linux/arch/riscv/net/bpf_jit_comp.c

1699 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* BPF JIT compiler for RV64G
*
* Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
*
*/
#include <linux/bpf.h>
#include <linux/filter.h>
#include <asm/cacheflush.h>
enum {
RV_REG_ZERO = 0, /* The constant value 0 */
RV_REG_RA = 1, /* Return address */
RV_REG_SP = 2, /* Stack pointer */
RV_REG_GP = 3, /* Global pointer */
RV_REG_TP = 4, /* Thread pointer */
RV_REG_T0 = 5, /* Temporaries */
RV_REG_T1 = 6,
RV_REG_T2 = 7,
RV_REG_FP = 8,
RV_REG_S1 = 9, /* Saved registers */
RV_REG_A0 = 10, /* Function argument/return values */
RV_REG_A1 = 11, /* Function arguments */
RV_REG_A2 = 12,
RV_REG_A3 = 13,
RV_REG_A4 = 14,
RV_REG_A5 = 15,
RV_REG_A6 = 16,
RV_REG_A7 = 17,
RV_REG_S2 = 18, /* Saved registers */
RV_REG_S3 = 19,
RV_REG_S4 = 20,
RV_REG_S5 = 21,
RV_REG_S6 = 22,
RV_REG_S7 = 23,
RV_REG_S8 = 24,
RV_REG_S9 = 25,
RV_REG_S10 = 26,
RV_REG_S11 = 27,
RV_REG_T3 = 28, /* Temporaries */
RV_REG_T4 = 29,
RV_REG_T5 = 30,
RV_REG_T6 = 31,
};
#define RV_REG_TCC RV_REG_A6
#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
static const int regmap[] = {
[BPF_REG_0] = RV_REG_A5,
[BPF_REG_1] = RV_REG_A0,
[BPF_REG_2] = RV_REG_A1,
[BPF_REG_3] = RV_REG_A2,
[BPF_REG_4] = RV_REG_A3,
[BPF_REG_5] = RV_REG_A4,
[BPF_REG_6] = RV_REG_S1,
[BPF_REG_7] = RV_REG_S2,
[BPF_REG_8] = RV_REG_S3,
[BPF_REG_9] = RV_REG_S4,
[BPF_REG_FP] = RV_REG_S5,
[BPF_REG_AX] = RV_REG_T0,
};
enum {
RV_CTX_F_SEEN_TAIL_CALL = 0,
RV_CTX_F_SEEN_CALL = RV_REG_RA,
RV_CTX_F_SEEN_S1 = RV_REG_S1,
RV_CTX_F_SEEN_S2 = RV_REG_S2,
RV_CTX_F_SEEN_S3 = RV_REG_S3,
RV_CTX_F_SEEN_S4 = RV_REG_S4,
RV_CTX_F_SEEN_S5 = RV_REG_S5,
RV_CTX_F_SEEN_S6 = RV_REG_S6,
};
struct rv_jit_context {
struct bpf_prog *prog;
u32 *insns; /* RV insns */
int ninsns;
int epilogue_offset;
int *offset; /* BPF to RV */
unsigned long flags;
int stack_size;
};
struct rv_jit_data {
struct bpf_binary_header *header;
u8 *image;
struct rv_jit_context ctx;
};
static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
{
u8 reg = regmap[bpf_reg];
switch (reg) {
case RV_CTX_F_SEEN_S1:
case RV_CTX_F_SEEN_S2:
case RV_CTX_F_SEEN_S3:
case RV_CTX_F_SEEN_S4:
case RV_CTX_F_SEEN_S5:
case RV_CTX_F_SEEN_S6:
__set_bit(reg, &ctx->flags);
}
return reg;
};
static bool seen_reg(int reg, struct rv_jit_context *ctx)
{
switch (reg) {
case RV_CTX_F_SEEN_CALL:
case RV_CTX_F_SEEN_S1:
case RV_CTX_F_SEEN_S2:
case RV_CTX_F_SEEN_S3:
case RV_CTX_F_SEEN_S4:
case RV_CTX_F_SEEN_S5:
case RV_CTX_F_SEEN_S6:
return test_bit(reg, &ctx->flags);
}
return false;
}
static void mark_fp(struct rv_jit_context *ctx)
{
__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
}
static void mark_call(struct rv_jit_context *ctx)
{
__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
}
static bool seen_call(struct rv_jit_context *ctx)
{
return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
}
static void mark_tail_call(struct rv_jit_context *ctx)
{
__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
}
static bool seen_tail_call(struct rv_jit_context *ctx)
{
return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
}
static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
{
mark_tail_call(ctx);
if (seen_call(ctx)) {
__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
return RV_REG_S6;
}
return RV_REG_A6;
}
static void emit(const u32 insn, struct rv_jit_context *ctx)
{
if (ctx->insns)
ctx->insns[ctx->ninsns] = insn;
ctx->ninsns++;
}
