linux/drivers/infiniband/hw/hfi1/firmware.c

2292 lines
64 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/firmware.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include "hfi.h"
#include "trace.h"
/*
* Make it easy to toggle firmware file name and if it gets loaded by
* editing the following. This may be something we do while in development
* but not necessarily something a user would ever need to use.
*/
#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
#define DEFAULT_PLATFORM_CONFIG_NAME "hfi1_platform.dat"
#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
static uint fw_8051_load = 1;
static uint fw_fabric_serdes_load = 1;
static uint fw_pcie_serdes_load = 1;
static uint fw_sbus_load = 1;
/*
* Access required in platform.c
* Maintains state of whether the platform config was fetched via the
* fallback option
*/
uint platform_config_load;
/* Firmware file names get set in hfi1_firmware_init() based on the above */
static char *fw_8051_name;
static char *fw_fabric_serdes_name;
static char *fw_sbus_name;
static char *fw_pcie_serdes_name;
static char *platform_config_name;
#define SBUS_MAX_POLL_COUNT 100
#define SBUS_COUNTER(reg, name) \
(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
/*
* Firmware security header.
*/
struct css_header {
u32 module_type;
u32 header_len;
u32 header_version;
u32 module_id;
u32 module_vendor;
u32 date; /* BCD yyyymmdd */
u32 size; /* in DWORDs */
u32 key_size; /* in DWORDs */
u32 modulus_size; /* in DWORDs */
u32 exponent_size; /* in DWORDs */
u32 reserved[22];
};
/* expected field values */
#define CSS_MODULE_TYPE 0x00000006
#define CSS_HEADER_LEN 0x000000a1
#define CSS_HEADER_VERSION 0x00010000
#define CSS_MODULE_VENDOR 0x00008086
#define KEY_SIZE 256
#define MU_SIZE 8
#define EXPONENT_SIZE 4
/* the file itself */
struct firmware_file {
struct css_header css_header;
u8 modulus[KEY_SIZE];
u8 exponent[EXPONENT_SIZE];
u8 signature[KEY_SIZE];
u8 firmware[];
};
struct augmented_firmware_file {
struct css_header css_header;
u8 modulus[KEY_SIZE];
u8 exponent[EXPONENT_SIZE];
u8 signature[KEY_SIZE];
u8 r2[KEY_SIZE];
u8 mu[MU_SIZE];
u8 firmware[];
};
/* augmented file size difference */
#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
sizeof(struct firmware_file))
struct firmware_details {
/* Linux core piece */
const struct firmware *fw;
struct css_header *css_header;
u8 *firmware_ptr; /* pointer to binary data */
u32 firmware_len; /* length in bytes */
u8 *modulus; /* pointer to the modulus */
u8 *exponent; /* pointer to the exponent */
u8 *signature; /* pointer to the signature */
u8 *r2; /* pointer to r2 */
u8 *mu; /* pointer to mu */
struct augmented_firmware_file dummy_header;
};
/*
* The mutex protects fw_state, fw_err, and all of the firmware_details
* variables.
*/
static DEFINE_MUTEX(fw_mutex);
enum fw_state {
FW_EMPTY,
FW_TRY,
FW_FINAL,
FW_ERR
};
static enum fw_state fw_state = FW_EMPTY;
static int fw_err;
static struct firmware_details fw_8051;
static struct firmware_details fw_fabric;
static struct firmware_details fw_pcie;
static struct firmware_details fw_sbus;
static const struct firmware *platform_config;
/* flags for turn_off_spicos() */
#define SPICO_SBUS 0x1
#define SPICO_FABRIC 0x2
#define ENABLE_SPICO_SMASK 0x1
/* security block commands */
#define RSA_CMD_INIT 0x1
#define RSA_CMD_START 0x2
/* security block status */
#define RSA_STATUS_IDLE 0x0
#define RSA_STATUS_ACTIVE 0x1
#define RSA_STATUS_DONE 0x2
#define RSA_STATUS_FAILED 0x3
/* RSA engine timeout, in ms */
#define RSA_ENGINE_TIMEOUT 100 /* ms */
/* hardware mutex timeout, in ms */
#define HM_TIMEOUT 10 /* ms */
/* 8051 memory access timeout, in us */
#define DC8051_ACCESS_TIMEOUT 100 /* us */
/* the number of fabric SerDes on the SBus */
#define NUM_FABRIC_SERDES 4
/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
#define SBUS_READ_COMPLETE 0x4
/* SBus fabric SerDes addresses, one set per HFI */
static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
{ 0x01, 0x02, 0x03, 0x04 },
{ 0x28, 0x29, 0x2a, 0x2b }
};
/* SBus PCIe SerDes addresses, one set per HFI */
static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
};
/* SBus PCIe PCS addresses, one set per HFI */
const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
};
/* SBus fabric SerDes broadcast addresses, one per HFI */
static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
static const u8 all_fabric_serdes_broadcast = 0xe1;
/* SBus PCIe SerDes broadcast addresses, one per HFI */
const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
static const u8 all_pcie_serdes_broadcast = 0xe0;
static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
0,
SYSTEM_TABLE_MAX,
PORT_TABLE_MAX,
RX_PRESET_TABLE_MAX,
TX_PRESET_TABLE_MAX,
QSFP_ATTEN_TABLE_MAX,
VARIABLE_SETTINGS_TABLE_MAX
};
/* forwards */
static void dispose_one_firmware(struct firmware_details *fdet);
static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
struct firmware_details *fdet);
static void dump_fw_version(struct hfi1_devdata *dd);
/*
* Read a single 64-bit value from 8051 data memory.
*
* Expects:
* o caller to have already set up data read, no auto increment
* o caller to turn off read enable when finished
*
* The address argument is a byte offset. Bits 0:2 in the address are
* ignored - i.e. the hardware will always do aligned 8-byte reads as if
* the lower bits are zero.
*
* Return 0 on success, -ENXIO on a read error (timeout).
*/
static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
{
u64 reg;
int count;
/* step 1: set the address, clear enable */
reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
/* step 2: enable */
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
/* wait until ACCESS_COMPLETED is set */
count = 0;
while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
& DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
== 0) {
count++;
if (count > DC8051_ACCESS_TIMEOUT) {
dd_dev_err(dd, "timeout reading 8051 data\n");
return -ENXIO;
}
ndelay(10);
}
/* gather the data */
*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
return 0;
}
/*
* Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
* Return 0 on success, -errno on error.
*/
int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
{
unsigned long flags;
u32 done;
int ret = 0;
spin_lock_irqsave(&dd->dc8051_memlock, flags);
/* data read set-up, no auto-increment */
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
for (done = 0; done < len; addr += 8, done += 8, result++) {
ret = __read_8051_data(dd, addr, result);
if (ret)
break;
}
/* turn off read enable */
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
return ret;
}
/*
* Write data or code to the 8051 code or data RAM.
