linux/arch/x86/kernel/cpu/amd.c

1078 lines
27 KiB
C

#include <linux/export.h>
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/random.h>
#include <asm/processor.h>
#include <asm/apic.h>
#include <asm/cpu.h>
#include <asm/smp.h>
#include <asm/pci-direct.h>
#include <asm/delay.h>
#ifdef CONFIG_X86_64
# include <asm/mmconfig.h>
# include <asm/set_memory.h>
#endif
#include "cpu.h"
static const int amd_erratum_383[];
static const int amd_erratum_400[];
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
/*
* nodes_per_socket: Stores the number of nodes per socket.
* Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
* Node Identifiers[10:8]
*/
static u32 nodes_per_socket = 1;
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
{
u32 gprs[8] = { 0 };
int err;
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[1] = msr;
gprs[7] = 0x9c5a203a;
err = rdmsr_safe_regs(gprs);
*p = gprs[0] | ((u64)gprs[2] << 32);
return err;
}
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
{
u32 gprs[8] = { 0 };
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[0] = (u32)val;
gprs[1] = msr;
gprs[2] = val >> 32;
gprs[7] = 0x9c5a203a;
return wrmsr_safe_regs(gprs);
}
/*
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
* misexecution of code under Linux. Owners of such processors should
* contact AMD for precise details and a CPU swap.
*
* See http://www.multimania.com/poulot/k6bug.html
* and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
* (Publication # 21266 Issue Date: August 1998)
*
* The following test is erm.. interesting. AMD neglected to up
* the chip setting when fixing the bug but they also tweaked some
* performance at the same time..
*/
extern __visible void vide(void);
__asm__(".globl vide\n"
".type vide, @function\n"
".align 4\n"
"vide: ret\n");
static void init_amd_k5(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
/*
* General Systems BIOSen alias the cpu frequency registers
* of the Elan at 0x000df000. Unfortunately, one of the Linux
* drivers subsequently pokes it, and changes the CPU speed.
* Workaround : Remove the unneeded alias.
*/
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
#define CBAR_ENB (0x80000000)
#define CBAR_KEY (0X000000CB)
if (c->x86_model == 9 || c->x86_model == 10) {
if (inl(CBAR) & CBAR_ENB)
outl(0 | CBAR_KEY, CBAR);
}
#endif
}
static void init_amd_k6(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
if (c->x86_model < 6) {
/* Based on AMD doc 20734R - June 2000 */
if (c->x86_model == 0) {
clear_cpu_cap(c, X86_FEATURE_APIC);
set_cpu_cap(c, X86_FEATURE_PGE);
}
return;
}
if (c->x86_model == 6 && c->x86_stepping == 1) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
u64 d, d2;
pr_info("AMD K6 stepping B detected - ");
/*
* It looks like AMD fixed the 2.6.2 bug and improved indirect
* calls at the same time.
*/
n = K6_BUG_LOOP;
f_vide = vide;
OPTIMIZER_HIDE_VAR(f_vide);
d = rdtsc();
while (n--)
f_vide();
d2 = rdtsc();
d = d2-d;
if (d > 20*K6_BUG_LOOP)
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
else
pr_cont("probably OK (after B9730xxxx).\n");
}
/* K6 with old style WHCR */
if (c->x86_model < 8 ||
(c->x86_model == 8 && c->x86_stepping < 8)) {
/* We can only write allocate on the low 508Mb */
if (mbytes > 508)
mbytes = 508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF) == 0) {
unsigned long flags;
l = (1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if ((c->x86_model == 8 && c->x86_stepping > 7) ||
c->x86_model == 9 || c->x86_model == 13) {
/* The more serious chips .. */
if (mbytes > 4092)
mbytes = 4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000) == 0) {
unsigned long flags;
l = ((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if (c->x86_model == 10) {
/* AMD Geode LX is model 10 */
/* placeholder for any needed mods */
return;
}
#endif
}
static void init_amd_k7(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
/*
* Bit 15 of Athlon specific MSR 15, needs to be 0
* to enable SSE on Palomino/Morgan/Barton CPU's.
