linux/arch/x86/kernel/amd_iommu_init.c

1240 lines
32 KiB
C

/*
* Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/sysdev.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <asm/pci-direct.h>
#include <asm/amd_iommu_types.h>
#include <asm/amd_iommu.h>
#include <asm/iommu.h>
#include <asm/gart.h>
/*
* definitions for the ACPI scanning code
*/
#define IVRS_HEADER_LENGTH 48
#define ACPI_IVHD_TYPE 0x10
#define ACPI_IVMD_TYPE_ALL 0x20
#define ACPI_IVMD_TYPE 0x21
#define ACPI_IVMD_TYPE_RANGE 0x22
#define IVHD_DEV_ALL 0x01
#define IVHD_DEV_SELECT 0x02
#define IVHD_DEV_SELECT_RANGE_START 0x03
#define IVHD_DEV_RANGE_END 0x04
#define IVHD_DEV_ALIAS 0x42
#define IVHD_DEV_ALIAS_RANGE 0x43
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_FLAG_HT_TUN_EN 0x00
#define IVHD_FLAG_PASSPW_EN 0x01
#define IVHD_FLAG_RESPASSPW_EN 0x02
#define IVHD_FLAG_ISOC_EN 0x03
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_UNITY_MAP 0x01
#define ACPI_DEVFLAG_INITPASS 0x01
#define ACPI_DEVFLAG_EXTINT 0x02
#define ACPI_DEVFLAG_NMI 0x04
#define ACPI_DEVFLAG_SYSMGT1 0x10
#define ACPI_DEVFLAG_SYSMGT2 0x20
#define ACPI_DEVFLAG_LINT0 0x40
#define ACPI_DEVFLAG_LINT1 0x80
#define ACPI_DEVFLAG_ATSDIS 0x10000000
/*
* ACPI table definitions
*
* These data structures are laid over the table to parse the important values
* out of it.
*/
/*
* structure describing one IOMMU in the ACPI table. Typically followed by one
* or more ivhd_entrys.
*/
struct ivhd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 cap_ptr;
u64 mmio_phys;
u16 pci_seg;
u16 info;
u32 reserved;
} __attribute__((packed));
/*
* A device entry describing which devices a specific IOMMU translates and
* which requestor ids they use.
*/
struct ivhd_entry {
u8 type;
u16 devid;
u8 flags;
u32 ext;
} __attribute__((packed));
/*
* An AMD IOMMU memory definition structure. It defines things like exclusion
* ranges for devices and regions that should be unity mapped.
*/
struct ivmd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 aux;
u64 resv;
u64 range_start;
u64 range_length;
} __attribute__((packed));
static int __initdata amd_iommu_detected;
u16 amd_iommu_last_bdf; /* largest PCI device id we have
to handle */
LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
bool amd_iommu_isolate = true; /* if true, device isolation is
enabled */
bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
system */
/*
* Pointer to the device table which is shared by all AMD IOMMUs
* it is indexed by the PCI device id or the HT unit id and contains
* information about the domain the device belongs to as well as the
* page table root pointer.
*/
struct dev_table_entry *amd_iommu_dev_table;
/*
* The alias table is a driver specific data structure which contains the
* mappings of the PCI device ids to the actual requestor ids on the IOMMU.
* More than one device can share the same requestor id.
*/
u16 *amd_iommu_alias_table;
/*
* The rlookup table is used to find the IOMMU which is responsible
* for a specific device. It is also indexed by the PCI device id.
*/
struct amd_iommu **amd_iommu_rlookup_table;
/*
* The pd table (protection domain table) is used to find the protection domain
* data structure a device belongs to. Indexed with the PCI device id too.
*/
struct protection_domain **amd_iommu_pd_table;
/*
* AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
* to know which ones are already in use.
