linux/drivers/net/ethernet/micrel/ks8851_common.c

1194 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* drivers/net/ethernet/micrel/ks8851.c
*
* Copyright 2009 Simtec Electronics
* http://www.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of_net.h>
#include "ks8851.h"
/**
* ks8851_lock - register access lock
* @ks: The chip state
* @flags: Spinlock flags
*
* Claim chip register access lock
*/
static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
{
ks->lock(ks, flags);
}
/**
* ks8851_unlock - register access unlock
* @ks: The chip state
* @flags: Spinlock flags
*
* Release chip register access lock
*/
static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
{
ks->unlock(ks, flags);
}
/**
* ks8851_wrreg16 - write 16bit register value to chip
* @ks: The chip state
* @reg: The register address
* @val: The value to write
*
* Issue a write to put the value @val into the register specified in @reg.
*/
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
unsigned int val)
{
ks->wrreg16(ks, reg, val);
}
/**
* ks8851_rdreg16 - read 16 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
unsigned int reg)
{
return ks->rdreg16(ks, reg);
}
/**
* ks8851_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
{
ks8851_wrreg16(ks, KS_GRR, op);
mdelay(1); /* wait a short time to effect reset */
ks8851_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
/**
* ks8851_set_powermode - set power mode of the device
* @ks: The device state
* @pwrmode: The power mode value to write to KS_PMECR.
*
* Change the power mode of the chip.
*/
static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
{
unsigned pmecr;
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
pmecr = ks8851_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks8851_wrreg16(ks, KS_PMECR, pmecr);
}
/**
* ks8851_write_mac_addr - write mac address to device registers
* @dev: The network device
*
* Update the KS8851 MAC address registers from the address in @dev.
*
* This call assumes that the chip is not running, so there is no need to
* shutdown the RXQ process whilst setting this.
*/
static int ks8851_write_mac_addr(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
u16 val;
int i;
ks8851_lock(ks, &flags);
/*
* Wake up chip in case it was powered off when stopped; otherwise,
* the first write to the MAC address does not take effect.
*/
ks8851_set_powermode(ks, PMECR_PM_NORMAL);
for (i = 0; i < ETH_ALEN; i += 2) {
val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
ks8851_wrreg16(ks, KS_MAR(i), val);
}
if (!netif_running(dev))
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
ks8851_unlock(ks, &flags);
return 0;
}
/**
* ks8851_read_mac_addr - read mac address from device registers
* @dev: The network device
*
* Update our copy of the KS8851 MAC address from the registers of @dev.
*/
static void ks8851_read_mac_addr(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
u16 reg;
int i;
ks8851_lock(ks, &flags);
for (i = 0; i < ETH_ALEN; i += 2) {
reg = ks8851_rdreg16(ks, KS_MAR(i));
dev->dev_addr[i] = reg >> 8;
dev->dev_addr[i + 1] = reg & 0xff;
}
ks8851_unlock(ks, &flags);
}
/**
* ks8851_init_mac - initialise the mac address
* @ks: The device structure
* @np: The device node pointer
*
* Get or create the initial mac address for the device and then set that
* into the station address register. A mac address supplied in the device
* tree takes precedence. Otherwise, if there is an EEPROM present, then
* we try that. If no valid mac address is found we use eth_random_addr()
* to create a new one.
*/
static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
{
struct net_device *dev = ks->netdev;
const u8 *mac_addr;
mac_addr = of_get_mac_address(np);
if (!IS_ERR(mac_addr)) {
ether_addr_copy(dev->dev_addr, mac_addr);
ks8851_write_mac_addr(dev);
return;
}
if (ks->rc_ccr & CCR_EEPROM) {
ks8851_read_mac_addr(dev);
if (is_valid_ether_addr(dev->dev_addr))
return;
netdev_err(ks->netdev, "invalid mac address read %pM\n",
dev->dev_addr);
}
eth_hw_addr_random(dev);
ks8851_write_mac_addr(dev);
}
/**
* ks8851_dbg_dumpkkt - dump initial packet contents to debug
* @ks: The device state
* @rxpkt: The data for the received packet
*
* Dump the initial data from the packet to dev_dbg().
