linux/drivers/net/ethernet/intel/e1000e/mac.c

1783 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */
#include "e1000.h"
/**
* e1000e_get_bus_info_pcie - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCIe), and PCIe function.
**/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_bus_info *bus = &hw->bus;
struct e1000_adapter *adapter = hw->adapter;
u16 pcie_link_status, cap_offset;
cap_offset = adapter->pdev->pcie_cap;
if (!cap_offset) {
bus->width = e1000_bus_width_unknown;
} else {
pci_read_config_word(adapter->pdev,
cap_offset + PCIE_LINK_STATUS,
&pcie_link_status);
bus->width = (enum e1000_bus_width)((pcie_link_status &
PCIE_LINK_WIDTH_MASK) >>
PCIE_LINK_WIDTH_SHIFT);
}
mac->ops.set_lan_id(hw);
return 0;
}
/**
* e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
*
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
u32 reg;
/* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = er32(STATUS);
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}
/**
* e1000_set_lan_id_single_port - Set LAN id for a single port device
* @hw: pointer to the HW structure
*
* Sets the LAN function id to zero for a single port device.
**/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
bus->func = 0;
}
/**
* e1000_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
u32 offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
e1e_flush();
}
}
/**
* e1000_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
{
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
e1e_flush();
}
/**
* e1000e_init_rx_addrs - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ALEN] = { 0 };
/* Setup the receive address */
e_dbg("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
u32 i;
s32 ret_val;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ALEN];
ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
return ret_val;
/* not supported on 82573 */
if (hw->mac.type == e1000_82573)
return 0;
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
return 0;
if (hw->bus.func == E1000_FUNC_1)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
for (i = 0; i < ETH_ALEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (is_multicast_ether_addr(alt_mac_addr)) {
e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
return 0;
}
/* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
return 0;
}
u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
{
return hw->mac.rar_entry_count;
}
/**
* e1000e_rar_set_generic - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
ew32(RAL(index), rar_low);
e1e_flush();
ew32(RAH(index), rar_high);
e1e_flush();
return 0;
}
/**
* e1000_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value.
**/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16)mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* e1000e_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32)i < mc_addr_count; i++) {
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
mc_addr_list += (ETH_ALEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
e1e_flush();
}
/**
* e1000e_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
er32(CRCERRS);
er32(SYMERRS);
er32(MPC);
er32(SCC);
er32(ECOL);
er32(MCC);
er32(LATECOL);
er32(COLC);
er32(DC);
er32(SEC);
er32(RLEC);
er32(XONRXC);
er32(XONTXC);
er32(XOFFRXC);
er32(XOFFTXC);
er32(FCRUC);
er32(GPRC);
er32(BPRC);
er32(MPRC);
er32(GPTC);
er32(GORCL);
er32(GORCH);
er32(GOTCL);
er32(GOTCH);
er32(RNBC);
er32(RUC);
er32(RFC);
er32(ROC);
er32(RJC);
er32(TORL);
er32(TORH);
er32(TOTL);
er32(TOTH);
er32(TPR);
er32(TPT);
er32(MPTC);
er32(BPTC);
}
/**
* e1000e_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return 0;
mac->get_link_status = false;
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val || !link)
goto out;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
return -E1000_ERR_CONFIG;
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
return ret_val;
out:
mac->get_link_status = true;
return ret_val;
}
/**
* e1000e_check_for_fiber_link - Check for link (Fiber)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
* need to give auto-negotiation time to complete, in case the cable
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
!(rxcw & E1000_RXCW_C)) {
if (!mac->autoneg_failed) {
mac->autoneg_failed = true;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
}
return 0;
}
/**
* e1000e_check_for_serdes_link - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
if (!mac->autoneg_failed) {
mac->autoneg_failed = true;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
/* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
/* SYNCH bit and IV bit are sticky. */
usleep_range(10, 20);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - forced.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - force failed.\n");
}
}
if (E1000_TXCW_ANE & er32(TXCW)) {
status = er32(STATUS);
if (status & E1000_STATUS_LU) {
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
usleep_range(10, 20);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - autoneg completed successfully.\n");
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - no sync.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - autoneg failed\n");
}
}
return 0;
}
/**
* e1000_set_default_fc_generic - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
* values.
**/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 nvm_data;
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
hw->fc.requested_mode = e1000_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
hw->fc.requested_mode = e1000_fc_tx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
return 0;
}
/**
* e1000e_setup_link_generic - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 e1000e_setup_link_generic(struct e1000_hw *hw)
{
s32 ret_val;
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
return 0;
/* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
ret_val = e1000_set_default_fc_generic(hw);
if (ret_val)
return ret_val;
}
/* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
e_dbg("Initializing the Flow Control address, type and timer regs\n");
ew32(FCT, FLOW_CONTROL_TYPE);
ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
ew32(FCTTV, hw->fc.pause_time);
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_commit_fc_settings_generic - Configure flow control
* @hw: pointer to the HW structure
*
* Write the flow control settings to the Transmit Config Word Register (TXCW)
* base on the flow control settings in e1000_mac_info.