* If the BIOS didn't enable it already, enable it here.
*/
if (c->x86_model >= 6 && c->x86_model <= 10) {
if (!cpu_has(c, X86_FEATURE_XMM)) {
pr_info("Enabling disabled K7/SSE Support.\n");
msr_clear_bit(MSR_K7_HWCR, 15);
set_cpu_cap(c, X86_FEATURE_XMM);
}
}
/*
* It's been determined by AMD that Athlons since model 8 stepping 1
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
* As per AMD technical note 27212 0.2
*/
if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
rdmsr(MSR_K7_CLK_CTL, l, h);
if ((l & 0xfff00000) != 0x20000000) {
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
l, ((l & 0x000fffff)|0x20000000));
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
}
}
set_cpu_cap(c, X86_FEATURE_K7);
/* calling is from identify_secondary_cpu() ? */
if (!c->cpu_index)
return;
/*
* Certain Athlons might work (for various values of 'work') in SMP
* but they are not certified as MP capable.
*/
/* Athlon 660/661 is valid. */
if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
(c->x86_stepping == 1)))
return;
/* Duron 670 is valid */
if ((c->x86_model == 7) && (c->x86_stepping == 0))
return;
/*
* Athlon 662, Duron 671, and Athlon >model 7 have capability
* bit. It's worth noting that the A5 stepping (662) of some
* Athlon XP's have the MP bit set.
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
* more.
*/
if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
(c->x86_model > 7))
if (cpu_has(c, X86_FEATURE_MP))
return;
/* If we get here, not a certified SMP capable AMD system. */
/*
* Don't taint if we are running SMP kernel on a single non-MP
* approved Athlon
*/
WARN_ONCE(1, "WARNING: This combination of AMD"
" processors is not suitable for SMP.\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
#endif
}
#ifdef CONFIG_NUMA
/*
* To workaround broken NUMA config. Read the comment in
* srat_detect_node().
*/
static int nearby_node(int apicid)
{
int i, node;
for (i = apicid - 1; i >= 0; i--) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map); /* Shouldn't happen */
}
#endif
#ifdef CONFIG_SMP
/*
* Fix up cpu_core_id for pre-F17h systems to be in the
* [0 .. cores_per_node - 1] range. Not really needed but
* kept so as not to break existing setups.
*/
static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
{
u32 cus_per_node;
if (c->x86 >= 0x17)
return;
cus_per_node = c->x86_max_cores / nodes_per_socket;
c->cpu_core_id %= cus_per_node;
}
/*
* Fixup core topology information for
* (1) AMD multi-node processors
* Assumption: Number of cores in each internal node is the same.
* (2) AMD processors supporting compute units
*/
static void amd_get_topology(struct cpuinfo_x86 *c)
{
u8 node_id;
int cpu = smp_processor_id();
/* get information required for multi-node processors */
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
u32 eax, ebx, ecx, edx;
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
node_id = ecx & 0xff;
smp_num_siblings = ((ebx >> 8) & 0xff) + 1;
if (c->x86 == 0x15)
c->cu_id = ebx & 0xff;
if (c->x86 >= 0x17) {
c->cpu_core_id = ebx & 0xff;
if (smp_num_siblings > 1)
c->x86_max_cores /= smp_num_siblings;
}
/*
* We may have multiple LLCs if L3 caches exist, so check if we
* have an L3 cache by looking at the L3 cache CPUID leaf.
*/
if (cpuid_edx(0x80000006)) {
if (c->x86 == 0x17) {
/*
* LLC is at the core complex level.
* Core complex id is ApicId[3].
*/
per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
} else {
/* LLC is at the node level. */
per_cpu(cpu_llc_id, cpu) = node_id;
}
}
} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
u64 value;
rdmsrl(MSR_FAM10H_NODE_ID, value);
node_id = value & 7;
per_cpu(cpu_llc_id, cpu) = node_id;
} else
return;
if (nodes_per_socket > 1) {
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
legacy_fixup_core_id(c);
}
}
#endif
/*
* On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
* Assumes number of cores is a power of two.