*/
unsigned long *amd_iommu_pd_alloc_bitmap;
static u32 dev_table_size; /* size of the device table */
static u32 alias_table_size; /* size of the alias table */
static u32 rlookup_table_size; /* size if the rlookup table */
static inline void update_last_devid(u16 devid)
{
if (devid > amd_iommu_last_bdf)
amd_iommu_last_bdf = devid;
}
static inline unsigned long tbl_size(int entry_size)
{
unsigned shift = PAGE_SHIFT +
get_order(amd_iommu_last_bdf * entry_size);
return 1UL << shift;
}
/****************************************************************************
*
* AMD IOMMU MMIO register space handling functions
*
* These functions are used to program the IOMMU device registers in
* MMIO space required for that driver.
*
****************************************************************************/
/*
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
u64 entry;
if (!iommu->exclusion_start)
return;
entry = start | MMIO_EXCL_ENABLE_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
entry = limit;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
/* Programs the physical address of the device table into the IOMMU hardware */
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->mmio_base == NULL);
entry = virt_to_phys(amd_iommu_dev_table);
entry |= (dev_table_size >> 12) - 1;
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
&entry, sizeof(entry));
}
/* Generic functions to enable/disable certain features of the IOMMU. */
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl |= (1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~(1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
/* Function to enable the hardware */
static void __init iommu_enable(struct amd_iommu *iommu)
{
printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
dev_name(&iommu->dev->dev), iommu->cap_ptr);
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
/* Function to enable IOMMU event logging and event interrupts */
static void __init iommu_enable_event_logging(struct amd_iommu *iommu)
{
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
}
/*
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
* the system has one.
*/
static u8 * __init iommu_map_mmio_space(u64 address)
{
u8 *ret;
if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
return NULL;
ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
if (ret != NULL)
return ret;
release_mem_region(address, MMIO_REGION_LENGTH);
return NULL;
}
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
if (iommu->mmio_base)
iounmap(iommu->mmio_base);
release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}
/****************************************************************************
*
* The functions below belong to the first pass of AMD IOMMU ACPI table
* parsing. In this pass we try to find out the highest device id this
* code has to handle. Upon this information the size of the shared data
* structures is determined later.
*
****************************************************************************/
/*
* This function calculates the length of a given IVHD entry
*/
static inline int ivhd_entry_length(u8 *ivhd)
{
return 0x04 << (*ivhd >> 6);
}
/*
* This function reads the last device id the IOMMU has to handle from the PCI
* capability header for this IOMMU
*/
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
u32 cap;
cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
return 0;
}
/*
* After reading the highest device id from the IOMMU PCI capability header
* this function looks if there is a higher device id defined in the ACPI table
*/
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
u8 *p = (void *)h, *end = (void *)h;
struct ivhd_entry *dev;
p += sizeof(*h);
end += h->length;
find_last_devid_on_pci(PCI_BUS(h->devid),
PCI_SLOT(h->devid),
PCI_FUNC(h->devid),
h->cap_ptr);
while (p < end) {
dev = (struct ivhd_entry *)p;
switch (dev->type) {
case IVHD_DEV_SELECT:
case IVHD_DEV_RANGE_END:
case IVHD_DEV_ALIAS:
case IVHD_DEV_EXT_SELECT:
/* all the above subfield types refer to device ids */
update_last_devid(dev->devid);
break;
default:
break;
}
p += ivhd_entry_length(p);
}
WARN_ON(p != end);
return 0;
}
/*
* Iterate over all IVHD entries in the ACPI table and find the highest device
* id which we need to handle. This is the first of three functions which parse
* the ACPI table. So we check the checksum here.
*/
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
int i;
u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
/*
* Validate checksum here so we don't need to do it when
* we actually parse the table
*/
for (i = 0; i < table->length; ++i)
checksum += p[i];
if (checksum != 0)
/* ACPI table corrupt */
return -ENODEV;
p += IVRS_HEADER_LENGTH;
end += table->length;
while (p < end) {
h = (struct ivhd_header *)p;
switch (h->type) {
case ACPI_IVHD_TYPE:
find_last_devid_from_ivhd(h);
break;
default:
break;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
/****************************************************************************
*
* The following functions belong the the code path which parses the ACPI table
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
* data structures, initialize the device/alias/rlookup table and also
* basically initialize the hardware.