static u32 rv_r_insn(u8 funct7, u8 rs2, u8 rs1, u8 funct3, u8 rd, u8 opcode)
{
return (funct7 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
(rd << 7) | opcode;
}
static u32 rv_i_insn(u16 imm11_0, u8 rs1, u8 funct3, u8 rd, u8 opcode)
{
return (imm11_0 << 20) | (rs1 << 15) | (funct3 << 12) | (rd << 7) |
opcode;
}
static u32 rv_s_insn(u16 imm11_0, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
{
u8 imm11_5 = imm11_0 >> 5, imm4_0 = imm11_0 & 0x1f;
return (imm11_5 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
(imm4_0 << 7) | opcode;
}
static u32 rv_sb_insn(u16 imm12_1, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
{
u8 imm12 = ((imm12_1 & 0x800) >> 5) | ((imm12_1 & 0x3f0) >> 4);
u8 imm4_1 = ((imm12_1 & 0xf) << 1) | ((imm12_1 & 0x400) >> 10);
return (imm12 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
(imm4_1 << 7) | opcode;
}
static u32 rv_u_insn(u32 imm31_12, u8 rd, u8 opcode)
{
return (imm31_12 << 12) | (rd << 7) | opcode;
}
static u32 rv_uj_insn(u32 imm20_1, u8 rd, u8 opcode)
{
u32 imm;
imm = (imm20_1 & 0x80000) | ((imm20_1 & 0x3ff) << 9) |
((imm20_1 & 0x400) >> 2) | ((imm20_1 & 0x7f800) >> 11);
return (imm << 12) | (rd << 7) | opcode;
}
static u32 rv_amo_insn(u8 funct5, u8 aq, u8 rl, u8 rs2, u8 rs1,
u8 funct3, u8 rd, u8 opcode)
{
u8 funct7 = (funct5 << 2) | (aq << 1) | rl;
return rv_r_insn(funct7, rs2, rs1, funct3, rd, opcode);
}
static u32 rv_addiw(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 0, rd, 0x1b);
}
static u32 rv_addi(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 0, rd, 0x13);
}
static u32 rv_addw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 0, rd, 0x3b);
}
static u32 rv_add(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 0, rd, 0x33);
}
static u32 rv_subw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x3b);
}
static u32 rv_sub(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x33);
}
static u32 rv_and(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 7, rd, 0x33);
}
static u32 rv_or(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 6, rd, 0x33);
}
static u32 rv_xor(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 4, rd, 0x33);
}
static u32 rv_mulw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 0, rd, 0x3b);
}
static u32 rv_mul(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 0, rd, 0x33);
}
static u32 rv_divuw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 5, rd, 0x3b);
}
static u32 rv_divu(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 5, rd, 0x33);
}
static u32 rv_remuw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 7, rd, 0x3b);
}
static u32 rv_remu(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(1, rs2, rs1, 7, rd, 0x33);
}
static u32 rv_sllw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 1, rd, 0x3b);
}
static u32 rv_sll(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 1, rd, 0x33);
}
static u32 rv_srlw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 5, rd, 0x3b);
}
static u32 rv_srl(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0, rs2, rs1, 5, rd, 0x33);
}
static u32 rv_sraw(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x3b);
}
static u32 rv_sra(u8 rd, u8 rs1, u8 rs2)
{
return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x33);
}
static u32 rv_lui(u8 rd, u32 imm31_12)
{
return rv_u_insn(imm31_12, rd, 0x37);
}
static u32 rv_slli(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 1, rd, 0x13);
}