*/
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
{
netdev_dbg(ks->netdev,
"pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
}
/**
* ks8851_rx_skb - receive skbuff
* @ks: The device state.
* @skb: The skbuff
*/
static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
{
ks->rx_skb(ks, skb);
}
/**
* ks8851_rx_pkts - receive packets from the host
* @ks: The device information.
*
* This is called from the IRQ work queue when the system detects that there
* are packets in the receive queue. Find out how many packets there are and
* read them from the FIFO.
*/
static void ks8851_rx_pkts(struct ks8851_net *ks)
{
struct sk_buff *skb;
unsigned rxfc;
unsigned rxlen;
unsigned rxstat;
u8 *rxpkt;
rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d packets\n", __func__, rxfc);
/* Currently we're issuing a read per packet, but we could possibly
* improve the code by issuing a single read, getting the receive
* header, allocating the packet and then reading the packet data
* out in one go.
*
* This form of operation would require us to hold the SPI bus'
* chipselect low during the entie transaction to avoid any
* reset to the data stream coming from the chip.
*/
for (; rxfc != 0; rxfc--) {
rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
netif_dbg(ks, rx_status, ks->netdev,
"rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
/* the length of the packet includes the 32bit CRC */
/* set dma read address */
ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
/* start DMA access */
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
if (rxlen > 4) {
unsigned int rxalign;
rxlen -= 4;
rxalign = ALIGN(rxlen, 4);
skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
if (skb) {
/* 4 bytes of status header + 4 bytes of
* garbage: we put them before ethernet
* header, so that they are copied,
* but ignored.
*/
rxpkt = skb_put(skb, rxlen) - 8;
ks->rdfifo(ks, rxpkt, rxalign + 8);
if (netif_msg_pktdata(ks))
ks8851_dbg_dumpkkt(ks, rxpkt);
skb->protocol = eth_type_trans(skb, ks->netdev);
ks8851_rx_skb(ks, skb);
ks->netdev->stats.rx_packets++;
ks->netdev->stats.rx_bytes += rxlen;
}
}
/* end DMA access and dequeue packet */
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
}
}
/**
* ks8851_irq - IRQ handler for dealing with interrupt requests
* @irq: IRQ number
* @_ks: cookie
*
* This handler is invoked when the IRQ line asserts to find out what happened.
* As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
* in thread context.
*
* Read the interrupt status, work out what needs to be done and then clear
* any of the interrupts that are not needed.
*/
static irqreturn_t ks8851_irq(int irq, void *_ks)
{
struct ks8851_net *ks = _ks;
unsigned handled = 0;
unsigned long flags;
unsigned int status;
ks8851_lock(ks, &flags);
status = ks8851_rdreg16(ks, KS_ISR);
netif_dbg(ks, intr, ks->netdev,
"%s: status 0x%04x\n", __func__, status);
if (status & IRQ_LCI)
handled |= IRQ_LCI;
if (status & IRQ_LDI) {
u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
handled |= IRQ_LDI;
}
if (status & IRQ_RXPSI)
handled |= IRQ_RXPSI;
if (status & IRQ_TXI) {
handled |= IRQ_TXI;
/* no lock here, tx queue should have been stopped */
/* update our idea of how much tx space is available to the
* system */
ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
netif_dbg(ks, intr, ks->netdev,
"%s: txspace %d\n", __func__, ks->tx_space);
}
if (status & IRQ_RXI)
handled |= IRQ_RXI;
if (status & IRQ_SPIBEI) {
netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
handled |= IRQ_SPIBEI;
}
ks8851_wrreg16(ks, KS_ISR, handled);
if (status & IRQ_RXI) {
/* the datasheet says to disable the rx interrupt during
* packet read-out, however we're masking the interrupt
* from the device so do not bother masking just the RX
* from the device. */
ks8851_rx_pkts(ks);
}
/* if something stopped the rx process, probably due to wanting
* to change the rx settings, then do something about restarting
* it. */
if (status & IRQ_RXPSI) {
struct ks8851_rxctrl *rxc = &ks->rxctrl;
/* update the multicast hash table */
ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
}
ks8851_unlock(ks, &flags);
if (status & IRQ_LCI)
mii_check_link(&ks->mii);
if (status & IRQ_TXI)
netif_wake_queue(ks->netdev);
return IRQ_HANDLED;
}
/**
* ks8851_flush_tx_work - flush outstanding TX work
* @ks: The device state
*/
static void ks8851_flush_tx_work(struct ks8851_net *ks)
{
if (ks->flush_tx_work)
ks->flush_tx_work(ks);
}
/**
* ks8851_net_open - open network device
* @dev: The network device being opened.