*/
static void amd_detect_cmp(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits;
int cpu = smp_processor_id();
bits = c->x86_coreid_bits;
/* Low order bits define the core id (index of core in socket) */
c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
/* Convert the initial APIC ID into the socket ID */
c->phys_proc_id = c->initial_apicid >> bits;
/* use socket ID also for last level cache */
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
amd_get_topology(c);
#endif
}
u16 amd_get_nb_id(int cpu)
{
u16 id = 0;
#ifdef CONFIG_SMP
id = per_cpu(cpu_llc_id, cpu);
#endif
return id;
}
EXPORT_SYMBOL_GPL(amd_get_nb_id);
u32 amd_get_nodes_per_socket(void)
{
return nodes_per_socket;
}
EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
static void srat_detect_node(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node;
unsigned apicid = c->apicid;
node = numa_cpu_node(cpu);
if (node == NUMA_NO_NODE)
node = per_cpu(cpu_llc_id, cpu);
/*
* On multi-fabric platform (e.g. Numascale NumaChip) a
* platform-specific handler needs to be called to fixup some
* IDs of the CPU.
*/
if (x86_cpuinit.fixup_cpu_id)
x86_cpuinit.fixup_cpu_id(c, node);
if (!node_online(node)) {
/*
* Two possibilities here:
*
* - The CPU is missing memory and no node was created. In
* that case try picking one from a nearby CPU.
*
* - The APIC IDs differ from the HyperTransport node IDs
* which the K8 northbridge parsing fills in. Assume
* they are all increased by a constant offset, but in
* the same order as the HT nodeids. If that doesn't
* result in a usable node fall back to the path for the
* previous case.
*
* This workaround operates directly on the mapping between
* APIC ID and NUMA node, assuming certain relationship
* between APIC ID, HT node ID and NUMA topology. As going
* through CPU mapping may alter the outcome, directly
* access __apicid_to_node[].
*/
int ht_nodeid = c->initial_apicid;
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = __apicid_to_node[ht_nodeid];
/* Pick a nearby node */
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
#endif
}
static void early_init_amd_mc(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits, ecx;
/* Multi core CPU? */
if (c->extended_cpuid_level < 0x80000008)
return;
ecx = cpuid_ecx(0x80000008);
c->x86_max_cores = (ecx & 0xff) + 1;
/* CPU telling us the core id bits shift? */
bits = (ecx >> 12) & 0xF;
/* Otherwise recompute */
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
c->x86_coreid_bits = bits;
#endif
}
static void bsp_init_amd(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
if (c->x86 >= 0xf) {
unsigned long long tseg;
/*
* Split up direct mapping around the TSEG SMM area.
* Don't do it for gbpages because there seems very little
* benefit in doing so.
*/
if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
unsigned long pfn = tseg >> PAGE_SHIFT;
pr_debug("tseg: %010llx\n", tseg);
if (pfn_range_is_mapped(pfn, pfn + 1))
set_memory_4k((unsigned long)__va(tseg), 1);
}
}
#endif
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
if (c->x86 > 0x10 ||
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
u64 val;
rdmsrl(MSR_K7_HWCR, val);
if (!(val & BIT(24)))
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
}
}
if (c->x86 == 0x15) {
unsigned long upperbit;
u32 cpuid, assoc;
cpuid = cpuid_edx(0x80000005);
assoc = cpuid >> 16 & 0xff;
upperbit = ((cpuid >> 24) << 10) / assoc;
va_align.mask = (upperbit - 1) & PAGE_MASK;
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
/* A random value per boot for bit slice [12:upper_bit) */
va_align.bits = get_random_int() & va_align.mask;
}
if (cpu_has(c, X86_FEATURE_MWAITX))
use_mwaitx_delay();
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
u32 ecx;
ecx = cpuid_ecx(0x8000001e);
nodes_per_socket = ((ecx >> 8) & 7) + 1;
} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
u64 value;
rdmsrl(MSR_FAM10H_NODE_ID, value);
nodes_per_socket = ((value >> 3) & 7) + 1;
}
}
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
{
u64 msr;
/*
* BIOS support is required for SME and SEV.
