linux/drivers/media/i2c/mt9v011.c

594 lines
14 KiB
C

/*
* mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
*
* Copyright (c) 2009 Mauro Carvalho Chehab
* This code is placed under the terms of the GNU General Public License v2
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <asm/div64.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
#include <media/mt9v011.h>
MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_LICENSE("GPL");
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0-2)");
#define R00_MT9V011_CHIP_VERSION 0x00
#define R01_MT9V011_ROWSTART 0x01
#define R02_MT9V011_COLSTART 0x02
#define R03_MT9V011_HEIGHT 0x03
#define R04_MT9V011_WIDTH 0x04
#define R05_MT9V011_HBLANK 0x05
#define R06_MT9V011_VBLANK 0x06
#define R07_MT9V011_OUT_CTRL 0x07
#define R09_MT9V011_SHUTTER_WIDTH 0x09
#define R0A_MT9V011_CLK_SPEED 0x0a
#define R0B_MT9V011_RESTART 0x0b
#define R0C_MT9V011_SHUTTER_DELAY 0x0c
#define R0D_MT9V011_RESET 0x0d
#define R1E_MT9V011_DIGITAL_ZOOM 0x1e
#define R20_MT9V011_READ_MODE 0x20
#define R2B_MT9V011_GREEN_1_GAIN 0x2b
#define R2C_MT9V011_BLUE_GAIN 0x2c
#define R2D_MT9V011_RED_GAIN 0x2d
#define R2E_MT9V011_GREEN_2_GAIN 0x2e
#define R35_MT9V011_GLOBAL_GAIN 0x35
#define RF1_MT9V011_CHIP_ENABLE 0xf1
#define MT9V011_VERSION 0x8232
#define MT9V011_REV_B_VERSION 0x8243
struct mt9v011 {
struct v4l2_subdev sd;
struct v4l2_ctrl_handler ctrls;
unsigned width, height;
unsigned xtal;
unsigned hflip:1;
unsigned vflip:1;
u16 global_gain, exposure;
s16 red_bal, blue_bal;
};
static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
{
return container_of(sd, struct mt9v011, sd);
}
static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
__be16 buffer;
int rc, val;
rc = i2c_master_send(c, &addr, 1);
if (rc != 1)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 1)\n", rc);
msleep(10);
rc = i2c_master_recv(c, (char *)&buffer, 2);
if (rc != 2)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 2)\n", rc);
val = be16_to_cpu(buffer);
v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
return val;
}
static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
u16 value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
unsigned char buffer[3];
int rc;
buffer[0] = addr;
buffer[1] = value >> 8;
buffer[2] = value & 0xff;
v4l2_dbg(2, debug, sd,
"mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
rc = i2c_master_send(c, buffer, 3);
if (rc != 3)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 3)\n", rc);
}
struct i2c_reg_value {
unsigned char reg;
u16 value;
};
/*
* Values used at the original driver
* Some values are marked as Reserved at the datasheet
*/
static const struct i2c_reg_value mt9v011_init_default[] = {
{ R0D_MT9V011_RESET, 0x0001 },
{ R0D_MT9V011_RESET, 0x0000 },
{ R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
{ R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
{ R0A_MT9V011_CLK_SPEED, 0x0000 },
{ R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
{ R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
};
static u16 calc_mt9v011_gain(s16 lineargain)
{
u16 digitalgain = 0;
u16 analogmult = 0;
u16 analoginit = 0;
if (lineargain < 0)
lineargain = 0;
/* recommended minimum */
lineargain += 0x0020;
if (lineargain > 2047)
lineargain = 2047;
if (lineargain > 1023) {
digitalgain = 3;
analogmult = 3;
analoginit = lineargain / 16;
} else if (lineargain > 511) {
digitalgain = 1;
analogmult = 3;
analoginit = lineargain / 8;
} else if (lineargain > 255) {
analogmult = 3;
analoginit = lineargain / 4;
} else if (lineargain > 127) {
analogmult = 1;
analoginit = lineargain / 2;
} else
analoginit = lineargain;
return analoginit + (analogmult << 7) + (digitalgain << 9);
}
static void set_balance(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
u16 green_gain, blue_gain, red_gain;
u16 exposure;
s16 bal;
exposure = core->exposure;
green_gain = calc_mt9v011_gain(core->global_gain);
bal = core->global_gain;
bal += (core->blue_bal * core->global_gain / (1 << 7));