static u32 rv_andi(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 7, rd, 0x13);
}
static u32 rv_ori(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 6, rd, 0x13);
}
static u32 rv_xori(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 4, rd, 0x13);
}
static u32 rv_slliw(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 1, rd, 0x1b);
}
static u32 rv_srliw(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 5, rd, 0x1b);
}
static u32 rv_srli(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 5, rd, 0x13);
}
static u32 rv_sraiw(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x1b);
}
static u32 rv_srai(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x13);
}
static u32 rv_jal(u8 rd, u32 imm20_1)
{
return rv_uj_insn(imm20_1, rd, 0x6f);
}
static u32 rv_jalr(u8 rd, u8 rs1, u16 imm11_0)
{
return rv_i_insn(imm11_0, rs1, 0, rd, 0x67);
}
static u32 rv_beq(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 0, 0x63);
}
static u32 rv_bltu(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 6, 0x63);
}
static u32 rv_bgeu(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 7, 0x63);
}
static u32 rv_bne(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 1, 0x63);
}
static u32 rv_blt(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 4, 0x63);
}
static u32 rv_bge(u8 rs1, u8 rs2, u16 imm12_1)
{
return rv_sb_insn(imm12_1, rs2, rs1, 5, 0x63);
}
static u32 rv_sb(u8 rs1, u16 imm11_0, u8 rs2)
{
return rv_s_insn(imm11_0, rs2, rs1, 0, 0x23);
}
static u32 rv_sh(u8 rs1, u16 imm11_0, u8 rs2)
{
return rv_s_insn(imm11_0, rs2, rs1, 1, 0x23);
}
static u32 rv_sw(u8 rs1, u16 imm11_0, u8 rs2)
{
return rv_s_insn(imm11_0, rs2, rs1, 2, 0x23);
}
static u32 rv_sd(u8 rs1, u16 imm11_0, u8 rs2)
{
return rv_s_insn(imm11_0, rs2, rs1, 3, 0x23);
}
static u32 rv_lbu(u8 rd, u16 imm11_0, u8 rs1)
{
return rv_i_insn(imm11_0, rs1, 4, rd, 0x03);
}
static u32 rv_lhu(u8 rd, u16 imm11_0, u8 rs1)
{
return rv_i_insn(imm11_0, rs1, 5, rd, 0x03);
}
static u32 rv_lwu(u8 rd, u16 imm11_0, u8 rs1)
{
return rv_i_insn(imm11_0, rs1, 6, rd, 0x03);
}
static u32 rv_ld(u8 rd, u16 imm11_0, u8 rs1)
{
return rv_i_insn(imm11_0, rs1, 3, rd, 0x03);
}
static u32 rv_amoadd_w(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
{
return rv_amo_insn(0, aq, rl, rs2, rs1, 2, rd, 0x2f);
}
static u32 rv_amoadd_d(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
{
return rv_amo_insn(0, aq, rl, rs2, rs1, 3, rd, 0x2f);
}
static u32 rv_auipc(u8 rd, u32 imm31_12)
{
return rv_u_insn(imm31_12, rd, 0x17);
}
static bool is_12b_int(s64 val)
{
return -(1 << 11) <= val && val < (1 << 11);
}
static bool is_13b_int(s64 val)
{
return -(1 << 12) <= val && val < (1 << 12);
}
static bool is_21b_int(s64 val)
{
return -(1L << 20) <= val && val < (1L << 20);
}
static bool is_32b_int(s64 val)
{
return -(1L << 31) <= val && val < (1L << 31);
}
static int is_12b_check(int off, int insn)
{
if (!is_12b_int(off)) {
pr_err("bpf-jit: insn=%d 12b < offset=%d not supported yet!\n",
insn, (int)off);
return -1;
}
return 0;
}
static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
{
/* Note that the immediate from the add is sign-extended,
* which means that we need to compensate this by adding 2^12,
* when the 12th bit is set. A simpler way of doing this, and
* getting rid of the check, is to just add 2**11 before the
* shift. The "Loading a 32-Bit constant" example from the
* "Computer Organization and Design, RISC-V edition" book by
* Patterson/Hennessy highlights this fact.