*/
static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
const u8 *data, u32 len)
{
u64 reg;
u32 offset;
int aligned, count;
/* check alignment */
aligned = ((unsigned long)data & 0x7) == 0;
/* write set-up */
reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
/* write */
for (offset = 0; offset < len; offset += 8) {
int bytes = len - offset;
if (bytes < 8) {
reg = 0;
memcpy(&reg, &data[offset], bytes);
} else if (aligned) {
reg = *(u64 *)&data[offset];
} else {
memcpy(&reg, &data[offset], 8);
}
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
/* wait until ACCESS_COMPLETED is set */
count = 0;
while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
& DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
== 0) {
count++;
if (count > DC8051_ACCESS_TIMEOUT) {
dd_dev_err(dd, "timeout writing 8051 data\n");
return -ENXIO;
}
udelay(1);
}
}
/* turn off write access, auto increment (also sets to data access) */
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
return 0;
}
/* return 0 if values match, non-zero and complain otherwise */
static int invalid_header(struct hfi1_devdata *dd, const char *what,
u32 actual, u32 expected)
{
if (actual == expected)
return 0;
dd_dev_err(dd,
"invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
what, expected, actual);
return 1;
}
/*
* Verify that the static fields in the CSS header match.
*/
static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
{
/* verify CSS header fields (most sizes are in DW, so add /4) */
if (invalid_header(dd, "module_type", css->module_type,
CSS_MODULE_TYPE) ||
invalid_header(dd, "header_len", css->header_len,
(sizeof(struct firmware_file) / 4)) ||
invalid_header(dd, "header_version", css->header_version,
CSS_HEADER_VERSION) ||
invalid_header(dd, "module_vendor", css->module_vendor,
CSS_MODULE_VENDOR) ||
invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
invalid_header(dd, "modulus_size", css->modulus_size,
KEY_SIZE / 4) ||
invalid_header(dd, "exponent_size", css->exponent_size,
EXPONENT_SIZE / 4)) {
return -EINVAL;
}
return 0;
}
/*
* Make sure there are at least some bytes after the prefix.
*/
static int payload_check(struct hfi1_devdata *dd, const char *name,
long file_size, long prefix_size)
{
/* make sure we have some payload */
if (prefix_size >= file_size) {
dd_dev_err(dd,
"firmware \"%s\", size %ld, must be larger than %ld bytes\n",
name, file_size, prefix_size);
return -EINVAL;
}
return 0;
}
/*
* Request the firmware from the system. Extract the pieces and fill in
* fdet. If successful, the caller will need to call dispose_one_firmware().
* Returns 0 on success, -ERRNO on error.
*/
static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
struct firmware_details *fdet)
{
struct css_header *css;
int ret;
memset(fdet, 0, sizeof(*fdet));
ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
if (ret) {
dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
name, ret);
return ret;
}
/* verify the firmware */
if (fdet->fw->size < sizeof(struct css_header)) {
dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
ret = -EINVAL;
goto done;
}
css = (struct css_header *)fdet->fw->data;
hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
hfi1_cdbg(FIRMWARE, "CSS structure:");
hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type);
hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)",
css->header_len, 4 * css->header_len);
hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version);
hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id);
hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor);
hfi1_cdbg(FIRMWARE, " date 0x%x", css->date);
hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)",
css->size, 4 * css->size);
hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)",
css->key_size, 4 * css->key_size);
hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)",
css->modulus_size, 4 * css->modulus_size);
hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)",
css->exponent_size, 4 * css->exponent_size);
hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
fdet->fw->size - sizeof(struct firmware_file));
/*
* If the file does not have a valid CSS header, fail.
* Otherwise, check the CSS size field for an expected size.
* The augmented file has r2 and mu inserted after the header
* was generated, so there will be a known difference between
* the CSS header size and the actual file size. Use this
* difference to identify an augmented file.
*
* Note: css->size is in DWORDs, multiply by 4 to get bytes.
*/
ret = verify_css_header(dd, css);
if (ret) {
dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
} else if ((css->size * 4) == fdet->fw->size) {
/* non-augmented firmware file */
struct firmware_file *ff = (struct firmware_file *)
fdet->fw->data;
/* make sure there are bytes in the payload */
ret = payload_check(dd, name, fdet->fw->size,
sizeof(struct firmware_file));
if (ret == 0) {
fdet->css_header = css;
fdet->modulus = ff->modulus;
fdet->exponent = ff->exponent;
fdet->signature = ff->signature;
fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
fdet->mu = fdet->dummy_header.mu; /* use dummy space */
fdet->firmware_ptr = ff->firmware;
fdet->firmware_len = fdet->fw->size -
sizeof(struct firmware_file);
/*
* Header does not include r2 and mu - generate here.
* For now, fail.
*/
dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
ret = -EINVAL;
}
} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
/* augmented firmware file */
struct augmented_firmware_file *aff =
(struct augmented_firmware_file *)fdet->fw->data;
/* make sure there are bytes in the payload */
ret = payload_check(dd, name, fdet->fw->size,
sizeof(struct augmented_firmware_file));
if (ret == 0) {
fdet->css_header = css;
fdet->modulus = aff->modulus;
fdet->exponent = aff->exponent;
fdet->signature = aff->signature;
fdet->r2 = aff->r2;
fdet->mu = aff->mu;
fdet->firmware_ptr = aff->firmware;
fdet->firmware_len = fdet->fw->size -
sizeof(struct augmented_firmware_file);
}
} else {
/* css->size check failed */
dd_dev_err(dd,
"invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
fdet->fw->size / 4,
(fdet->fw->size - AUGMENT_SIZE) / 4,
css->size);
ret = -EINVAL;
}
done:
/* if returning an error, clean up after ourselves */
if (ret)
dispose_one_firmware(fdet);
return ret;
}
static void dispose_one_firmware(struct firmware_details *fdet)
{
release_firmware(fdet->fw);
/* erase all previous information */
memset(fdet, 0, sizeof(*fdet));
}
/*
* Obtain the 4 firmwares from the OS. All must be obtained at once or not
* at all. If called with the firmware state in FW_TRY, use alternate names.
* On exit, this routine will have set the firmware state to one of FW_TRY,
* FW_FINAL, or FW_ERR.
*
* Must be holding fw_mutex.
*/
static void __obtain_firmware(struct hfi1_devdata *dd)
{
int err = 0;
if (fw_state == FW_FINAL) /* nothing more to obtain */
return;
if (fw_state == FW_ERR) /* already in error */
return;
/* fw_state is FW_EMPTY or FW_TRY */
retry:
if (fw_state == FW_TRY) {
/*
* We tried the original and it failed. Move to the
* alternate.
