linux/arch/x86/boot/compressed/efi_stub_32.S

88 lines
2.3 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* EFI call stub for IA32.
*
* This stub allows us to make EFI calls in physical mode with interrupts
* turned off. Note that this implementation is different from the one in
* arch/x86/platform/efi/efi_stub_32.S because we're _already_ in physical
* mode at this point.
*/
#include <linux/linkage.h>
#include <asm/page_types.h>
/*
* efi_call_phys(void *, ...) is a function with variable parameters.
* All the callers of this function assure that all the parameters are 4-bytes.
*/
/*
* In gcc calling convention, EBX, ESP, EBP, ESI and EDI are all callee save.
* So we'd better save all of them at the beginning of this function and restore
* at the end no matter how many we use, because we can not assure EFI runtime
* service functions will comply with gcc calling convention, too.
*/
.text
SYM_FUNC_START(efi_call_phys)
/*
* 0. The function can only be called in Linux kernel. So CS has been
* set to 0x0010, DS and SS have been set to 0x0018. In EFI, I found
* the values of these registers are the same. And, the corresponding
* GDT entries are identical. So I will do nothing about segment reg
* and GDT, but change GDT base register in prelog and epilog.
*/
/*
* 1. Because we haven't been relocated by this point we need to
* use relative addressing.
*/
call 1f
1: popl %edx
subl $1b, %edx
/*
* 2. Now on the top of stack is the return
* address in the caller of efi_call_phys(), then parameter 1,
* parameter 2, ..., param n. To make things easy, we save the return
* address of efi_call_phys in a global variable.
*/
popl %ecx
movl %ecx, saved_return_addr(%edx)
/* get the function pointer into ECX*/
popl %ecx
movl %ecx, efi_rt_function_ptr(%edx)
/*
* 3. Call the physical function.
*/
call *%ecx
/*
* 4. Balance the stack. And because EAX contain the return value,
* we'd better not clobber it. We need to calculate our address
* again because %ecx and %edx are not preserved across EFI function
* calls.
*/
call 1f
1: popl %edx
subl $1b, %edx
movl efi_rt_function_ptr(%edx), %ecx
pushl %ecx
/*
* 10. Push the saved return address onto the stack and return.
*/
movl saved_return_addr(%edx), %ecx
pushl %ecx
ret
SYM_FUNC_END(efi_call_phys)
.previous
.data
saved_return_addr:
.long 0
efi_rt_function_ptr:
.long 0