**/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 txcw;
/* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto-
* negotiation. However, if auto-negotiation is disabled, then
* software will have to manually configure the two flow control enable
* bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we
* do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/* Flow control completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ew32(TXCW, txcw);
mac->txcw = txcw;
return 0;
}
/**
* e1000_poll_fiber_serdes_link_generic - Poll for link up
* @hw: pointer to the HW structure
*
* Polls for link up by reading the status register, if link fails to come
* up with auto-negotiation, then the link is forced if a signal is detected.
**/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 i, status;
s32 ret_val;
/* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
* milliseconds even if the other end is doing it in SW).
*/
for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
usleep_range(10000, 11000);
status = er32(STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == FIBER_LINK_UP_LIMIT) {
e_dbg("Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = true;
/* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
*/
ret_val = mac->ops.check_for_link(hw);
if (ret_val) {
e_dbg("Error while checking for link\n");
return ret_val;
}
mac->autoneg_failed = false;
} else {
mac->autoneg_failed = false;
e_dbg("Valid Link Found\n");
}
return 0;
}
/**
* e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes
* links. Upon successful setup, poll for link.
**/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
hw->mac.ops.config_collision_dist(hw);
ret_val = e1000_commit_fc_settings_generic(hw);
if (ret_val)
return ret_val;
/* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
* bits (RFCE and TFCE) will be set according to their negotiated value.
*/
e_dbg("Auto-negotiation enabled\n");
ew32(CTRL, ctrl);
e1e_flush();
usleep_range(1000, 2000);
/* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up"
* indication.
*/
if (hw->phy.media_type == e1000_media_type_internal_serdes ||
(er32(CTRL) & E1000_CTRL_SWDPIN1)) {
ret_val = e1000_poll_fiber_serdes_link_generic(hw);
} else {
e_dbg("No signal detected\n");
}
return ret_val;
}
/**
* e1000e_config_collision_dist_generic - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
**/
void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
{
u32 tctl;
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
ew32(TCTL, tctl);
e1e_flush();
}
/**
* e1000e_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= E1000_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
ew32(FCRTL, fcrtl);
ew32(FCRTH, fcrth);
return 0;
}
/**
* e1000e_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
u32 ctrl;
ctrl = er32(CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ew32(CTRL, ctrl);
return 0;
}
/**
* e1000e_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = 0;
u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed) {
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes)
ret_val = e1000e_force_mac_fc(hw);
} else {
if (hw->phy.media_type == e1000_media_type_copper)
ret_val = e1000e_force_mac_fc(hw);
}
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
e_dbg("Copper PHY and Auto Neg has not completed.\n");
return ret_val;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | E1000_fc_full
*
*/
if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
(mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
e_dbg("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
(mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
(mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
hw->fc.current_mode = e1000_fc_tx_pause;
e_dbg("Flow Control = Tx PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
(mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
!(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
(mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\n");
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
e_dbg("Flow Control = NONE.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
e_dbg("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000e_force_mac_fc(hw);
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have SerDes media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
mac->autoneg) {
/* Read the PCS_LSTS and check to see if AutoNeg
* has completed.
*/
pcs_status_reg = er32(PCS_LSTAT);
if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
e_dbg("PCS Auto Neg has not completed.\n");
return ret_val;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (PCS_ANADV) and the Auto_Negotiation Base
* Page Ability Register (PCS_LPAB) to determine how
* flow control was negotiated.
*/
pcs_adv_reg = er32(PCS_ANADV);
pcs_lp_ability_reg = er32(PCS_LPAB);
/* Two bits in the Auto Negotiation Advertisement Register
* (PCS_ANADV) and two bits in the Auto Negotiation Base
* Page Ability Register (PCS_LPAB) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
e_dbg("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
e_dbg("Flow Control = Tx PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
!(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\n");
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
e_dbg("Flow Control = NONE.\n");
}
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
pcs_ctrl_reg = er32(PCS_LCTL);
pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
ew32(PCS_LCTL, pcs_ctrl_reg);
ret_val = e1000e_force_mac_fc(hw);
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
return 0;
}
/**
* e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000)
*speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
*speed = SPEED_100;
else
*speed = SPEED_10;
if (status & E1000_STATUS_FD)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
e_dbg("%u Mbps, %s Duplex\n",
*speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
*duplex == FULL_DUPLEX ? "Full" : "Half");
return 0;
}
/**
* e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Sets the speed and duplex to gigabit full duplex (the only possible option)
* for fiber/serdes links.