*/
dd_dev_warn(dd, "using alternate firmware names\n");
/*
* Let others run. Some systems, when missing firmware, does
* something that holds for 30 seconds. If we do that twice
* in a row it triggers task blocked warning.
*/
cond_resched();
if (fw_8051_load)
dispose_one_firmware(&fw_8051);
if (fw_fabric_serdes_load)
dispose_one_firmware(&fw_fabric);
if (fw_sbus_load)
dispose_one_firmware(&fw_sbus);
if (fw_pcie_serdes_load)
dispose_one_firmware(&fw_pcie);
fw_8051_name = ALT_FW_8051_NAME_ASIC;
fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
fw_sbus_name = ALT_FW_SBUS_NAME;
fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
}
if (fw_sbus_load) {
err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
if (err)
goto done;
}
if (fw_pcie_serdes_load) {
err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
if (err)
goto done;
}
if (fw_fabric_serdes_load) {
err = obtain_one_firmware(dd, fw_fabric_serdes_name,
&fw_fabric);
if (err)
goto done;
}
if (fw_8051_load) {
err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
if (err)
goto done;
}
done:
if (err) {
/* oops, had problems obtaining a firmware */
if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
/* retry with alternate (RTL only) */
fw_state = FW_TRY;
goto retry;
}
dd_dev_err(dd, "unable to obtain working firmware\n");
fw_state = FW_ERR;
fw_err = -ENOENT;
} else {
/* success */
if (fw_state == FW_EMPTY &&
dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
fw_state = FW_TRY; /* may retry later */
else
fw_state = FW_FINAL; /* cannot try again */
}
}
/*
* Called by all HFIs when loading their firmware - i.e. device probe time.
* The first one will do the actual firmware load. Use a mutex to resolve
* any possible race condition.
*
* The call to this routine cannot be moved to driver load because the kernel
* call request_firmware() requires a device which is only available after
* the first device probe.
*/
static int obtain_firmware(struct hfi1_devdata *dd)
{
unsigned long timeout;
int err = 0;
mutex_lock(&fw_mutex);
/* 40s delay due to long delay on missing firmware on some systems */
timeout = jiffies + msecs_to_jiffies(40000);
while (fw_state == FW_TRY) {
/*
* Another device is trying the firmware. Wait until it
* decides what works (or not).
*/
if (time_after(jiffies, timeout)) {
/* waited too long */
dd_dev_err(dd, "Timeout waiting for firmware try");
fw_state = FW_ERR;
fw_err = -ETIMEDOUT;
break;
}
mutex_unlock(&fw_mutex);
msleep(20); /* arbitrary delay */
mutex_lock(&fw_mutex);
}
/* not in FW_TRY state */
if (fw_state == FW_FINAL) {
if (platform_config) {
dd->platform_config.data = platform_config->data;
dd->platform_config.size = platform_config->size;
}
goto done; /* already acquired */
} else if (fw_state == FW_ERR) {
goto done; /* already tried and failed */
}
/* fw_state is FW_EMPTY */
/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
__obtain_firmware(dd);
if (platform_config_load) {
platform_config = NULL;
err = request_firmware(&platform_config, platform_config_name,
&dd->pcidev->dev);
if (err) {
platform_config = NULL;
dd_dev_err(dd,
"%s: No default platform config file found\n",
__func__);
goto done;
}
dd->platform_config.data = platform_config->data;
dd->platform_config.size = platform_config->size;
}
done:
mutex_unlock(&fw_mutex);
return fw_err;
}
/*
* Called when the driver unloads. The timing is asymmetric with its
* counterpart, obtain_firmware(). If called at device remove time,
* then it is conceivable that another device could probe while the
* firmware is being disposed. The mutexes can be moved to do that
* safely, but then the firmware would be requested from the OS multiple
* times.
*
* No mutex is needed as the driver is unloading and there cannot be any
* other callers.
*/
void dispose_firmware(void)
{
dispose_one_firmware(&fw_8051);
dispose_one_firmware(&fw_fabric);
dispose_one_firmware(&fw_pcie);
dispose_one_firmware(&fw_sbus);
release_firmware(platform_config);
platform_config = NULL;
/* retain the error state, otherwise revert to empty */
if (fw_state != FW_ERR)
fw_state = FW_EMPTY;
}
/*
* Called with the result of a firmware download.
*
* Return 1 to retry loading the firmware, 0 to stop.
*/
static int retry_firmware(struct hfi1_devdata *dd, int load_result)
{
int retry;
mutex_lock(&fw_mutex);
if (load_result == 0) {
/*
* The load succeeded, so expect all others to do the same.
* Do not retry again.
*/
if (fw_state == FW_TRY)
fw_state = FW_FINAL;
retry = 0; /* do NOT retry */
} else if (fw_state == FW_TRY) {
/* load failed, obtain alternate firmware */
__obtain_firmware(dd);
retry = (fw_state == FW_FINAL);
} else {
/* else in FW_FINAL or FW_ERR, no retry in either case */
retry = 0;
}
mutex_unlock(&fw_mutex);
return retry;
}
/*
* Write a block of data to a given array CSR. All calls will be in
* multiples of 8 bytes.
*/
static void write_rsa_data(struct hfi1_devdata *dd, int what,
const u8 *data, int nbytes)
{
int qw_size = nbytes / 8;
int i;
if (((unsigned long)data & 0x7) == 0) {
/* aligned */
u64 *ptr = (u64 *)data;
for (i = 0; i < qw_size; i++, ptr++)
write_csr(dd, what + (8 * i), *ptr);
} else {
/* not aligned */
for (i = 0; i < qw_size; i++, data += 8) {
u64 value;
memcpy(&value, data, 8);
write_csr(dd, what + (8 * i), value);
}
}
}
/*
* Write a block of data to a given CSR as a stream of writes. All calls will
* be in multiples of 8 bytes.
*/
static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
const u8 *data, int nbytes)
{
u64 *ptr = (u64 *)data;
int qw_size = nbytes / 8;
for (; qw_size > 0; qw_size--, ptr++)
write_csr(dd, what, *ptr);
}
/*
* Download the signature and start the RSA mechanism. Wait for
* RSA_ENGINE_TIMEOUT before giving up.
*/
static int run_rsa(struct hfi1_devdata *dd, const char *who,
const u8 *signature)
{
unsigned long timeout;
u64 reg;
u32 status;
int ret = 0;
/* write the signature */
write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
/* initialize RSA */
write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
/*
* Make sure the engine is idle and insert a delay between the two
* writes to MISC_CFG_RSA_CMD.
*/
status = (read_csr(dd, MISC_CFG_FW_CTRL)
& MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
>> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
if (status != RSA_STATUS_IDLE) {
dd_dev_err(dd, "%s security engine not idle - giving up\n",
who);
return -EBUSY;
}
/* start RSA */
write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
/*
* Look for the result.