*
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device.
*/
static int ks8851_net_open(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ret;
ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
dev->name, ks);
if (ret < 0) {
netdev_err(dev, "failed to get irq\n");
return ret;
}
/* lock the card, even if we may not actually be doing anything
* else at the moment */
ks8851_lock(ks, &flags);
netif_dbg(ks, ifup, ks->netdev, "opening\n");
/* bring chip out of any power saving mode it was in */
ks8851_set_powermode(ks, PMECR_PM_NORMAL);
/* issue a soft reset to the RX/TX QMU to put it into a known
* state. */
ks8851_soft_reset(ks, GRR_QMU);
/* setup transmission parameters */
ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
TXCR_TXPE | /* pad to min length */
TXCR_TXCRC | /* add CRC */
TXCR_TXFCE)); /* enable flow control */
/* auto-increment tx data, reset tx pointer */
ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* setup receiver control */
ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
RXCR1_RXFCE | /* enable flow control */
RXCR1_RXBE | /* broadcast enable */
RXCR1_RXUE | /* unicast enable */
RXCR1_RXE)); /* enable rx block */
/* transfer entire frames out in one go */
ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
/* set receive counter timeouts */
ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
RXQCR_RXDTTE); /* IRQ on time exceeded */
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/* clear then enable interrupts */
ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
ks8851_unlock(ks, &flags);
mii_check_link(&ks->mii);
return 0;
}
/**
* ks8851_net_stop - close network device
* @dev: The device being closed.
*
* Called to close down a network device which has been active. Cancell any
* work, shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used.
*/
static int ks8851_net_stop(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
netif_info(ks, ifdown, dev, "shutting down\n");
netif_stop_queue(dev);
ks8851_lock(ks, &flags);
/* turn off the IRQs and ack any outstanding */
ks8851_wrreg16(ks, KS_IER, 0x0000);
ks8851_wrreg16(ks, KS_ISR, 0xffff);
ks8851_unlock(ks, &flags);
/* stop any outstanding work */
ks8851_flush_tx_work(ks);
flush_work(&ks->rxctrl_work);
ks8851_lock(ks, &flags);
/* shutdown RX process */
ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
/* shutdown TX process */
ks8851_wrreg16(ks, KS_TXCR, 0x0000);
/* set powermode to soft power down to save power */
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
ks8851_unlock(ks, &flags);
/* ensure any queued tx buffers are dumped */
while (!skb_queue_empty(&ks->txq)) {
struct sk_buff *txb = skb_dequeue(&ks->txq);
netif_dbg(ks, ifdown, ks->netdev,
"%s: freeing txb %p\n", __func__, txb);
dev_kfree_skb(txb);
}
free_irq(dev->irq, ks);
return 0;
}
/**
* ks8851_start_xmit - transmit packet
* @skb: The buffer to transmit
* @dev: The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb. Queue the packet for
* the device and schedule the necessary work to transmit the packet when
* it is free.
*
* We do this to firstly avoid sleeping with the network device locked,
* and secondly so we can round up more than one packet to transmit which
* means we can try and avoid generating too many transmit done interrupts.
*/
static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return ks->start_xmit(skb, dev);
}
/**
* ks8851_rxctrl_work - work handler to change rx mode
* @work: The work structure this belongs to.
*
* Lock the device and issue the necessary changes to the receive mode from
* the network device layer. This is done so that we can do this without
* having to sleep whilst holding the network device lock.