**/
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
*hw, u16 *speed, u16 *duplex)
{
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
return 0;
}
/**
* e1000e_get_hw_semaphore - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
/* Get the SW semaphore */
while (i < timeout) {
swsm = er32(SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(100);
i++;
}
if (i == timeout) {
e_dbg("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_NVM;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (er32(SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(100);
}
if (i == timeout) {
/* Release semaphores */
e1000e_put_hw_semaphore(hw);
e_dbg("Driver can't access the NVM\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000e_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
swsm = er32(SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
ew32(SWSM, swsm);
}
/**
* e1000e_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
s32 i = 0;
while (i < AUTO_READ_DONE_TIMEOUT) {
if (er32(EECD) & E1000_EECD_AUTO_RD)
break;
usleep_range(1000, 2000);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
e_dbg("Auto read by HW from NVM has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000e_valid_led_default - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
return 0;
}
/**
* e1000e_id_led_init_generic -
* @hw: pointer to the HW structure
*
**/
s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
u16 data, i, temp;
const u16 led_mask = 0x0F;
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
return ret_val;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return 0;
}
/**
* e1000e_setup_led_generic - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored.
**/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
u32 ledctl;
if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
return -E1000_ERR_CONFIG;
if (hw->phy.media_type == e1000_media_type_fiber) {
ledctl = er32(LEDCTL);
hw->mac.ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
ew32(LEDCTL, ledctl);
} else if (hw->phy.media_type == e1000_media_type_copper) {
ew32(LEDCTL, hw->mac.ledctl_mode1);
}
return 0;
}
/**
* e1000e_cleanup_led_generic - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
* to the default value, saved from the EEPROM.
**/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000e_blink_led_generic - Blink LED
* @hw: pointer to the HW structure
*
* Blink the LEDs which are set to be on.
**/
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
{
u32 ledctl_blink = 0;
u32 i;
if (hw->phy.media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
/* Set the blink bit for each LED that's "on" (0x0E)
* (or "off" if inverted) in ledctl_mode2. The blink
* logic in hardware only works when mode is set to "on"
* so it must be changed accordingly when the mode is
* "off" and inverted.
*/
ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 32; i += 8) {
u32 mode = (hw->mac.ledctl_mode2 >> i) &
E1000_LEDCTL_LED0_MODE_MASK;
u32 led_default = hw->mac.ledctl_default >> i;
if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
(mode == E1000_LEDCTL_MODE_LED_ON)) ||
((led_default & E1000_LEDCTL_LED0_IVRT) &&
(mode == E1000_LEDCTL_MODE_LED_OFF))) {
ledctl_blink &=
~(E1000_LEDCTL_LED0_MODE_MASK << i);
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_MODE_LED_ON) << i;
}
}
}
ew32(LEDCTL, ledctl_blink);
return 0;
}
/**
* e1000e_led_on_generic - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode2);
break;
default:
break;
}
return 0;
}
/**
* e1000e_led_off_generic - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
**/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode1);
break;
default:
break;
}
return 0;
}
/**
* e1000e_set_pcie_no_snoop - Set PCI-express capabilities
* @hw: pointer to the HW structure
* @no_snoop: bitmap of snoop events
*
* Set the PCI-express register to snoop for events enabled in 'no_snoop'.
**/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
u32 gcr;
if (no_snoop) {
gcr = er32(GCR);
gcr &= ~(PCIE_NO_SNOOP_ALL);
gcr |= no_snoop;
ew32(GCR, gcr);
}
}
/**
* e1000e_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 if successful, else returns -10
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
ew32(CTRL, ctrl);
while (timeout) {
if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break;
usleep_range(100, 200);
timeout--;
}
if (!timeout) {
e_dbg("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
return 0;
}
/**
* e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Reset the Adaptive Interframe Spacing throttle to default values.
**/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
return;
}
mac->current_ifs_val = 0;
mac->ifs_min_val = IFS_MIN;
mac->ifs_max_val = IFS_MAX;
mac->ifs_step_size = IFS_STEP;
mac->ifs_ratio = IFS_RATIO;
mac->in_ifs_mode = false;
ew32(AIT, 0);
}
/**
* e1000e_update_adaptive - Update Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Update the Adaptive Interframe Spacing Throttle value based on the
* time between transmitted packets and time between collisions.
**/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
return;
}
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
mac->in_ifs_mode = true;
if (mac->current_ifs_val < mac->ifs_max_val) {
if (!mac->current_ifs_val)
mac->current_ifs_val = mac->ifs_min_val;
else
mac->current_ifs_val +=
mac->ifs_step_size;
ew32(AIT, mac->current_ifs_val);
}
}
} else {
if (mac->in_ifs_mode &&
(mac->tx_packet_delta <= MIN_NUM_XMITS)) {
mac->current_ifs_val = 0;
mac->in_ifs_mode = false;
ew32(AIT, 0);
}
}
}