*
* The RSA engine is hooked up to two MISC errors. The driver
* masks these errors as they do not respond to the standard
* error "clear down" mechanism. Look for these errors here and
* clear them when possible. This routine will exit with the
* errors of the current run still set.
*
* MISC_FW_AUTH_FAILED_ERR
* Firmware authorization failed. This can be cleared by
* re-initializing the RSA engine, then clearing the status bit.
* Do not re-init the RSA angine immediately after a successful
* run - this will reset the current authorization.
*
* MISC_KEY_MISMATCH_ERR
* Key does not match. The only way to clear this is to load
* a matching key then clear the status bit. If this error
* is raised, it will persist outside of this routine until a
* matching key is loaded.
*/
timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
while (1) {
status = (read_csr(dd, MISC_CFG_FW_CTRL)
& MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
>> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
if (status == RSA_STATUS_IDLE) {
/* should not happen */
dd_dev_err(dd, "%s firmware security bad idle state\n",
who);
ret = -EINVAL;
break;
} else if (status == RSA_STATUS_DONE) {
/* finished successfully */
break;
} else if (status == RSA_STATUS_FAILED) {
/* finished unsuccessfully */
ret = -EINVAL;
break;
}
/* else still active */
if (time_after(jiffies, timeout)) {
/*
* Timed out while active. We can't reset the engine
* if it is stuck active, but run through the
* error code to see what error bits are set.
*/
dd_dev_err(dd, "%s firmware security time out\n", who);
ret = -ETIMEDOUT;
break;
}
msleep(20);
}
/*
* Arrive here on success or failure. Clear all RSA engine
* errors. All current errors will stick - the RSA logic is keeping
* error high. All previous errors will clear - the RSA logic
* is not keeping the error high.
*/
write_csr(dd, MISC_ERR_CLEAR,
MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
/*
* All that is left are the current errors. Print warnings on
* authorization failure details, if any. Firmware authorization
* can be retried, so these are only warnings.
*/
reg = read_csr(dd, MISC_ERR_STATUS);
if (ret) {
if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
dd_dev_warn(dd, "%s firmware authorization failed\n",
who);
if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
dd_dev_warn(dd, "%s firmware key mismatch\n", who);
}
return ret;
}
static void load_security_variables(struct hfi1_devdata *dd,
struct firmware_details *fdet)
{
/* Security variables a. Write the modulus */
write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
/* Security variables b. Write the r2 */
write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
/* Security variables c. Write the mu */
write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
/* Security variables d. Write the header */
write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
(u8 *)fdet->css_header,
sizeof(struct css_header));
}
/* return the 8051 firmware state */
static inline u32 get_firmware_state(struct hfi1_devdata *dd)
{
u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
}
/*
* Wait until the firmware is up and ready to take host requests.
* Return 0 on success, -ETIMEDOUT on timeout.
*/
int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
{
unsigned long timeout;
/* in the simulator, the fake 8051 is always ready */
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
return 0;
timeout = msecs_to_jiffies(mstimeout) + jiffies;
while (1) {
if (get_firmware_state(dd) == 0xa0) /* ready */
return 0;
if (time_after(jiffies, timeout)) /* timed out */
return -ETIMEDOUT;
usleep_range(1950, 2050); /* sleep 2ms-ish */
}
}
/*
* Load the 8051 firmware.
*/
static int load_8051_firmware(struct hfi1_devdata *dd,
struct firmware_details *fdet)
{
u64 reg;
int ret;
u8 ver_a, ver_b;
/*
* DC Reset sequence
* Load DC 8051 firmware
*/
/*
* DC reset step 1: Reset DC8051
*/
reg = DC_DC8051_CFG_RST_M8051W_SMASK
| DC_DC8051_CFG_RST_CRAM_SMASK
| DC_DC8051_CFG_RST_DRAM_SMASK
| DC_DC8051_CFG_RST_IRAM_SMASK
| DC_DC8051_CFG_RST_SFR_SMASK;
write_csr(dd, DC_DC8051_CFG_RST, reg);
/*
* DC reset step 2 (optional): Load 8051 data memory with link
* configuration
*/
/*
* DC reset step 3: Load DC8051 firmware
*/
/* release all but the core reset */
reg = DC_DC8051_CFG_RST_M8051W_SMASK;
write_csr(dd, DC_DC8051_CFG_RST, reg);
/* Firmware load step 1 */
load_security_variables(dd, fdet);
/*
* Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
*/
write_csr(dd, MISC_CFG_FW_CTRL, 0);
/* Firmware load steps 3-5 */
ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
fdet->firmware_len);
if (ret)
return ret;
/*
* DC reset step 4. Host starts the DC8051 firmware
*/
/*
* Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
*/
write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
/* Firmware load steps 7-10 */
ret = run_rsa(dd, "8051", fdet->signature);
if (ret)
return ret;
/* clear all reset bits, releasing the 8051 */
write_csr(dd, DC_DC8051_CFG_RST, 0ull);
/*
* DC reset step 5. Wait for firmware to be ready to accept host
* requests.
*/
ret = wait_fm_ready(dd, TIMEOUT_8051_START);
if (ret) { /* timed out */
dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
get_firmware_state(dd));
return -ETIMEDOUT;
}
read_misc_status(dd, &ver_a, &ver_b);
dd_dev_info(dd, "8051 firmware version %d.%d\n",
(int)ver_b, (int)ver_a);
dd->dc8051_ver = dc8051_ver(ver_b, ver_a);
return 0;
}
/*
* Write the SBus request register
*
* No need for masking - the arguments are sized exactly.
*/
void sbus_request(struct hfi1_devdata *dd,
u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
{
write_csr(dd, ASIC_CFG_SBUS_REQUEST,
((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
((u64)receiver_addr <<
ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
}
/*
* Read a value from the SBus.
*
* Requires the caller to be in fast mode
*/
static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
u32 data_in)
{
u64 reg;
int retries;
int success = 0;
u32 result = 0;
u32 result_code = 0;
sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
for (retries = 0; retries < 100; retries++) {
usleep_range(1000, 1200); /* arbitrary */
reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
if (result_code != SBUS_READ_COMPLETE)
continue;
success = 1;
result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
& ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
break;
}
if (!success) {
dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
result_code);
}
return result;
}
/*
* Turn off the SBus and fabric serdes spicos.
*
* + Must be called with Sbus fast mode turned on.
* + Must be called after fabric serdes broadcast is set up.
* + Must be called before the 8051 is loaded - assumes 8051 is not loaded
* when using MISC_CFG_FW_CTRL.