*
* This also means that we need to process LSB to MSB.
*/
s64 upper = (val + (1 << 11)) >> 12, lower = val & 0xfff;
int shift;
if (is_32b_int(val)) {
if (upper)
emit(rv_lui(rd, upper), ctx);
if (!upper) {
emit(rv_addi(rd, RV_REG_ZERO, lower), ctx);
return;
}
emit(rv_addiw(rd, rd, lower), ctx);
return;
}
shift = __ffs(upper);
upper >>= shift;
shift += 12;
emit_imm(rd, upper, ctx);
emit(rv_slli(rd, rd, shift), ctx);
if (lower)
emit(rv_addi(rd, rd, lower), ctx);
}
static int rv_offset(int insn, int off, struct rv_jit_context *ctx)
{
int from, to;
off++; /* BPF branch is from PC+1, RV is from PC */
from = (insn > 0) ? ctx->offset[insn - 1] : 0;
to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0;
return (to - from) << 2;
}
static int epilogue_offset(struct rv_jit_context *ctx)
{
int to = ctx->epilogue_offset, from = ctx->ninsns;
return (to - from) << 2;
}
static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
{
int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
if (seen_reg(RV_REG_RA, ctx)) {
emit(rv_ld(RV_REG_RA, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
emit(rv_ld(RV_REG_FP, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
if (seen_reg(RV_REG_S1, ctx)) {
emit(rv_ld(RV_REG_S1, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S2, ctx)) {
emit(rv_ld(RV_REG_S2, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S3, ctx)) {
emit(rv_ld(RV_REG_S3, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S4, ctx)) {
emit(rv_ld(RV_REG_S4, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S5, ctx)) {
emit(rv_ld(RV_REG_S5, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S6, ctx)) {
emit(rv_ld(RV_REG_S6, store_offset, RV_REG_SP), ctx);
store_offset -= 8;
}
emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx);
/* Set return value. */
if (!is_tail_call)
emit(rv_addi(RV_REG_A0, RV_REG_A5, 0), ctx);
emit(rv_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
is_tail_call ? 4 : 0), /* skip TCC init */
ctx);
}
/* return -1 or inverted cond */
static int invert_bpf_cond(u8 cond)
{
switch (cond) {
case BPF_JEQ:
return BPF_JNE;
case BPF_JGT:
return BPF_JLE;
case BPF_JLT:
return BPF_JGE;
case BPF_JGE:
return BPF_JLT;
case BPF_JLE:
return BPF_JGT;
case BPF_JNE:
return BPF_JEQ;
case BPF_JSGT:
return BPF_JSLE;
case BPF_JSLT:
return BPF_JSGE;
case BPF_JSGE:
return BPF_JSLT;
case BPF_JSLE:
return BPF_JSGT;
}
return -1;
}
static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
struct rv_jit_context *ctx)
{
switch (cond) {
case BPF_JEQ:
emit(rv_beq(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JGT:
emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
return;
case BPF_JLT:
emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JGE:
emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JLE:
emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
return;
case BPF_JNE:
emit(rv_bne(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JSGT:
emit(rv_blt(rs, rd, rvoff >> 1), ctx);
return;
case BPF_JSLT:
emit(rv_blt(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JSGE:
emit(rv_bge(rd, rs, rvoff >> 1), ctx);
return;
case BPF_JSLE:
emit(rv_bge(rs, rd, rvoff >> 1), ctx);
}
}
static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
struct rv_jit_context *ctx)
{
s64 upper, lower;
if (is_13b_int(rvoff)) {
emit_bcc(cond, rd, rs, rvoff, ctx);
return;
}
/* Adjust for jal */
rvoff -= 4;
/* Transform, e.g.:
* bne rd,rs,foo
* to
* beq rd,rs,<.L1>
* (auipc foo)
* jal(r) foo
* .L1
*/
cond = invert_bpf_cond(cond);
if (is_21b_int(rvoff)) {
emit_bcc(cond, rd, rs, 8, ctx);
emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
return;
}
/* 32b No need for an additional rvoff adjustment, since we
* get that from the auipc at PC', where PC = PC' + 4.