*
****************************************************************************/
/*
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
* write commands to that buffer later and the IOMMU will execute them
* asynchronously
*/
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(CMD_BUFFER_SIZE));
u64 entry;
if (cmd_buf == NULL)
return NULL;
iommu->cmd_buf_size = CMD_BUFFER_SIZE;
entry = (u64)virt_to_phys(cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
return cmd_buf;
}
static void __init free_command_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->cmd_buf,
get_order(iommu->cmd_buf_size));
}
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(EVT_BUFFER_SIZE));
if (iommu->evt_buf == NULL)
return NULL;
entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
iommu->evt_buf_size = EVT_BUFFER_SIZE;
return iommu->evt_buf;
}
static void __init free_event_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}
/* sets a specific bit in the device table entry. */
static void set_dev_entry_bit(u16 devid, u8 bit)
{
int i = (bit >> 5) & 0x07;
int _bit = bit & 0x1f;
amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
amd_iommu_rlookup_table[devid] = iommu;
}
/*
* This function takes the device specific flags read from the ACPI
* table and sets up the device table entry with that information
*/
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
u16 devid, u32 flags, u32 ext_flags)
{
if (flags & ACPI_DEVFLAG_INITPASS)
set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
if (flags & ACPI_DEVFLAG_EXTINT)
set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
if (flags & ACPI_DEVFLAG_NMI)
set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
if (flags & ACPI_DEVFLAG_SYSMGT1)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
if (flags & ACPI_DEVFLAG_SYSMGT2)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
if (flags & ACPI_DEVFLAG_LINT0)
set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
if (flags & ACPI_DEVFLAG_LINT1)
set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
set_iommu_for_device(iommu, devid);
}
/*
* Reads the device exclusion range from ACPI and initialize IOMMU with
* it
*/
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
return;
if (iommu) {
/*
* We only can configure exclusion ranges per IOMMU, not
* per device. But we can enable the exclusion range per
* device. This is done here
*/
set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
iommu->exclusion_start = m->range_start;
iommu->exclusion_length = m->range_length;
}
}
/*
* This function reads some important data from the IOMMU PCI space and
* initializes the driver data structure with it. It reads the hardware
* capabilities and the first/last device entries
*/
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
int cap_ptr = iommu->cap_ptr;
u32 range, misc;
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
&iommu->cap);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
&range);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
&misc);
iommu->first_device = calc_devid(MMIO_GET_BUS(range),
MMIO_GET_FD(range));
iommu->last_device = calc_devid(MMIO_GET_BUS(range),
MMIO_GET_LD(range));
iommu->evt_msi_num = MMIO_MSI_NUM(misc);
}
/*
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
* initializes the hardware and our data structures with it.
*/
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
struct ivhd_header *h)
{
u8 *p = (u8 *)h;
u8 *end = p, flags = 0;
u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
u32 ext_flags = 0;
bool alias = false;
struct ivhd_entry *e;
/*
* First set the recommended feature enable bits from ACPI
* into the IOMMU control registers
*/
h->flags & IVHD_FLAG_HT_TUN_EN ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
h->flags & IVHD_FLAG_PASSPW_EN ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
h->flags & IVHD_FLAG_RESPASSPW_EN ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
h->flags & IVHD_FLAG_ISOC_EN ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
/*
* make IOMMU memory accesses cache coherent
*/
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
/*
* Done. Now parse the device entries
*/
p += sizeof(struct ivhd_header);
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
switch (e->type) {
case IVHD_DEV_ALL:
for (dev_i = iommu->first_device;
dev_i <= iommu->last_device; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i,
e->flags, 0);
break;
case IVHD_DEV_SELECT:
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
amd_iommu_alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
ext_flags = 0;
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias)
amd_iommu_alias_table[dev_i] = devid_to;
set_dev_entry_from_acpi(iommu,
amd_iommu_alias_table[dev_i],
flags, ext_flags);
}
break;
default:
break;
}
p += ivhd_entry_length(p);
}
}
/* Initializes the device->iommu mapping for the driver */
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
u16 i;
for (i = iommu->first_device; i <= iommu->last_device; ++i)
set_iommu_for_device(iommu, i);
return 0;
}
static void __init free_iommu_one(struct amd_iommu *iommu)
{
free_command_buffer(iommu);
free_event_buffer(iommu);
iommu_unmap_mmio_space(iommu);
}
static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
}
}
/*
* This function clues the initialization function for one IOMMU
* together and also allocates the command buffer and programs the
* hardware. It does NOT enable the IOMMU. This is done afterwards.