*/
static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
{
/* only needed on A0 */
if (!is_ax(dd))
return;
dd_dev_info(dd, "Turning off spicos:%s%s\n",
flags & SPICO_SBUS ? " SBus" : "",
flags & SPICO_FABRIC ? " fabric" : "");
write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
/* disable SBus spico */
if (flags & SPICO_SBUS)
sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
WRITE_SBUS_RECEIVER, 0x00000040);
/* disable the fabric serdes spicos */
if (flags & SPICO_FABRIC)
sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
0x07, WRITE_SBUS_RECEIVER, 0x00000000);
write_csr(dd, MISC_CFG_FW_CTRL, 0);
}
/*
* Reset all of the fabric serdes for this HFI in preparation to take the
* link to Polling.
*
* To do a reset, we need to write to to the serdes registers. Unfortunately,
* the fabric serdes download to the other HFI on the ASIC will have turned
* off the firmware validation on this HFI. This means we can't write to the
* registers to reset the serdes. Work around this by performing a complete
* re-download and validation of the fabric serdes firmware. This, as a
* by-product, will reset the serdes. NOTE: the re-download requires that
* the 8051 be in the Offline state. I.e. not actively trying to use the
* serdes. This routine is called at the point where the link is Offline and
* is getting ready to go to Polling.
*/
void fabric_serdes_reset(struct hfi1_devdata *dd)
{
int ret;
if (!fw_fabric_serdes_load)
return;
ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
if (ret) {
dd_dev_err(dd,
"Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
return;
}
set_sbus_fast_mode(dd);
if (is_ax(dd)) {
/* A0 serdes do not work with a re-download */
u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
/* place SerDes in reset and disable SPICO */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
/* wait 100 refclk cycles @ 156.25MHz => 640ns */
udelay(1);
/* remove SerDes reset */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
/* turn SPICO enable on */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
} else {
turn_off_spicos(dd, SPICO_FABRIC);
/*
* No need for firmware retry - what to download has already
* been decided.
* No need to pay attention to the load return - the only
* failure is a validation failure, which has already been
* checked by the initial download.
*/
(void)load_fabric_serdes_firmware(dd, &fw_fabric);
}
clear_sbus_fast_mode(dd);
release_chip_resource(dd, CR_SBUS);
}
/* Access to the SBus in this routine should probably be serialized */
int sbus_request_slow(struct hfi1_devdata *dd,
u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
{
u64 reg, count = 0;
/* make sure fast mode is clear */
clear_sbus_fast_mode(dd);
sbus_request(dd, receiver_addr, data_addr, command, data_in);
write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
/* Wait for both DONE and RCV_DATA_VALID to go high */
reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
(reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
if (count++ >= SBUS_MAX_POLL_COUNT) {
u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
/*
* If the loop has timed out, we are OK if DONE bit
* is set and RCV_DATA_VALID and EXECUTE counters
* are the same. If not, we cannot proceed.
*/
if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
(SBUS_COUNTER(counts, RCV_DATA_VALID) ==
SBUS_COUNTER(counts, EXECUTE)))
break;
return -ETIMEDOUT;
}
udelay(1);
reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
}
count = 0;
write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
/* Wait for DONE to clear after EXECUTE is cleared */
reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
if (count++ >= SBUS_MAX_POLL_COUNT)
return -ETIME;
udelay(1);
reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
}
return 0;
}
static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
struct firmware_details *fdet)
{
int i, err;
const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
dd_dev_info(dd, "Downloading fabric firmware\n");
/* step 1: load security variables */
load_security_variables(dd, fdet);
/* step 2: place SerDes in reset and disable SPICO */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
/* wait 100 refclk cycles @ 156.25MHz => 640ns */
udelay(1);
/* step 3: remove SerDes reset */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
/* step 4: assert IMEM override */
sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
/* step 5: download SerDes machine code */
for (i = 0; i < fdet->firmware_len; i += 4) {
sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
*(u32 *)&fdet->firmware_ptr[i]);
}
/* step 6: IMEM override off */
sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
/* step 7: turn ECC on */
sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
/* steps 8-11: run the RSA engine */
err = run_rsa(dd, "fabric serdes", fdet->signature);
if (err)
return err;
/* step 12: turn SPICO enable on */
sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
/* step 13: enable core hardware interrupts */
sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
return 0;
}
static int load_sbus_firmware(struct hfi1_devdata *dd,
struct firmware_details *fdet)
{
int i, err;
const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
dd_dev_info(dd, "Downloading SBus firmware\n");
/* step 1: load security variables */
load_security_variables(dd, fdet);
/* step 2: place SPICO into reset and enable off */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
/* step 4: set starting IMEM address for burst download */
sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
/* step 5: download the SBus Master machine code */
for (i = 0; i < fdet->firmware_len; i += 4) {
sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
*(u32 *)&fdet->firmware_ptr[i]);
}
/* step 6: set IMEM_CNTL_EN off */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
/* step 7: turn ECC on */
sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
/* steps 8-11: run the RSA engine */
err = run_rsa(dd, "SBus", fdet->signature);
if (err)
return err;
/* step 12: set SPICO_ENABLE on */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
return 0;
}
static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
struct firmware_details *fdet)
{
int i;
const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
dd_dev_info(dd, "Downloading PCIe firmware\n");
/* step 1: load security variables */
load_security_variables(dd, fdet);
/* step 2: assert single step (halts the SBus Master spico) */
sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
/* step 3: enable XDMEM access */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
/* step 4: load firmware into SBus Master XDMEM */
/*
* NOTE: the dmem address, write_en, and wdata are all pre-packed,
* we only need to pick up the bytes and write them
*/
for (i = 0; i < fdet->firmware_len; i += 4) {
sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
*(u32 *)&fdet->firmware_ptr[i]);
}
/* step 5: disable XDMEM access */
sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
/* step 6: allow SBus Spico to run */
sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
/*
* steps 7-11: run RSA, if it succeeds, firmware is available to
* be swapped
*/
return run_rsa(dd, "PCIe serdes", fdet->signature);
}
/*
* Set the given broadcast values on the given list of devices.
*/
static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
const u8 *addrs, int count)
{
while (--count >= 0) {
/*
* Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
* defaults for everything else. Do not read-modify-write,
* per instruction from the manufacturer.