*/
upper = (rvoff + (1 << 11)) >> 12;
lower = rvoff & 0xfff;
emit_bcc(cond, rd, rs, 12, ctx);
emit(rv_auipc(RV_REG_T1, upper), ctx);
emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
}
static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
{
emit(rv_slli(reg, reg, 32), ctx);
emit(rv_srli(reg, reg, 32), ctx);
}
static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
{
int tc_ninsn, off, start_insn = ctx->ninsns;
u8 tcc = rv_tail_call_reg(ctx);
/* a0: &ctx
* a1: &array
* a2: index
*
* if (index >= array->map.max_entries)
* goto out;
*/
tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
ctx->offset[0];
emit_zext_32(RV_REG_A2, ctx);
off = offsetof(struct bpf_array, map.max_entries);
if (is_12b_check(off, insn))
return -1;
emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
/* if (TCC-- < 0)
* goto out;
*/
emit(rv_addi(RV_REG_T1, tcc, -1), ctx);
off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
/* prog = array->ptrs[index];
* if (!prog)
* goto out;
*/
emit(rv_slli(RV_REG_T2, RV_REG_A2, 3), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_A1), ctx);
off = offsetof(struct bpf_array, ptrs);
if (is_12b_check(off, insn))
return -1;
emit(rv_ld(RV_REG_T2, off, RV_REG_T2), ctx);
off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
/* goto *(prog->bpf_func + 4); */
off = offsetof(struct bpf_prog, bpf_func);
if (is_12b_check(off, insn))
return -1;
emit(rv_ld(RV_REG_T3, off, RV_REG_T2), ctx);
emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx);
__build_epilogue(true, ctx);
return 0;
}
static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
struct rv_jit_context *ctx)
{
u8 code = insn->code;
switch (code) {
case BPF_JMP | BPF_JA:
case BPF_JMP | BPF_CALL:
case BPF_JMP | BPF_EXIT:
case BPF_JMP | BPF_TAIL_CALL:
break;
default:
*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
}
if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
code & BPF_LDX || code & BPF_STX)
*rs = bpf_to_rv_reg(insn->src_reg, ctx);
}
static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
{
emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
emit_zext_32(RV_REG_T2, ctx);
emit(rv_addi(RV_REG_T1, *rs, 0), ctx);
emit_zext_32(RV_REG_T1, ctx);
*rd = RV_REG_T2;
*rs = RV_REG_T1;
}
static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
{
emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
emit(rv_addiw(RV_REG_T1, *rs, 0), ctx);
*rd = RV_REG_T2;
*rs = RV_REG_T1;
}
static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
{
emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
emit_zext_32(RV_REG_T2, ctx);
emit_zext_32(RV_REG_T1, ctx);
*rd = RV_REG_T2;
}
static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
{
emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
*rd = RV_REG_T2;
}
static void emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr,
struct rv_jit_context *ctx)
{
s64 upper, lower;
if (rvoff && is_21b_int(rvoff) && !force_jalr) {
emit(rv_jal(rd, rvoff >> 1), ctx);
return;
}
upper = (rvoff + (1 << 11)) >> 12;
lower = rvoff & 0xfff;
emit(rv_auipc(RV_REG_T1, upper), ctx);
emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
}
static bool is_signed_bpf_cond(u8 cond)
{
return cond == BPF_JSGT || cond == BPF_JSLT ||
cond == BPF_JSGE || cond == BPF_JSLE;
}
static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
{
s64 off = 0;
u64 ip;
u8 rd;
if (addr && ctx->insns) {
ip = (u64)(long)(ctx->insns + ctx->ninsns);
off = addr - ip;
if (!is_32b_int(off)) {
pr_err("bpf-jit: target call addr %pK is out of range\n",
(void *)addr);
return -ERANGE;
}
}
emit_jump_and_link(RV_REG_RA, off, !fixed, ctx);
rd = bpf_to_rv_reg(BPF_REG_0, ctx);
emit(rv_addi(rd, RV_REG_A0, 0), ctx);
return 0;
}
