))
|
|
return 0;
|
|
|
|
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
|
|
if (curr->key.offset > index)
|
|
break;
|
|
|
|
list_del(&curr->readdir_list);
|
|
ret = (curr->key.offset == index);
|
|
|
|
if (atomic_dec_and_test(&curr->refs))
|
|
kfree(curr);
|
|
|
|
if (ret)
|
|
return 1;
|
|
else
|
|
continue;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
|
|
*
|
|
*/
|
|
int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
|
|
filldir_t filldir,
|
|
struct list_head *ins_list)
|
|
{
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_delayed_item *curr, *next;
|
|
struct btrfs_key location;
|
|
char *name;
|
|
int name_len;
|
|
int over = 0;
|
|
unsigned char d_type;
|
|
|
|
if (list_empty(ins_list))
|
|
return 0;
|
|
|
|
/*
|
|
* Changing the data of the delayed item is impossible. So
|
|
* we needn't lock them. And we have held i_mutex of the
|
|
* directory, nobody can delete any directory indexes now.
|
|
*/
|
|
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
|
|
list_del(&curr->readdir_list);
|
|
|
|
if (curr->key.offset < filp->f_pos) {
|
|
if (atomic_dec_and_test(&curr->refs))
|
|
kfree(curr);
|
|
continue;
|
|
}
|
|
|
|
filp->f_pos = curr->key.offset;
|
|
|
|
di = (struct btrfs_dir_item *)curr->data;
|
|
name = (char *)(di + 1);
|
|
name_len = le16_to_cpu(di->name_len);
|
|
|
|
d_type = btrfs_filetype_table[di->type];
|
|
btrfs_disk_key_to_cpu(&location, &di->location);
|
|
|
|
over = filldir(dirent, name, name_len, curr->key.offset,
|
|
location.objectid, d_type);
|
|
|
|
if (atomic_dec_and_test(&curr->refs))
|
|
kfree(curr);
|
|
|
|
if (over)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
|
|
generation, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
|
|
sequence, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
|
|
transid, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
|
|
nbytes, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
|
|
block_group, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
|
|
|
|
BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
|
|
BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
|
|
|
|
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode_item *inode_item,
|
|
struct inode *inode)
|
|
{
|
|
btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
|
|
btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
|
|
btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
|
|
btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
|
|
btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
|
|
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
|
|
btrfs_set_stack_inode_generation(inode_item,
|
|
BTRFS_I(inode)->generation);
|
|
btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
|
|
btrfs_set_stack_inode_transid(inode_item, trans->transid);
|
|
btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
|
|
btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
|
|
btrfs_set_stack_inode_block_group(inode_item, 0);
|
|
|
|
btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
|
|
inode->i_atime.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
|
|
inode->i_atime.tv_nsec);
|
|
|
|
btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
|
|
inode->i_mtime.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
|
|
inode->i_mtime.tv_nsec);
|
|
|
|
btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
|
|
inode->i_ctime.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
|
|
inode->i_ctime.tv_nsec);
|
|
}
|
|
|
|
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_timespec *tspec;
|
|
|
|
delayed_node = btrfs_get_delayed_node(inode);
|
|
if (!delayed_node)
|
|
return -ENOENT;
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
if (!delayed_node->inode_dirty) {
|
|
mutex_unlock(&delayed_node->mutex);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return -ENOENT;
|
|
}
|
|
|
|
inode_item = &delayed_node->inode_item;
|
|
|
|
inode->i_uid = btrfs_stack_inode_uid(inode_item);
|
|
inode->i_gid = btrfs_stack_inode_gid(inode_item);
|
|
btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
|
|
inode->i_mode = btrfs_stack_inode_mode(inode_item);
|
|
set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