* For SME: If BIOS has enabled SME then adjust x86_phys_bits by
* the SME physical address space reduction value.
* If BIOS has not enabled SME then don't advertise the
* SME feature (set in scattered.c).
* For SEV: If BIOS has not enabled SEV then don't advertise the
* SEV feature (set in scattered.c).
*
* In all cases, since support for SME and SEV requires long mode,
* don't advertise the feature under CONFIG_X86_32.
*/
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
/* Check if memory encryption is enabled */
rdmsrl(MSR_K8_SYSCFG, msr);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
goto clear_all;
/*
* Always adjust physical address bits. Even though this
* will be a value above 32-bits this is still done for
* CONFIG_X86_32 so that accurate values are reported.
*/
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
if (IS_ENABLED(CONFIG_X86_32))
goto clear_all;
rdmsrl(MSR_K7_HWCR, msr);
if (!(msr & MSR_K7_HWCR_SMMLOCK))
goto clear_sev;
return;
clear_all:
clear_cpu_cap(c, X86_FEATURE_SME);
clear_sev:
clear_cpu_cap(c, X86_FEATURE_SEV);
}
}
static void early_init_amd(struct cpuinfo_x86 *c)
{
u32 dummy;
early_init_amd_mc(c);
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
/*
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
* with P/T states and does not stop in deep C-states
*/
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
}
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
if (c->x86_power & BIT(12))
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
#ifdef CONFIG_X86_64
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
#else
/* Set MTRR capability flag if appropriate */
if (c->x86 == 5)
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_stepping >= 8))
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
#endif
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
/*
* ApicID can always be treated as an 8-bit value for AMD APIC versions
* >= 0x10, but even old K8s came out of reset with version 0x10. So, we
* can safely set X86_FEATURE_EXTD_APICID unconditionally for families
* after 16h.
*/
if (boot_cpu_has(X86_FEATURE_APIC)) {
if (c->x86 > 0x16)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
else if (c->x86 >= 0xf) {
/* check CPU config space for extended APIC ID */
unsigned int val;
val = read_pci_config(0, 24, 0, 0x68);
if ((val >> 17 & 0x3) == 0x3)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
}
}
#endif
/*
* This is only needed to tell the kernel whether to use VMCALL
* and VMMCALL. VMMCALL is never executed except under virt, so
* we can set it unconditionally.
*/
set_cpu_cap(c, X86_FEATURE_VMMCALL);
/* F16h erratum 793, CVE-2013-6885 */
if (c->x86 == 0x16 && c->x86_model <= 0xf)
msr_set_bit(MSR_AMD64_LS_CFG, 15);
/*
* Check whether the machine is affected by erratum 400. This is
* used to select the proper idle routine and to enable the check
* whether the machine is affected in arch_post_acpi_init(), which
* sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
*/
if (cpu_has_amd_erratum(c, amd_erratum_400))
set_cpu_bug(c, X86_BUG_AMD_E400);
early_detect_mem_encrypt(c);
}
static void init_amd_k8(struct cpuinfo_x86 *c)
{
u32 level;
u64 value;
/* On C+ stepping K8 rep microcode works well for copy/memset */
level = cpuid_eax(1);
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/*
* Some BIOSes incorrectly force this feature, but only K8 revision D
* (model = 0x14) and later actually support it.
* (AMD Erratum #110, docId: 25759).
*/
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
if (!rdmsrl_amd_safe(0xc001100d, &value)) {
value &= ~BIT_64(32);
wrmsrl_amd_safe(0xc001100d, value);
}
}
if (!c->x86_model_id[0])
strcpy(c->x86_model_id, "Hammer");
#ifdef CONFIG_SMP
/*
* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
msr_set_bit(MSR_K7_HWCR, 6);
#endif
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
}
static void init_amd_gh(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_MMCONF_FAM10H
/* do this for boot cpu */
if (c == &boot_cpu_data)
check_enable_amd_mmconf_dmi();
fam10h_check_enable_mmcfg();
#endif
/*
* Disable GART TLB Walk Errors on Fam10h. We do this here because this
* is always needed when GART is enabled, even in a kernel which has no
* MCE support built in. BIOS should disable GartTlbWlk Errors already.