*
* Register 0xfd:
* bits what
* ----- ---------------------------------
* 0 IGNORE_BROADCAST (default 0)
* 11:4 BROADCAST_GROUP_1 (default 0xff)
* 23:16 BROADCAST_GROUP_2 (default 0xff)
*/
sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
(u32)bg1 << 4 | (u32)bg2 << 16);
}
}
int acquire_hw_mutex(struct hfi1_devdata *dd)
{
unsigned long timeout;
int try = 0;
u8 mask = 1 << dd->hfi1_id;
u8 user;
retry:
timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
while (1) {
write_csr(dd, ASIC_CFG_MUTEX, mask);
user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
if (user == mask)
return 0; /* success */
if (time_after(jiffies, timeout))
break; /* timed out */
msleep(20);
}
/* timed out */
dd_dev_err(dd,
"Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
(u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
if (try == 0) {
/* break mutex and retry */
write_csr(dd, ASIC_CFG_MUTEX, 0);
try++;
goto retry;
}
return -EBUSY;
}
void release_hw_mutex(struct hfi1_devdata *dd)
{
write_csr(dd, ASIC_CFG_MUTEX, 0);
}
/* return the given resource bit(s) as a mask for the given HFI */
static inline u64 resource_mask(u32 hfi1_id, u32 resource)
{
return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
}
static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
const char *func)
{
dd_dev_err(dd,
"%s: hardware mutex stuck - suggest rebooting the machine\n",
func);
}
/*
* Acquire access to a chip resource.
*
* Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
*/
static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
{
u64 scratch0, all_bits, my_bit;
int ret;
if (resource & CR_DYN_MASK) {
/* a dynamic resource is in use if either HFI has set the bit */
if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
(resource & (CR_I2C1 | CR_I2C2))) {
/* discrete devices must serialize across both chains */
all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
resource_mask(1, CR_I2C1 | CR_I2C2);
} else {
all_bits = resource_mask(0, resource) |
resource_mask(1, resource);
}
my_bit = resource_mask(dd->hfi1_id, resource);
} else {
/* non-dynamic resources are not split between HFIs */
all_bits = resource;
my_bit = resource;
}
/* lock against other callers within the driver wanting a resource */
mutex_lock(&dd->asic_data->asic_resource_mutex);
ret = acquire_hw_mutex(dd);
if (ret) {
fail_mutex_acquire_message(dd, __func__);
ret = -EIO;
goto done;
}
scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
if (scratch0 & all_bits) {
ret = -EBUSY;
} else {
write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
/* force write to be visible to other HFI on another OS */
(void)read_csr(dd, ASIC_CFG_SCRATCH);
}
release_hw_mutex(dd);
done:
mutex_unlock(&dd->asic_data->asic_resource_mutex);
return ret;
}
/*
* Acquire access to a chip resource, wait up to mswait milliseconds for
* the resource to become available.
*
* Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
* acquire failed.
*/
int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
{
unsigned long timeout;
int ret;
timeout = jiffies + msecs_to_jiffies(mswait);
while (1) {
ret = __acquire_chip_resource(dd, resource);
if (ret != -EBUSY)
return ret;
/* resource is busy, check our timeout */
if (time_after_eq(jiffies, timeout))
return -EBUSY;
usleep_range(80, 120); /* arbitrary delay */
}
}
/*
* Release access to a chip resource
*/
void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
{
u64 scratch0, bit;
/* only dynamic resources should ever be cleared */
if (!(resource & CR_DYN_MASK)) {
dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
resource);
return;
}
bit = resource_mask(dd->hfi1_id, resource);
/* lock against other callers within the driver wanting a resource */
mutex_lock(&dd->asic_data->asic_resource_mutex);
if (acquire_hw_mutex(dd)) {
fail_mutex_acquire_message(dd, __func__);
goto done;
}
scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
if ((scratch0 & bit) != 0) {
scratch0 &= ~bit;
write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
/* force write to be visible to other HFI on another OS */
(void)read_csr(dd, ASIC_CFG_SCRATCH);
} else {
dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
__func__, dd->hfi1_id, resource);
}
release_hw_mutex(dd);
done:
mutex_unlock(&dd->asic_data->asic_resource_mutex);
}
/*
* Return true if resource is set, false otherwise. Print a warning
* if not set and a function is supplied.
*/
bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
const char *func)
{
u64 scratch0, bit;
if (resource & CR_DYN_MASK)
bit = resource_mask(dd->hfi1_id, resource);
else
bit = resource;
scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
if ((scratch0 & bit) == 0) {
if (func)
dd_dev_warn(dd,
"%s: id %d, resource 0x%x, not acquired!\n",
func, dd->hfi1_id, resource);
return false;
}
return true;
}
static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
{
u64 scratch0;
/* lock against other callers within the driver wanting a resource */
mutex_lock(&dd->asic_data->asic_resource_mutex);
if (acquire_hw_mutex(dd)) {
fail_mutex_acquire_message(dd, func);
goto done;
}
/* clear all dynamic access bits for this HFI */
scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
/* force write to be visible to other HFI on another OS */
(void)read_csr(dd, ASIC_CFG_SCRATCH);
release_hw_mutex(dd);
done:
mutex_unlock(&dd->asic_data->asic_resource_mutex);
}
void init_chip_resources(struct hfi1_devdata *dd)
{
/* clear any holds left by us */
clear_chip_resources(dd, __func__);
}
void finish_chip_resources(struct hfi1_devdata *dd)
{
/* clear any holds left by us */
clear_chip_resources(dd, __func__);
}
void set_sbus_fast_mode(struct hfi1_devdata *dd)
{
write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
}
void clear_sbus_fast_mode(struct hfi1_devdata *dd)
{
u64 reg, count = 0;
reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
while (SBUS_COUNTER(reg, EXECUTE) !=
SBUS_COUNTER(reg, RCV_DATA_VALID)) {
if (count++ >= SBUS_MAX_POLL_COUNT)
break;
udelay(1);
reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
}
write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
}
int load_firmware(struct hfi1_devdata *dd)
{
int ret;
if (fw_fabric_serdes_load) {
ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
if (ret)
return ret;
set_sbus_fast_mode(dd);
set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
fabric_serdes_broadcast[dd->hfi1_id],
fabric_serdes_addrs[dd->hfi1_id],
NUM_FABRIC_SERDES);
turn_off_spicos(dd, SPICO_FABRIC);
do {
ret = load_fabric_serdes_firmware(dd, &fw_fabric);
} while (retry_firmware(dd, ret));
clear_sbus_fast_mode(dd);
release_chip_resource(dd, CR_SBUS);
if (ret)
return ret;
}
if (fw_8051_load) {
do {
ret = load_8051_firmware(dd, &fw_8051);
} while (retry_firmware(dd, ret));
if (ret)
return ret;
}
dump_fw_version(dd);
return 0;
}
int hfi1_firmware_init(struct hfi1_devdata *dd)
{
/* only RTL can use these */
if (dd->icode != ICODE_RTL_SILICON) {
fw_fabric_serdes_load = 0;
fw_pcie_serdes_load = 0;
fw_sbus_load = 0;
}
/* no 8051 or QSFP on simulator */
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
fw_8051_load = 0;
platform_config_load = 0;
}
if (!fw_8051_name) {
if (dd->icode == ICODE_RTL_SILICON)
fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
else
fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
}
if (!fw_fabric_serdes_name)
fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
if (!fw_sbus_name)
fw_sbus_name = DEFAULT_FW_SBUS_NAME;
if (!fw_pcie_serdes_name)
fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
if (!platform_config_name)
platform_config_name = DEFAULT_PLATFORM_CONFIG_NAME;
return obtain_firmware(dd);
}
/*
* This function is a helper function for parse_platform_config(...) and
* does not check for validity of the platform configuration cache
* (because we know it is invalid as we are building up the cache).