*/
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
spin_lock_init(&iommu->lock);
list_add_tail(&iommu->list, &amd_iommu_list);
/*
* Copy data from ACPI table entry to the iommu struct
*/
iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
if (!iommu->dev)
return 1;
iommu->cap_ptr = h->cap_ptr;
iommu->pci_seg = h->pci_seg;
iommu->mmio_phys = h->mmio_phys;
iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
if (!iommu->mmio_base)
return -ENOMEM;
iommu_set_device_table(iommu);
iommu->cmd_buf = alloc_command_buffer(iommu);
if (!iommu->cmd_buf)
return -ENOMEM;
iommu->evt_buf = alloc_event_buffer(iommu);
if (!iommu->evt_buf)
return -ENOMEM;
iommu->int_enabled = false;
init_iommu_from_pci(iommu);
init_iommu_from_acpi(iommu, h);
init_iommu_devices(iommu);
return pci_enable_device(iommu->dev);
}
/*
* Iterates over all IOMMU entries in the ACPI table, allocates the
* IOMMU structure and initializes it with init_iommu_one()
*/
static int __init init_iommu_all(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
struct amd_iommu *iommu;
int ret;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
h = (struct ivhd_header *)p;
switch (*p) {
case ACPI_IVHD_TYPE:
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL)
return -ENOMEM;
ret = init_iommu_one(iommu, h);
if (ret)
return ret;
break;
default:
break;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
/****************************************************************************
*
* The following functions initialize the MSI interrupts for all IOMMUs
* in the system. Its a bit challenging because there could be multiple
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
* pci_dev.
*
****************************************************************************/
static int __init iommu_setup_msix(struct amd_iommu *iommu)
{
struct amd_iommu *curr;
struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
int nvec = 0, i;
list_for_each_entry(curr, &amd_iommu_list, list) {
if (curr->dev == iommu->dev) {
entries[nvec].entry = curr->evt_msi_num;
entries[nvec].vector = 0;
curr->int_enabled = true;
nvec++;
}
}
if (pci_enable_msix(iommu->dev, entries, nvec)) {
pci_disable_msix(iommu->dev);
return 1;
}
for (i = 0; i < nvec; ++i) {
int r = request_irq(entries->vector, amd_iommu_int_handler,
IRQF_SAMPLE_RANDOM,
"AMD IOMMU",
NULL);
if (r)
goto out_free;
}
return 0;
out_free:
for (i -= 1; i >= 0; --i)
free_irq(entries->vector, NULL);
pci_disable_msix(iommu->dev);
return 1;
}
static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
struct amd_iommu *curr;
list_for_each_entry(curr, &amd_iommu_list, list) {
if (curr->dev == iommu->dev)
curr->int_enabled = true;
}
if (pci_enable_msi(iommu->dev))
return 1;
r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
IRQF_SAMPLE_RANDOM,
"AMD IOMMU",
NULL);
if (r) {
pci_disable_msi(iommu->dev);
return 1;
}
return 0;
}
static int __init iommu_init_msi(struct amd_iommu *iommu)
{
if (iommu->int_enabled)
return 0;
if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
return iommu_setup_msix(iommu);
else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
return iommu_setup_msi(iommu);
return 1;
}
/****************************************************************************
*
* The next functions belong to the third pass of parsing the ACPI
* table. In this last pass the memory mapping requirements are
* gathered (like exclusion and unity mapping reanges).