* If it doesn't, we do it here as suggested by the BKDG.
*
* Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
*/
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
/*
* On family 10h BIOS may not have properly enabled WC+ support, causing
* it to be converted to CD memtype. This may result in performance
* degradation for certain nested-paging guests. Prevent this conversion
* by clearing bit 24 in MSR_AMD64_BU_CFG2.
*
* NOTE: we want to use the _safe accessors so as not to #GP kvm
* guests on older kvm hosts.
*/
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
if (cpu_has_amd_erratum(c, amd_erratum_383))
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
}
#define MSR_AMD64_DE_CFG 0xC0011029
static void init_amd_ln(struct cpuinfo_x86 *c)
{
/*
* Apply erratum 665 fix unconditionally so machines without a BIOS
* fix work.
*/
msr_set_bit(MSR_AMD64_DE_CFG, 31);
}
static void init_amd_bd(struct cpuinfo_x86 *c)
{
u64 value;
/* re-enable TopologyExtensions if switched off by BIOS */
if ((c->x86_model >= 0x10) && (c->x86_model <= 0x6f) &&
!cpu_has(c, X86_FEATURE_TOPOEXT)) {
if (msr_set_bit(0xc0011005, 54) > 0) {
rdmsrl(0xc0011005, value);
if (value & BIT_64(54)) {
set_cpu_cap(c, X86_FEATURE_TOPOEXT);
pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
}
}
}
/*
* The way access filter has a performance penalty on some workloads.
* Disable it on the affected CPUs.
*/
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
value |= 0x1E;
wrmsrl_safe(MSR_F15H_IC_CFG, value);
}
}
}
static void init_amd_zn(struct cpuinfo_x86 *c)
{
/*
* Fix erratum 1076: CPB feature bit not being set in CPUID. It affects
* all up to and including B1.
*/
if (c->x86_model <= 1 && c->x86_stepping <= 1)
set_cpu_cap(c, X86_FEATURE_CPB);
}
static void init_amd(struct cpuinfo_x86 *c)
{
early_init_amd(c);
/*
* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
* 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
*/
clear_cpu_cap(c, 0*32+31);
if (c->x86 >= 0x10)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/* get apicid instead of initial apic id from cpuid */
c->apicid = hard_smp_processor_id();
/* K6s reports MCEs but don't actually have all the MSRs */
if (c->x86 < 6)
clear_cpu_cap(c, X86_FEATURE_MCE);
switch (c->x86) {
case 4: init_amd_k5(c); break;
case 5: init_amd_k6(c); break;
case 6: init_amd_k7(c); break;
case 0xf: init_amd_k8(c); break;
case 0x10: init_amd_gh(c); break;
case 0x12: init_amd_ln(c); break;
case 0x15: init_amd_bd(c); break;
case 0x17: init_amd_zn(c); break;
}
/*
* Enable workaround for FXSAVE leak on CPUs
* without a XSaveErPtr feature
*/
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
cpu_detect_cache_sizes(c);
/* Multi core CPU? */
if (c->extended_cpuid_level >= 0x80000008) {
amd_detect_cmp(c);
srat_detect_node(c);
}
#ifdef CONFIG_X86_32
detect_ht(c);
#endif
init_amd_cacheinfo(c);
if (c->x86 >= 0xf)
set_cpu_cap(c, X86_FEATURE_K8);
if (cpu_has(c, X86_FEATURE_XMM2)) {
unsigned long long val;
int ret;
/*
* A serializing LFENCE has less overhead than MFENCE, so
* use it for execution serialization. On families which
* don't have that MSR, LFENCE is already serializing.
* msr_set_bit() uses the safe accessors, too, even if the MSR
* is not present.
*/
msr_set_bit(MSR_F10H_DECFG,
MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT);
/*
* Verify that the MSR write was successful (could be running
* under a hypervisor) and only then assume that LFENCE is
* serializing.