* As such, this should not be called from anywhere other than
* parse_platform_config
*/
static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
{
u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
if (!system_table)
return -EINVAL;
meta_ver_meta =
*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
+ SYSTEM_TABLE_META_VERSION);
mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
ver_start = meta_ver_meta & mask;
meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
ver_len = meta_ver_meta & mask;
ver_start /= 8;
meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
if (meta_ver < 5) {
dd_dev_info(
dd, "%s:Please update platform config\n", __func__);
return -EINVAL;
}
return 0;
}
int parse_platform_config(struct hfi1_devdata *dd)
{
struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
u32 *ptr = NULL;
u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
int ret = -EINVAL; /* assume failure */
/*
* For integrated devices that did not fall back to the default file,
* the SI tuning information for active channels is acquired from the
* scratch register bitmap, thus there is no platform config to parse.
* Skip parsing in these situations.
*/
if (is_integrated(dd) && !platform_config_load)
return 0;
if (!dd->platform_config.data) {
dd_dev_err(dd, "%s: Missing config file\n", __func__);
goto bail;
}
ptr = (u32 *)dd->platform_config.data;
magic_num = *ptr;
ptr++;
if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
dd_dev_err(dd, "%s: Bad config file\n", __func__);
goto bail;
}
/* Field is file size in DWORDs */
file_length = (*ptr) * 4;
ptr++;
if (file_length > dd->platform_config.size) {
dd_dev_info(dd, "%s:File claims to be larger than read size\n",
__func__);
goto bail;
} else if (file_length < dd->platform_config.size) {
dd_dev_info(dd,
"%s:File claims to be smaller than read size, continuing\n",
__func__);
}
/* exactly equal, perfection */
/*
* In both cases where we proceed, using the self-reported file length
* is the safer option
*/
while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
header1 = *ptr;
header2 = *(ptr + 1);
if (header1 != ~header2) {
dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
__func__, (ptr - (u32 *)
dd->platform_config.data));
goto bail;
}
record_idx = *ptr &
((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
table_length_dwords = (*ptr >>
PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
/* Done with this set of headers */
ptr += 2;
if (record_idx) {
/* data table */
switch (table_type) {
case PLATFORM_CONFIG_SYSTEM_TABLE:
pcfgcache->config_tables[table_type].num_table =
1;
ret = check_meta_version(dd, ptr);
if (ret)
goto bail;
break;
case PLATFORM_CONFIG_PORT_TABLE:
pcfgcache->config_tables[table_type].num_table =
2;
break;
case PLATFORM_CONFIG_RX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_TX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
/* fall through */
case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
pcfgcache->config_tables[table_type].num_table =
table_length_dwords;
break;
default:
dd_dev_err(dd,
"%s: Unknown data table %d, offset %ld\n",
__func__, table_type,
(ptr - (u32 *)
dd->platform_config.data));
goto bail; /* We don't trust this file now */
}
pcfgcache->config_tables[table_type].table = ptr;
} else {
/* metadata table */
switch (table_type) {
case PLATFORM_CONFIG_SYSTEM_TABLE:
/* fall through */
case PLATFORM_CONFIG_PORT_TABLE:
/* fall through */
case PLATFORM_CONFIG_RX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_TX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
/* fall through */
case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
break;
default:
dd_dev_err(dd,
"%s: Unknown meta table %d, offset %ld\n",
__func__, table_type,
(ptr -
(u32 *)dd->platform_config.data));
goto bail; /* We don't trust this file now */
}
pcfgcache->config_tables[table_type].table_metadata =
ptr;
}
/* Calculate and check table crc */
crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
(table_length_dwords * 4));
crc ^= ~(u32)0;
/* Jump the table */
ptr += table_length_dwords;
if (crc != *ptr) {
dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
__func__, (ptr -
(u32 *)dd->platform_config.data));
goto bail;
}
/* Jump the CRC DWORD */
ptr++;
}
pcfgcache->cache_valid = 1;
return 0;
bail:
memset(pcfgcache, 0, sizeof(struct platform_config_cache));
return ret;
}
static void get_integrated_platform_config_field(
struct hfi1_devdata *dd,
enum platform_config_table_type_encoding table_type,
int field_index, u32 *data)
{
struct hfi1_pportdata *ppd = dd->pport;
u8 *cache = ppd->qsfp_info.cache;
u32 tx_preset = 0;
switch (table_type) {
case PLATFORM_CONFIG_SYSTEM_TABLE:
if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
*data = ppd->max_power_class;
else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
*data = ppd->default_atten;
break;
case PLATFORM_CONFIG_PORT_TABLE:
if (field_index == PORT_TABLE_PORT_TYPE)
*data = ppd->port_type;
else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
*data = ppd->local_atten;
else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
*data = ppd->remote_atten;
break;
case PLATFORM_CONFIG_RX_PRESET_TABLE:
if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
QSFP_RX_CDR_APPLY_SHIFT;
else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
QSFP_RX_EMP_APPLY_SHIFT;
else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
QSFP_RX_AMP_APPLY_SHIFT;
else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
QSFP_RX_CDR_SHIFT;
else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
QSFP_RX_EMP_SHIFT;
else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
QSFP_RX_AMP_SHIFT;
break;
case PLATFORM_CONFIG_TX_PRESET_TABLE:
if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
tx_preset = ppd->tx_preset_eq;
else
tx_preset = ppd->tx_preset_noeq;
if (field_index == TX_PRESET_TABLE_PRECUR)
*data = (tx_preset & TX_PRECUR_SMASK) >>
TX_PRECUR_SHIFT;
else if (field_index == TX_PRESET_TABLE_ATTN)
*data = (tx_preset & TX_ATTN_SMASK) >>
TX_ATTN_SHIFT;
else if (field_index == TX_PRESET_TABLE_POSTCUR)
*data = (tx_preset & TX_POSTCUR_SMASK) >>
TX_POSTCUR_SHIFT;
else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
QSFP_TX_CDR_APPLY_SHIFT;
else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
QSFP_TX_EQ_APPLY_SHIFT;
else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
QSFP_TX_CDR_SHIFT;
else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
QSFP_TX_EQ_SHIFT;
break;
case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
default:
break;
}
}
static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
int field, u32 *field_len_bits,
u32 *field_start_bits)
{
struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
u32 *src_ptr = NULL;
if (!pcfgcache->cache_valid)
return -EINVAL;
switch (table) {
case PLATFORM_CONFIG_SYSTEM_TABLE:
/* fall through */
case PLATFORM_CONFIG_PORT_TABLE:
/* fall through */
case PLATFORM_CONFIG_RX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_TX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
/* fall through */
case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
if (field && field < platform_config_table_limits[table])
src_ptr =
pcfgcache->config_tables[table].table_metadata + field;
break;
default:
dd_dev_info(dd, "%s: Unknown table\n", __func__);
break;
}
if (!src_ptr)
return -EINVAL;
if (field_start_bits)
*field_start_bits = *src_ptr &
((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
if (field_len_bits)
*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
& ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
return 0;
}
/* This is the central interface to getting data out of the platform config
* file. It depends on parse_platform_config() having populated the
* platform_config_cache in hfi1_devdata, and checks the cache_valid member to
* validate the sanity of the cache.