|
|
inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
|
|
BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
|
|
inode->i_version = btrfs_stack_inode_sequence(inode_item);
|
|
inode->i_rdev = 0;
|
|
*rdev = btrfs_stack_inode_rdev(inode_item);
|
|
BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
|
|
|
|
tspec = btrfs_inode_atime(inode_item);
|
|
inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
|
|
inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
|
|
|
|
tspec = btrfs_inode_mtime(inode_item);
|
|
inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
|
|
inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
|
|
|
|
tspec = btrfs_inode_ctime(inode_item);
|
|
inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
|
|
inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
|
|
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
|
|
|
mutex_unlock(&delayed_node->mutex);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
int ret = 0;
|
|
|
|
delayed_node = btrfs_get_or_create_delayed_node(inode);
|
|
if (IS_ERR(delayed_node))
|
|
return PTR_ERR(delayed_node);
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
if (delayed_node->inode_dirty) {
|
|
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
|
|
goto release_node;
|
|
}
|
|
|
|
ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
|
|
delayed_node);
|
|
if (ret)
|
|
goto release_node;
|
|
|
|
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
|
|
delayed_node->inode_dirty = 1;
|
|
delayed_node->count++;
|
|
atomic_inc(&root->fs_info->delayed_root->items);
|
|
release_node:
|
|
mutex_unlock(&delayed_node->mutex);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
return ret;
|
|
}
|
|
|
|
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
|
|
{
|
|
struct btrfs_root *root = delayed_node->root;
|
|
struct btrfs_delayed_item *curr_item, *prev_item;
|
|
|
|
mutex_lock(&delayed_node->mutex);
|
|
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
|
|
while (curr_item) {
|
|
btrfs_delayed_item_release_metadata(root, curr_item);
|
|
prev_item = curr_item;
|
|
curr_item = __btrfs_next_delayed_item(prev_item);
|
|
btrfs_release_delayed_item(prev_item);
|
|
}
|
|
|
|
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
|
|
while (curr_item) {
|
|
btrfs_delayed_item_release_metadata(root, curr_item);
|
|
prev_item = curr_item;
|
|
curr_item = __btrfs_next_delayed_item(prev_item);
|
|
btrfs_release_delayed_item(prev_item);
|
|
}
|
|
|
|
if (delayed_node->inode_dirty) {
|
|
btrfs_delayed_inode_release_metadata(root, delayed_node);
|
|
btrfs_release_delayed_inode(delayed_node);
|
|
}
|
|
mutex_unlock(&delayed_node->mutex);
|
|
}
|
|
|
|
void btrfs_kill_delayed_inode_items(struct inode *inode)
|
|
{
|
|
struct btrfs_delayed_node *delayed_node;
|
|
|
|
delayed_node = btrfs_get_delayed_node(inode);
|
|
if (!delayed_node)
|
|
return;
|
|
|
|
__btrfs_kill_delayed_node(delayed_node);
|
|
btrfs_release_delayed_node(delayed_node);
|
|
}
|
|
|
|
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
|
|
{
|
|
u64 inode_id = 0;
|
|
struct btrfs_delayed_node *delayed_nodes[8];
|
|
int i, n;
|
|
|
|
while (1) {
|
|
spin_lock(&root->inode_lock);
|
|
n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
|
|
(void **)delayed_nodes, inode_id,
|
|
ARRAY_SIZE(delayed_nodes));
|
|
if (!n) {
|
|
spin_unlock(&root->inode_lock);
|
|
break;
|
|
}
|
|
|
|
inode_id = delayed_nodes[n - 1]->inode_id + 1;
|
|
|
|
for (i = 0; i < n; i++)
|
|
atomic_inc(&delayed_nodes[i]->refs);
|
|
spin_unlock(&root->inode_lock);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
__btrfs_kill_delayed_node(delayed_nodes[i]);
|
|
btrfs_release_delayed_node(delayed_nodes[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_delayed_root *delayed_root;
|
|
struct btrfs_delayed_node *curr_node, *prev_node;
|
|
|
|
delayed_root = btrfs_get_delayed_root(root);
|
|
|
|
curr_node = btrfs_first_delayed_node(delayed_root);
|
|
while (curr_node) {
|
|
__btrfs_kill_delayed_node(curr_node);
|
|
|
|
prev_node = curr_node;
|
|
curr_node = btrfs_next_delayed_node(curr_node);
|
|
btrfs_release_delayed_node(prev_node);
|
|
}
|
|
}
|
|
|