blue_gain = calc_mt9v011_gain(bal);
bal = core->global_gain;
bal += (core->red_bal * core->global_gain / (1 << 7));
red_gain = calc_mt9v011_gain(bal);
mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
}
static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned height, width, hblank, vblank, speed;
unsigned row_time, t_time;
u64 frames_per_ms;
unsigned tmp;
height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
width = mt9v011_read(sd, R04_MT9V011_WIDTH);
hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
row_time = (width + 113 + hblank) * (speed + 2);
t_time = row_time * (height + vblank + 1);
frames_per_ms = core->xtal * 1000l;
do_div(frames_per_ms, t_time);
tmp = frames_per_ms;
v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
tmp / 1000, tmp % 1000, t_time);
if (numerator && denominator) {
*numerator = 1000;
*denominator = (u32)frames_per_ms;
}
}
static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned height, width, hblank, vblank;
unsigned row_time, line_time;
u64 t_time, speed;
/* Avoid bogus calculus */
if (!numerator || !denominator)
return 0;
height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
width = mt9v011_read(sd, R04_MT9V011_WIDTH);
hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
row_time = width + 113 + hblank;
line_time = height + vblank + 1;
t_time = core->xtal * ((u64)numerator);
/* round to the closest value */
t_time += denominator / 2;
do_div(t_time, denominator);
speed = t_time;
do_div(speed, row_time * line_time);
/* Avoid having a negative value for speed */
if (speed < 2)
speed = 0;
else
speed -= 2;
/* Avoid speed overflow */
if (speed > 15)
return 15;
return (u16)speed;
}
static void set_res(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned vstart, hstart;
/*
* The mt9v011 doesn't have scaling. So, in order to select the desired
* resolution, we're cropping at the middle of the sensor.
* hblank and vblank should be adjusted, in order to warrant that
* we'll preserve the line timings for 30 fps, no matter what resolution
* is selected.
* NOTE: datasheet says that width (and height) should be filled with
* width-1. However, this doesn't work, since one pixel per line will
* be missing.
*/
hstart = 20 + (640 - core->width) / 2;
mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
vstart = 8 + (480 - core->height) / 2;
mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
calc_fps(sd, NULL, NULL);
};
static void set_read_mode(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned mode = 0x1000;
if (core->hflip)
mode |= 0x4000;
if (core->vflip)
mode |= 0x8000;
mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
}
static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
mt9v011_write(sd, mt9v011_init_default[i].reg,
mt9v011_init_default[i].value);
set_balance(sd);
set_res(sd);
set_read_mode(sd);
return 0;
}
static int mt9v011_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->pad || code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG8_1X8;
return 0;
}
static int mt9v011_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt = &format->format;
struct mt9v011 *core = to_mt9v011(sd);
if (format->pad || fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8)
return -EINVAL;
v4l_bound_align_image(&fmt->width, 48, 639, 1,
&fmt->height, 32, 480, 1, 0);
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = V4L2_COLORSPACE_SRGB;
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
core->width = fmt->width;
core->height = fmt->height;
set_res(sd);
} else {
cfg->try_fmt = *fmt;
}
return 0;
}
static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
calc_fps(sd,
&cp->timeperframe.numerator,
&cp->timeperframe.denominator);
return 0;
}
static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct v4l2_fract *tpf = &cp->timeperframe;
u16 speed;
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (cp->extendedmode != 0)
return -EINVAL;
speed = calc_speed(sd, tpf->numerator, tpf->denominator);
mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