*
* Since the recommendation from Micrel is that the RXQ is shutdown whilst the
* receive parameters are programmed, we issue a write to disable the RXQ and
* then wait for the interrupt handler to be triggered once the RXQ shutdown is
* complete. The interrupt handler then writes the new values into the chip.
*/
static void ks8851_rxctrl_work(struct work_struct *work)
{
struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
unsigned long flags;
ks8851_lock(ks, &flags);
/* need to shutdown RXQ before modifying filter parameters */
ks8851_wrreg16(ks, KS_RXCR1, 0x00);
ks8851_unlock(ks, &flags);
}
static void ks8851_set_rx_mode(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
struct ks8851_rxctrl rxctrl;
memset(&rxctrl, 0, sizeof(rxctrl));
if (dev->flags & IFF_PROMISC) {
/* interface to receive everything */
rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
} else if (dev->flags & IFF_ALLMULTI) {
/* accept all multicast packets */
rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
RXCR1_RXPAFMA | RXCR1_RXMAFMA);
} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
u32 crc;
/* accept some multicast */
netdev_for_each_mc_addr(ha, dev) {
crc = ether_crc(ETH_ALEN, ha->addr);
crc >>= (32 - 6); /* get top six bits */
rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
}
rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
} else {
/* just accept broadcast / unicast */
rxctrl.rxcr1 = RXCR1_RXPAFMA;
}
rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
RXCR1_RXBE | /* broadcast enable */
RXCR1_RXE | /* RX process enable */
RXCR1_RXFCE); /* enable flow control */
rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
/* schedule work to do the actual set of the data if needed */
spin_lock(&ks->statelock);
if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
schedule_work(&ks->rxctrl_work);
}
spin_unlock(&ks->statelock);
}
static int ks8851_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
if (netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
return ks8851_write_mac_addr(dev);
}
static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}
static const struct net_device_ops ks8851_netdev_ops = {
.ndo_open = ks8851_net_open,
.ndo_stop = ks8851_net_stop,
.ndo_do_ioctl = ks8851_net_ioctl,
.ndo_start_xmit = ks8851_start_xmit,
.ndo_set_mac_address = ks8851_set_mac_address,
.ndo_set_rx_mode = ks8851_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
};
/* ethtool support */
static void ks8851_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *di)
{
strlcpy(di->driver, "KS8851", sizeof(di->driver));
strlcpy(di->version, "1.00", sizeof(di->version));
strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
}
static u32 ks8851_get_msglevel(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return ks->msg_enable;
}
static void ks8851_set_msglevel(struct net_device *dev, u32 to)
{
struct ks8851_net *ks = netdev_priv(dev);
ks->msg_enable = to;
}
static int ks8851_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
mii_ethtool_get_link_ksettings(&ks->mii, cmd);
return 0;
}
static int ks8851_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
}
static u32 ks8851_get_link(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_link_ok(&ks->mii);
}
static int ks8851_nway_reset(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_nway_restart(&ks->mii);
}
/* EEPROM support */
static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
{
struct ks8851_net *ks = ee->data;
unsigned val;
val = ks8851_rdreg16(ks, KS_EEPCR);
ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
}
static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
{
struct ks8851_net *ks = ee->data;
unsigned val = EEPCR_EESA; /* default - eeprom access on */
if (ee->drive_data)
val |= EEPCR_EESRWA;
if (ee->reg_data_in)
val |= EEPCR_EEDO;
if (ee->reg_data_clock)
val |= EEPCR_EESCK;
if (ee->reg_chip_select)
val |= EEPCR_EECS;
ks8851_wrreg16(ks, KS_EEPCR, val);
}
/**
* ks8851_eeprom_claim - claim device EEPROM and activate the interface
* @ks: The network device state.
*
* Check for the presence of an EEPROM, and then activate software access
* to the device.