*/
ret = rdmsrl_safe(MSR_F10H_DECFG, &val);
if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) {
/* A serializing LFENCE stops RDTSC speculation */
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
} else {
/* MFENCE stops RDTSC speculation */
set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
}
}
/*
* Family 0x12 and above processors have APIC timer
* running in deep C states.
*/
if (c->x86 > 0x11)
set_cpu_cap(c, X86_FEATURE_ARAT);
/* 3DNow or LM implies PREFETCHW */
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
if (!cpu_has(c, X86_FEATURE_XENPV))
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
}
#ifdef CONFIG_X86_32
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
{
/* AMD errata T13 (order #21922) */
if ((c->x86 == 6)) {
/* Duron Rev A0 */
if (c->x86_model == 3 && c->x86_stepping == 0)
size = 64;
/* Tbird rev A1/A2 */
if (c->x86_model == 4 &&
(c->x86_stepping == 0 || c->x86_stepping == 1))
size = 256;
}
return size;
}
#endif
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
{
u32 ebx, eax, ecx, edx;
u16 mask = 0xfff;
if (c->x86 < 0xf)
return;
if (c->extended_cpuid_level < 0x80000006)
return;
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
tlb_lli_4k[ENTRIES] = ebx & mask;
/*
* K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
* characteristics from the CPUID function 0x80000005 instead.
*/
if (c->x86 == 0xf) {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
mask = 0xff;
}
/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
if (!((eax >> 16) & mask))
tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
else
tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
/* a 4M entry uses two 2M entries */
tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
if (!(eax & mask)) {
/* Erratum 658 */
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
tlb_lli_2m[ENTRIES] = 1024;
} else {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
tlb_lli_2m[ENTRIES] = eax & 0xff;
}
} else
tlb_lli_2m[ENTRIES] = eax & mask;
tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
}
static const struct cpu_dev amd_cpu_dev = {
.c_vendor = "AMD",
.c_ident = { "AuthenticAMD" },
#ifdef CONFIG_X86_32
.legacy_models = {
{ .family = 4, .model_names =
{
[3] = "486 DX/2",
[7] = "486 DX/2-WB",
[8] = "486 DX/4",
[9] = "486 DX/4-WB",
[14] = "Am5x86-WT",
[15] = "Am5x86-WB"
}
},
},
.legacy_cache_size = amd_size_cache,
#endif
.c_early_init = early_init_amd,
.c_detect_tlb = cpu_detect_tlb_amd,
.c_bsp_init = bsp_init_amd,
.c_init = init_amd,
.c_x86_vendor = X86_VENDOR_AMD,
};
cpu_dev_register(amd_cpu_dev);
/*
* AMD errata checking
*
* Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
* AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
* have an OSVW id assigned, which it takes as first argument. Both take a
* variable number of family-specific model-stepping ranges created by
* AMD_MODEL_RANGE().
*
* Example:
*
* const int amd_erratum_319[] =
* AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
* AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
* AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
*/
#define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 }
#define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 }
#define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
#define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff)
#define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff)
#define AMD_MODEL_RANGE_END(range) ((range) & 0xfff)
static const int amd_erratum_400[] =
AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
static const int amd_erratum_383[] =
AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
{
int osvw_id = *erratum++;
u32 range;
u32 ms;
if (osvw_id >= 0 && osvw_id < 65536 &&
cpu_has(cpu, X86_FEATURE_OSVW)) {
u64 osvw_len;
rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
if (osvw_id < osvw_len) {
u64 osvw_bits;
rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
osvw_bits);
return osvw_bits & (1ULL << (osvw_id & 0x3f));
}
}
/* OSVW unavailable or ID unknown, match family-model-stepping range */
ms = (cpu->x86_model << 4) | cpu->x86_stepping;
while ((range = *erratum++))
if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
(ms >= AMD_MODEL_RANGE_START(range)) &&
(ms <= AMD_MODEL_RANGE_END(range)))
return true;
return false;
}
void set_dr_addr_mask(unsigned long mask, int dr)
{
if (!boot_cpu_has(X86_FEATURE_BPEXT))
return;
switch (dr) {
case 0:
wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
break;
case 1:
case 2:
case 3:
wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
break;
default:
break;
}
}