/* Recalculate and update fps info */
calc_fps(sd, &tpf->numerator, &tpf->denominator);
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9v011_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
reg->val = mt9v011_read(sd, reg->reg & 0xff);
reg->size = 2;
return 0;
}
static int mt9v011_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
return 0;
}
#endif
static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9v011 *core =
container_of(ctrl->handler, struct mt9v011, ctrls);
struct v4l2_subdev *sd = &core->sd;
switch (ctrl->id) {
case V4L2_CID_GAIN:
core->global_gain = ctrl->val;
break;
case V4L2_CID_EXPOSURE:
core->exposure = ctrl->val;
break;
case V4L2_CID_RED_BALANCE:
core->red_bal = ctrl->val;
break;
case V4L2_CID_BLUE_BALANCE:
core->blue_bal = ctrl->val;
break;
case V4L2_CID_HFLIP:
core->hflip = ctrl->val;
set_read_mode(sd);
return 0;
case V4L2_CID_VFLIP:
core->vflip = ctrl->val;
set_read_mode(sd);
return 0;
default:
return -EINVAL;
}
set_balance(sd);
return 0;
}
static struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
.s_ctrl = mt9v011_s_ctrl,
};
static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
.reset = mt9v011_reset,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9v011_g_register,
.s_register = mt9v011_s_register,
#endif
};
static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
.g_parm = mt9v011_g_parm,
.s_parm = mt9v011_s_parm,
};
static const struct v4l2_subdev_pad_ops mt9v011_pad_ops = {
.enum_mbus_code = mt9v011_enum_mbus_code,
.set_fmt = mt9v011_set_fmt,
};
static const struct v4l2_subdev_ops mt9v011_ops = {
.core = &mt9v011_core_ops,
.video = &mt9v011_video_ops,
.pad = &mt9v011_pad_ops,
};
/****************************************************************************
I2C Client & Driver
****************************************************************************/
static int mt9v011_probe(struct i2c_client *c,
const struct i2c_device_id *id)
{
u16 version;
struct mt9v011 *core;
struct v4l2_subdev *sd;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(c->adapter,
I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
return -EIO;
core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
if (!core)
return -ENOMEM;
sd = &core->sd;
v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
/* Check if the sensor is really a MT9V011 */
version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
if ((version != MT9V011_VERSION) &&
(version != MT9V011_REV_B_VERSION)) {
v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
version);
return -EINVAL;
}
v4l2_ctrl_handler_init(&core->ctrls, 5);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (core->ctrls.error) {
int ret = core->ctrls.error;
v4l2_err(sd, "control initialization error %d\n", ret);
v4l2_ctrl_handler_free(&core->ctrls);
return ret;
}
core->sd.ctrl_handler = &core->ctrls;
core->global_gain = 0x0024;
core->exposure = 0x01fc;
core->width = 640;
core->height = 480;
core->xtal = 27000000; /* Hz */
if (c->dev.platform_data) {
struct mt9v011_platform_data *pdata = c->dev.platform_data;
core->xtal = pdata->xtal;
v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
core->xtal / 1000000, (core->xtal / 1000) % 1000);
}
v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
c->addr << 1, c->adapter->name, version);
return 0;
}
static int mt9v011_remove(struct i2c_client *c)
{
struct v4l2_subdev *sd = i2c_get_clientdata(c);
struct mt9v011 *core = to_mt9v011(sd);
v4l2_dbg(1, debug, sd,
"mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
c->addr << 1);
v4l2_device_unregister_subdev(sd);
v4l2_ctrl_handler_free(&core->ctrls);
return 0;
}
/* ----------------------------------------------------------------------- */
static const struct i2c_device_id mt9v011_id[] = {
{ "mt9v011", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9v011_id);
static struct i2c_driver mt9v011_driver = {
.driver = {
.name = "mt9v011",
},
.probe = mt9v011_probe,
.remove = mt9v011_remove,
.id_table = mt9v011_id,
};
module_i2c_driver(mt9v011_driver);