*/
static int ks8851_eeprom_claim(struct ks8851_net *ks)
{
/* start with clock low, cs high */
ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
return 0;
}
/**
* ks8851_eeprom_release - release the EEPROM interface
* @ks: The device state
*
* Release the software access to the device EEPROM
*/
static void ks8851_eeprom_release(struct ks8851_net *ks)
{
unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
}
#define KS_EEPROM_MAGIC (0x00008851)
static int ks8851_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
struct ks8851_net *ks = netdev_priv(dev);
int offset = ee->offset;
unsigned long flags;
int len = ee->len;
u16 tmp;
/* currently only support byte writing */
if (len != 1)
return -EINVAL;
if (ee->magic != KS_EEPROM_MAGIC)
return -EINVAL;
if (!(ks->rc_ccr & CCR_EEPROM))
return -ENOENT;
ks8851_lock(ks, &flags);
ks8851_eeprom_claim(ks);
eeprom_93cx6_wren(&ks->eeprom, true);
/* ethtool currently only supports writing bytes, which means
* we have to read/modify/write our 16bit EEPROMs */
eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
if (offset & 1) {
tmp &= 0xff;
tmp |= *data << 8;
} else {
tmp &= 0xff00;
tmp |= *data;
}
eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
eeprom_93cx6_wren(&ks->eeprom, false);
ks8851_eeprom_release(ks);
ks8851_unlock(ks, &flags);
return 0;
}
static int ks8851_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
struct ks8851_net *ks = netdev_priv(dev);
int offset = ee->offset;
unsigned long flags;
int len = ee->len;
/* must be 2 byte aligned */
if (len & 1 || offset & 1)
return -EINVAL;
if (!(ks->rc_ccr & CCR_EEPROM))
return -ENOENT;
ks8851_lock(ks, &flags);
ks8851_eeprom_claim(ks);
ee->magic = KS_EEPROM_MAGIC;
eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
ks8851_eeprom_release(ks);
ks8851_unlock(ks, &flags);
return 0;
}
static int ks8851_get_eeprom_len(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
/* currently, we assume it is an 93C46 attached, so return 128 */
return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
}
static const struct ethtool_ops ks8851_ethtool_ops = {
.get_drvinfo = ks8851_get_drvinfo,
.get_msglevel = ks8851_get_msglevel,
.set_msglevel = ks8851_set_msglevel,
.get_link = ks8851_get_link,
.nway_reset = ks8851_nway_reset,
.get_eeprom_len = ks8851_get_eeprom_len,
.get_eeprom = ks8851_get_eeprom,
.set_eeprom = ks8851_set_eeprom,
.get_link_ksettings = ks8851_get_link_ksettings,
.set_link_ksettings = ks8851_set_link_ksettings,
};
/* MII interface controls */
/**
* ks8851_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks8851_phy_reg(int reg)
{
switch (reg) {
case MII_BMCR:
return KS_P1MBCR;
case MII_BMSR:
return KS_P1MBSR;
case MII_PHYSID1:
return KS_PHY1ILR;
case MII_PHYSID2:
return KS_PHY1IHR;
case MII_ADVERTISE:
return KS_P1ANAR;
case MII_LPA:
return KS_P1ANLPR;
}
return 0x0;
}
/**
* ks8851_phy_read - MII interface PHY register read.
* @dev: The network device the PHY is on.