*
* The non-obvious parameters:
* @table_index: Acts as a look up key into which instance of the tables the
* relevant field is fetched from.
*
* This applies to the data tables that have multiple instances. The port table
* is an exception to this rule as each HFI only has one port and thus the
* relevant table can be distinguished by hfi_id.
*
* @data: pointer to memory that will be populated with the field requested.
* @len: length of memory pointed by @data in bytes.
*/
int get_platform_config_field(struct hfi1_devdata *dd,
enum platform_config_table_type_encoding
table_type, int table_index, int field_index,
u32 *data, u32 len)
{
int ret = 0, wlen = 0, seek = 0;
u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
if (data)
memset(data, 0, len);
else
return -EINVAL;
if (is_integrated(dd) && !platform_config_load) {
/*
* Use saved configuration from ppd for integrated platforms
*/
get_integrated_platform_config_field(dd, table_type,
field_index, data);
return 0;
}
ret = get_platform_fw_field_metadata(dd, table_type, field_index,
&field_len_bits,
&field_start_bits);
if (ret)
return -EINVAL;
/* Convert length to bits */
len *= 8;
/* Our metadata function checked cache_valid and field_index for us */
switch (table_type) {
case PLATFORM_CONFIG_SYSTEM_TABLE:
src_ptr = pcfgcache->config_tables[table_type].table;
if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
if (len < field_len_bits)
return -EINVAL;
seek = field_start_bits / 8;
wlen = field_len_bits / 8;
src_ptr = (u32 *)((u8 *)src_ptr + seek);
/*
* We expect the field to be byte aligned and whole byte
* lengths if we are here
*/
memcpy(data, src_ptr, wlen);
return 0;
}
break;
case PLATFORM_CONFIG_PORT_TABLE:
/* Port table is 4 DWORDS */
src_ptr = dd->hfi1_id ?
pcfgcache->config_tables[table_type].table + 4 :
pcfgcache->config_tables[table_type].table;
break;
case PLATFORM_CONFIG_RX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_TX_PRESET_TABLE:
/* fall through */
case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
/* fall through */
case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
src_ptr = pcfgcache->config_tables[table_type].table;
if (table_index <
pcfgcache->config_tables[table_type].num_table)
src_ptr += table_index;
else
src_ptr = NULL;
break;
default:
dd_dev_info(dd, "%s: Unknown table\n", __func__);
break;
}
if (!src_ptr || len < field_len_bits)
return -EINVAL;
src_ptr += (field_start_bits / 32);
*data = (*src_ptr >> (field_start_bits % 32)) &
((1 << field_len_bits) - 1);
return 0;
}
/*
* Download the firmware needed for the Gen3 PCIe SerDes. An update
* to the SBus firmware is needed before updating the PCIe firmware.
*
* Note: caller must be holding the SBus resource.
*/
int load_pcie_firmware(struct hfi1_devdata *dd)
{
int ret = 0;
/* both firmware loads below use the SBus */
set_sbus_fast_mode(dd);
if (fw_sbus_load) {
turn_off_spicos(dd, SPICO_SBUS);
do {
ret = load_sbus_firmware(dd, &fw_sbus);
} while (retry_firmware(dd, ret));
if (ret)
goto done;
}
if (fw_pcie_serdes_load) {
dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
pcie_serdes_broadcast[dd->hfi1_id],
pcie_serdes_addrs[dd->hfi1_id],
NUM_PCIE_SERDES);
do {
ret = load_pcie_serdes_firmware(dd, &fw_pcie);
} while (retry_firmware(dd, ret));
if (ret)
goto done;
}
done:
clear_sbus_fast_mode(dd);
return ret;
}
/*
* Read the GUID from the hardware, store it in dd.
*/
void read_guid(struct hfi1_devdata *dd)
{
/* Take the DC out of reset to get a valid GUID value */
write_csr(dd, CCE_DC_CTRL, 0);
(void)read_csr(dd, CCE_DC_CTRL);
dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
dd_dev_info(dd, "GUID %llx",
(unsigned long long)dd->base_guid);
}
/* read and display firmware version info */
static void dump_fw_version(struct hfi1_devdata *dd)
{
u32 pcie_vers[NUM_PCIE_SERDES];
u32 fabric_vers[NUM_FABRIC_SERDES];
u32 sbus_vers;
int i;
int all_same;
int ret;
u8 rcv_addr;
ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
if (ret) {
dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
return;
}
/* set fast mode */
set_sbus_fast_mode(dd);
/* read version for SBus Master */
sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
/* wait for interrupt to be processed */
usleep_range(10000, 11000);
sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
/* read version for PCIe SerDes */
all_same = 1;
pcie_vers[0] = 0;
for (i = 0; i < NUM_PCIE_SERDES; i++) {
rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
/* wait for interrupt to be processed */
usleep_range(10000, 11000);
pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
if (i > 0 && pcie_vers[0] != pcie_vers[i])
all_same = 0;
}
if (all_same) {
dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
pcie_vers[0]);
} else {
dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
for (i = 0; i < NUM_PCIE_SERDES; i++) {
dd_dev_info(dd,
"PCIe SerDes lane %d firmware version 0x%x\n",
i, pcie_vers[i]);
}
}
/* read version for fabric SerDes */
all_same = 1;
fabric_vers[0] = 0;
for (i = 0; i < NUM_FABRIC_SERDES; i++) {
rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
/* wait for interrupt to be processed */
usleep_range(10000, 11000);
fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
if (i > 0 && fabric_vers[0] != fabric_vers[i])
all_same = 0;
}
if (all_same) {
dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
fabric_vers[0]);
} else {
dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
for (i = 0; i < NUM_FABRIC_SERDES; i++) {
dd_dev_info(dd,
"Fabric SerDes lane %d firmware version 0x%x\n",
i, fabric_vers[i]);
}
}
clear_sbus_fast_mode(dd);
release_chip_resource(dd, CR_SBUS);
}