*
****************************************************************************/
static void __init free_unity_maps(void)
{
struct unity_map_entry *entry, *next;
list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
list_del(&entry->list);
kfree(entry);
}
}
/* called when we find an exclusion range definition in ACPI */
static int __init init_exclusion_range(struct ivmd_header *m)
{
int i;
switch (m->type) {
case ACPI_IVMD_TYPE:
set_device_exclusion_range(m->devid, m);
break;
case ACPI_IVMD_TYPE_ALL:
for (i = 0; i <= amd_iommu_last_bdf; ++i)
set_device_exclusion_range(i, m);
break;
case ACPI_IVMD_TYPE_RANGE:
for (i = m->devid; i <= m->aux; ++i)
set_device_exclusion_range(i, m);
break;
default:
break;
}
return 0;
}
/* called for unity map ACPI definition */
static int __init init_unity_map_range(struct ivmd_header *m)
{
struct unity_map_entry *e = 0;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
return -ENOMEM;
switch (m->type) {
default:
case ACPI_IVMD_TYPE:
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
e->devid_start = 0;
e->devid_end = amd_iommu_last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
}
e->address_start = PAGE_ALIGN(m->range_start);
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
list_add_tail(&e->list, &amd_iommu_unity_map);
return 0;
}
/* iterates over all memory definitions we find in the ACPI table */
static int __init init_memory_definitions(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivmd_header *m;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
m = (struct ivmd_header *)p;
if (m->flags & IVMD_FLAG_EXCL_RANGE)
init_exclusion_range(m);
else if (m->flags & IVMD_FLAG_UNITY_MAP)
init_unity_map_range(m);
p += m->length;
}
return 0;
}
/*
* Init the device table to not allow DMA access for devices and
* suppress all page faults
*/
static void init_device_table(void)
{
u16 devid;
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
set_dev_entry_bit(devid, DEV_ENTRY_VALID);
set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
}
}
/*
* This function finally enables all IOMMUs found in the system after
* they have been initialized
*/
static void __init enable_iommus(void)
{
struct amd_iommu *iommu;
list_for_each_entry(iommu, &amd_iommu_list, list) {
iommu_set_exclusion_range(iommu);
iommu_init_msi(iommu);
iommu_enable_event_logging(iommu);
iommu_enable(iommu);
}
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
*/
static int amd_iommu_resume(struct sys_device *dev)
{
return 0;
}
static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
return -EINVAL;
}
static struct sysdev_class amd_iommu_sysdev_class = {
.name = "amd_iommu",
.suspend = amd_iommu_suspend,
.resume = amd_iommu_resume,
};
static struct sys_device device_amd_iommu = {
.id = 0,
.cls = &amd_iommu_sysdev_class,
};
/*
* This is the core init function for AMD IOMMU hardware in the system.
* This function is called from the generic x86 DMA layer initialization
* code.
*
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
* three times:
*
* 1 pass) Find the highest PCI device id the driver has to handle.
* Upon this information the size of the data structures is
* determined that needs to be allocated.
*
* 2 pass) Initialize the data structures just allocated with the
* information in the ACPI table about available AMD IOMMUs
* in the system. It also maps the PCI devices in the
* system to specific IOMMUs
*
* 3 pass) After the basic data structures are allocated and
* initialized we update them with information about memory
* remapping requirements parsed out of the ACPI table in
* this last pass.
*
* After that the hardware is initialized and ready to go. In the last
* step we do some Linux specific things like registering the driver in
* the dma_ops interface and initializing the suspend/resume support
* functions. Finally it prints some information about AMD IOMMUs and
* the driver state and enables the hardware.