* @phy_addr: Address of PHY (ignored as we only have one)
* @reg: The register to read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existent values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ksreg;
int result;
ksreg = ks8851_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
ks8851_lock(ks, &flags);
result = ks8851_rdreg16(ks, ksreg);
ks8851_unlock(ks, &flags);
return result;
}
static void ks8851_phy_write(struct net_device *dev,
int phy, int reg, int value)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ksreg;
ksreg = ks8851_phy_reg(reg);
if (ksreg) {
ks8851_lock(ks, &flags);
ks8851_wrreg16(ks, ksreg, value);
ks8851_unlock(ks, &flags);
}
}
/**
* ks8851_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks8851_read_selftest(struct ks8851_net *ks)
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks8851_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
netdev_warn(ks->netdev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
netdev_err(ks->netdev, "TX memory selftest fail\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
netdev_err(ks->netdev, "RX memory selftest fail\n");
ret |= 2;
}
return 0;
}
/* driver bus management functions */
#ifdef CONFIG_PM_SLEEP
int ks8851_suspend(struct device *dev)
{
struct ks8851_net *ks = dev_get_drvdata(dev);
struct net_device *netdev = ks->netdev;
if (netif_running(netdev)) {
netif_device_detach(netdev);
ks8851_net_stop(netdev);
}
return 0;
}
int ks8851_resume(struct device *dev)
{
struct ks8851_net *ks = dev_get_drvdata(dev);
struct net_device *netdev = ks->netdev;
if (netif_running(netdev)) {
ks8851_net_open(netdev);
netif_device_attach(netdev);
}
return 0;
}
#endif
int ks8851_probe_common(struct net_device *netdev, struct device *dev,
int msg_en)
{
struct ks8851_net *ks = netdev_priv(netdev);
unsigned cider;
int gpio;
int ret;
ks->netdev = netdev;
ks->tx_space = 6144;
gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
if (gpio == -EPROBE_DEFER)
return gpio;
ks->gpio = gpio;
if (gpio_is_valid(gpio)) {
ret = devm_gpio_request_one(dev, gpio,
GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
if (ret) {
dev_err(dev, "reset gpio request failed\n");
return ret;
}
}
ks->vdd_io = devm_regulator_get(dev, "vdd-io");
if (IS_ERR(ks->vdd_io)) {
ret = PTR_ERR(ks->vdd_io);
goto err_reg_io;
}
ret = regulator_enable(ks->vdd_io);
if (ret) {
dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
goto err_reg_io;
}
ks->vdd_reg = devm_regulator_get(dev, "vdd");
if (IS_ERR(ks->vdd_reg)) {
ret = PTR_ERR(ks->vdd_reg);
goto err_reg;
}
ret = regulator_enable(ks->vdd_reg);
if (ret) {
dev_err(dev, "regulator vdd enable fail: %d\n", ret);
goto err_reg;
}
if (gpio_is_valid(gpio)) {
usleep_range(10000, 11000);
gpio_set_value(gpio, 1);
}
spin_lock_init(&ks->statelock);
INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
/* setup EEPROM state */
ks->eeprom.data = ks;
ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
ks->eeprom.register_read = ks8851_eeprom_regread;
ks->eeprom.register_write = ks8851_eeprom_regwrite;
/* setup mii state */
ks->mii.dev = netdev;
ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks8851_phy_read;
ks->mii.mdio_write = ks8851_phy_write;
dev_info(dev, "message enable is %d\n", msg_en);
/* set the default message enable */
ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK);
skb_queue_head_init(&ks->txq);
netdev->ethtool_ops = &ks8851_ethtool_ops;
SET_NETDEV_DEV(netdev, dev);
dev_set_drvdata(dev, ks);
netif_carrier_off(ks->netdev);
netdev->if_port = IF_PORT_100BASET;
netdev->netdev_ops = &ks8851_netdev_ops;
/* issue a global soft reset to reset the device. */
ks8851_soft_reset(ks, GRR_GSR);
/* simple check for a valid chip being connected to the bus */
cider = ks8851_rdreg16(ks, KS_CIDER);
if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
dev_err(dev, "failed to read device ID\n");
ret = -ENODEV;
goto err_id;
}
/* cache the contents of the CCR register for EEPROM, etc. */
ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
ks8851_read_selftest(ks);
ks8851_init_mac(ks, dev->of_node);
ret = register_netdev(netdev);
if (ret) {
dev_err(dev, "failed to register network device\n");
goto err_netdev;
}
netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
ks->rc_ccr & CCR_EEPROM ? "has" : "no");
return 0;
err_netdev:
err_id:
if (gpio_is_valid(gpio))
gpio_set_value(gpio, 0);
regulator_disable(ks->vdd_reg);
err_reg:
regulator_disable(ks->vdd_io);
err_reg_io:
return ret;
}
int ks8851_remove_common(struct device *dev)
{
struct ks8851_net *priv = dev_get_drvdata(dev);
if (netif_msg_drv(priv))
dev_info(dev, "remove\n");
unregister_netdev(priv->netdev);
if (gpio_is_valid(priv->gpio))
gpio_set_value(priv->gpio, 0);
regulator_disable(priv->vdd_reg);
regulator_disable(priv->vdd_io);
return 0;
}