*/
int __init amd_iommu_init(void)
{
int i, ret = 0;
if (no_iommu) {
printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
return 0;
}
if (!amd_iommu_detected)
return -ENODEV;
/*
* First parse ACPI tables to find the largest Bus/Dev/Func
* we need to handle. Upon this information the shared data
* structures for the IOMMUs in the system will be allocated
*/
if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
return -ENODEV;
dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
ret = -ENOMEM;
/* Device table - directly used by all IOMMUs */
amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(dev_table_size));
if (amd_iommu_dev_table == NULL)
goto out;
/*
* Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
* IOMMU see for that device
*/
amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
get_order(alias_table_size));
if (amd_iommu_alias_table == NULL)
goto free;
/* IOMMU rlookup table - find the IOMMU for a specific device */
amd_iommu_rlookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(rlookup_table_size));
if (amd_iommu_rlookup_table == NULL)
goto free;
/*
* Protection Domain table - maps devices to protection domains
* This table has the same size as the rlookup_table
*/
amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(rlookup_table_size));
if (amd_iommu_pd_table == NULL)
goto free;
amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(MAX_DOMAIN_ID/8));
if (amd_iommu_pd_alloc_bitmap == NULL)
goto free;
/* init the device table */
init_device_table();
/*
* let all alias entries point to itself
*/
for (i = 0; i <= amd_iommu_last_bdf; ++i)
amd_iommu_alias_table[i] = i;
/*
* never allocate domain 0 because its used as the non-allocated and
* error value placeholder
*/
amd_iommu_pd_alloc_bitmap[0] = 1;
/*
* now the data structures are allocated and basically initialized
* start the real acpi table scan
*/
ret = -ENODEV;
if (acpi_table_parse("IVRS", init_iommu_all) != 0)
goto free;
if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
goto free;
ret = sysdev_class_register(&amd_iommu_sysdev_class);
if (ret)
goto free;
ret = sysdev_register(&device_amd_iommu);
if (ret)
goto free;
ret = amd_iommu_init_dma_ops();
if (ret)
goto free;
enable_iommus();
printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
(1 << (amd_iommu_aperture_order-20)));
printk(KERN_INFO "AMD IOMMU: device isolation ");
if (amd_iommu_isolate)
printk("enabled\n");
else
printk("disabled\n");
if (amd_iommu_unmap_flush)
printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
else
printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");
out:
return ret;
free:
free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
get_order(MAX_DOMAIN_ID/8));
free_pages((unsigned long)amd_iommu_pd_table,
get_order(rlookup_table_size));
free_pages((unsigned long)amd_iommu_rlookup_table,
get_order(rlookup_table_size));
free_pages((unsigned long)amd_iommu_alias_table,
get_order(alias_table_size));
free_pages((unsigned long)amd_iommu_dev_table,
get_order(dev_table_size));
free_iommu_all();
free_unity_maps();
goto out;
}
/****************************************************************************
*
* Early detect code. This code runs at IOMMU detection time in the DMA
* layer. It just looks if there is an IVRS ACPI table to detect AMD
* IOMMUs
*
****************************************************************************/
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
return 0;
}
void __init amd_iommu_detect(void)
{
if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
return;
if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
iommu_detected = 1;
amd_iommu_detected = 1;
#ifdef CONFIG_GART_IOMMU
gart_iommu_aperture_disabled = 1;
gart_iommu_aperture = 0;
#endif
}
}
/****************************************************************************
*
* Parsing functions for the AMD IOMMU specific kernel command line
* options.
*
****************************************************************************/
static int __init parse_amd_iommu_options(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "isolate", 7) == 0)
amd_iommu_isolate = true;
if (strncmp(str, "share", 5) == 0)
amd_iommu_isolate = false;
if (strncmp(str, "fullflush", 9) == 0)
amd_iommu_unmap_flush = true;
}
return 1;
}
static int __init parse_amd_iommu_size_options(char *str)
{
unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));
if ((order > 24) && (order < 31))
amd_iommu_aperture_order = order;
return 1;
}
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);