static int emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
bool extra_pass)
{
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
BPF_CLASS(insn->code) == BPF_JMP;
int s, e, rvoff, i = insn - ctx->prog->insnsi;
struct bpf_prog_aux *aux = ctx->prog->aux;
u8 rd = -1, rs = -1, code = insn->code;
s16 off = insn->off;
s32 imm = insn->imm;
init_regs(&rd, &rs, insn, ctx);
switch (code) {
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_X:
case BPF_ALU64 | BPF_MOV | BPF_X:
if (imm == 1) {
/* Special mov32 for zext */
emit_zext_32(rd, ctx);
break;
}
emit(is64 ? rv_addi(rd, rs, 0) : rv_addiw(rd, rs, 0), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = dst OP src */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
emit(is64 ? rv_add(rd, rd, rs) : rv_addw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
emit(is64 ? rv_sub(rd, rd, rs) : rv_subw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
emit(rv_and(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
emit(rv_or(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
emit(rv_xor(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_X:
emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_X:
emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_LSH | BPF_X:
emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
if (!is64)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = -dst */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
emit(is64 ? rv_sub(rd, RV_REG_ZERO, rd) :
rv_subw(rd, RV_REG_ZERO, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = BSWAP##imm(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE:
{
int shift = 64 - imm;
emit(rv_slli(rd, rd, shift), ctx);
emit(rv_srli(rd, rd, shift), ctx);
break;
}
case BPF_ALU | BPF_END | BPF_FROM_BE:
emit(rv_addi(RV_REG_T2, RV_REG_ZERO, 0), ctx);
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
if (imm == 16)
goto out_be;
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
if (imm == 32)
goto out_be;
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
out_be:
emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
emit(rv_addi(rd, RV_REG_T2, 0), ctx);
break;
/* dst = imm */
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_MOV | BPF_K:
emit_imm(rd, imm, ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = dst OP imm */
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
if (is_12b_int(imm)) {
emit(is64 ? rv_addi(rd, rd, imm) :
rv_addiw(rd, rd, imm), ctx);
} else {
emit_imm(RV_REG_T1, imm, ctx);
emit(is64 ? rv_add(rd, rd, RV_REG_T1) :
rv_addw(rd, rd, RV_REG_T1), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
if (is_12b_int(-imm)) {
emit(is64 ? rv_addi(rd, rd, -imm) :
rv_addiw(rd, rd, -imm), ctx);
} else {
emit_imm(RV_REG_T1, imm, ctx);
emit(is64 ? rv_sub(rd, rd, RV_REG_T1) :
rv_subw(rd, rd, RV_REG_T1), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
if (is_12b_int(imm)) {
emit(rv_andi(rd, rd, imm), ctx);
} else {
emit_imm(RV_REG_T1, imm, ctx);
emit(rv_and(rd, rd, RV_REG_T1), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
if (is_12b_int(imm)) {
emit(rv_ori(rd, rd, imm), ctx);
} else {
emit_imm(RV_REG_T1, imm, ctx);
emit(rv_or(rd, rd, RV_REG_T1), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
if (is_12b_int(imm)) {
emit(rv_xori(rd, rd, imm), ctx);
} else {
emit_imm(RV_REG_T1, imm, ctx);
emit(rv_xor(rd, rd, RV_REG_T1), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_K:
emit_imm(RV_REG_T1, imm, ctx);
emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
rv_mulw(rd, rd, RV_REG_T1), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
emit_imm(RV_REG_T1, imm, ctx);
emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
rv_divuw(rd, rd, RV_REG_T1), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_K:
emit_imm(RV_REG_T1, imm, ctx);
emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
rv_remuw(rd, rd, RV_REG_T1), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
emit(is64 ? rv_slli(rd, rd, imm) : rv_slliw(rd, rd, imm), ctx);
if (!is64)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
emit(is64 ? rv_srli(rd, rd, imm) : rv_srliw(rd, rd, imm), ctx);
if (!is64)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
emit(is64 ? rv_srai(rd, rd, imm) : rv_sraiw(rd, rd, imm), ctx);
if (!is64)
emit_zext_32(rd, ctx);
break;
/* JUMP off */
case BPF_JMP | BPF_JA:
rvoff = rv_offset(i, off, ctx);
emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
break;
/* IF (dst COND src) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
rvoff = rv_offset(i, off, ctx);
if (!is64) {
s = ctx->ninsns;
if (is_signed_bpf_cond(BPF_OP(code)))
emit_sext_32_rd_rs(&rd, &rs, ctx);
else
emit_zext_32_rd_rs(&rd, &rs, ctx);
e = ctx->ninsns;
/* Adjust for extra insns */
rvoff -= (e - s) << 2;
}
if (BPF_OP(code) == BPF_JSET) {
/* Adjust for and */
rvoff -= 4;
emit(rv_and(RV_REG_T1, rd, rs), ctx);
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
ctx);
} else {
emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
}
break;
/* IF (dst COND imm) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
rvoff = rv_offset(i, off, ctx);
s = ctx->ninsns;
emit_imm(RV_REG_T1, imm, ctx);
if (!is64) {
if (is_signed_bpf_cond(BPF_OP(code)))
emit_sext_32_rd(&rd, ctx);
else
emit_zext_32_rd_t1(&rd, ctx);
}
e = ctx->ninsns;
/* Adjust for extra insns */
rvoff -= (e - s) << 2;
if (BPF_OP(code) == BPF_JSET) {
/* Adjust for and */
rvoff -= 4;
emit(rv_and(RV_REG_T1, rd, RV_REG_T1), ctx);
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
ctx);
} else {
emit_branch(BPF_OP(code), rd, RV_REG_T1, rvoff, ctx);
}
break;
/* function call */
case BPF_JMP | BPF_CALL:
{
bool fixed;
int ret;
u64 addr;
mark_call(ctx);
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
&fixed);
if (ret < 0)
return ret;
ret = emit_call(fixed, addr, ctx);
if (ret)
return ret;
break;
}
/* tail call */
case BPF_JMP | BPF_TAIL_CALL:
if (emit_bpf_tail_call(i, ctx))
return -1;
break;
/* function return */
case BPF_JMP | BPF_EXIT:
if (i == ctx->prog->len - 1)
break;
rvoff = epilogue_offset(ctx);
emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
{
struct bpf_insn insn1 = insn[1];
u64 imm64;
imm64 = (u64)insn1.imm << 32 | (u32)imm;
emit_imm(rd, imm64, ctx);
return 1;
}
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_B:
if (is_12b_int(off)) {
emit(rv_lbu(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_LDX | BPF_MEM | BPF_H:
if (is_12b_int(off)) {
emit(rv_lhu(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_LDX | BPF_MEM | BPF_W:
if (is_12b_int(off)) {
emit(rv_lwu(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_LDX | BPF_MEM | BPF_DW:
if (is_12b_int(off)) {
emit(rv_ld(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
emit(rv_ld(rd, 0, RV_REG_T1), ctx);
break;
/* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_B:
emit_imm(RV_REG_T1, imm, ctx);
if (is_12b_int(off)) {
emit(rv_sb(rd, off, RV_REG_T1), ctx);
break;
}
emit_imm(RV_REG_T2, off, ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
break;
case BPF_ST | BPF_MEM | BPF_H:
emit_imm(RV_REG_T1, imm, ctx);
if (is_12b_int(off)) {
emit(rv_sh(rd, off, RV_REG_T1), ctx);
break;
}
emit_imm(RV_REG_T2, off, ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
break;
case BPF_ST | BPF_MEM | BPF_W:
emit_imm(RV_REG_T1, imm, ctx);
if (is_12b_int(off)) {
emit(rv_sw(rd, off, RV_REG_T1), ctx);
break;
}
emit_imm(RV_REG_T2, off, ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
emit(rv_sw(RV_REG_T2, 0, RV_REG_T1), ctx);
break;
case BPF_ST | BPF_MEM | BPF_DW:
emit_imm(RV_REG_T1, imm, ctx);
if (is_12b_int(off)) {
emit(rv_sd(rd, off, RV_REG_T1), ctx);
break;
}
emit_imm(RV_REG_T2, off, ctx);
emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
emit(rv_sd(RV_REG_T2, 0, RV_REG_T1), ctx);
break;
/* STX: *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_B:
if (is_12b_int(off)) {
emit(rv_sb(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
emit(rv_sb(RV_REG_T1, 0, rs), ctx);
break;
case BPF_STX | BPF_MEM | BPF_H:
if (is_12b_int(off)) {
emit(rv_sh(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
emit(rv_sh(RV_REG_T1, 0, rs), ctx);
break;
case BPF_STX | BPF_MEM | BPF_W:
if (is_12b_int(off)) {
emit(rv_sw(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
emit(rv_sw(RV_REG_T1, 0, rs), ctx);
break;
case BPF_STX | BPF_MEM | BPF_DW:
if (is_12b_int(off)) {
emit(rv_sd(rd, off, rs), ctx);
break;
}
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
emit(rv_sd(RV_REG_T1, 0, rs), ctx);
break;
/* STX XADD: lock *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W:
/* STX XADD: lock *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW:
if (off) {
if (is_12b_int(off)) {
emit(rv_addi(RV_REG_T1, rd, off), ctx);
} else {
emit_imm(RV_REG_T1, off, ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
}
rd = RV_REG_T1;
}
emit(BPF_SIZE(code) == BPF_W ?
rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) :
rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx);
break;
default:
pr_err("bpf-jit: unknown opcode %02x\n", code);
return -EINVAL;
}
return 0;
}
static void build_prologue(struct rv_jit_context *ctx)
{
int stack_adjust = 0, store_offset, bpf_stack_adjust;
bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
if (bpf_stack_adjust)
mark_fp(ctx);
if (seen_reg(RV_REG_RA, ctx))
stack_adjust += 8;
stack_adjust += 8; /* RV_REG_FP */
if (seen_reg(RV_REG_S1, ctx))
stack_adjust += 8;
if (seen_reg(RV_REG_S2, ctx))
stack_adjust += 8;
if (seen_reg(RV_REG_S3, ctx))
stack_adjust += 8;
if (seen_reg(RV_REG_S4, ctx))
stack_adjust += 8;
if (seen_reg(RV_REG_S5, ctx))
stack_adjust += 8;
if (seen_reg(RV_REG_S6, ctx))
stack_adjust += 8;
stack_adjust = round_up(stack_adjust, 16);
stack_adjust += bpf_stack_adjust;
store_offset = stack_adjust - 8;
/* First instruction is always setting the tail-call-counter
* (TCC) register. This instruction is skipped for tail calls.
*/
emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx);
if (seen_reg(RV_REG_RA, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_RA), ctx);
store_offset -= 8;
}
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_FP), ctx);
store_offset -= 8;
if (seen_reg(RV_REG_S1, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S1), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S2, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S2), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S3, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S3), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S4, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S4), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S5, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S5), ctx);
store_offset -= 8;
}
if (seen_reg(RV_REG_S6, ctx)) {
emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S6), ctx);
store_offset -= 8;
}
emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx);
if (bpf_stack_adjust)
emit(rv_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust), ctx);
/* Program contains calls and tail calls, so RV_REG_TCC need
* to be saved across calls.
*/
if (seen_tail_call(ctx) && seen_call(ctx))
emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx);
ctx->stack_size = stack_adjust;
}
static void build_epilogue(struct rv_jit_context *ctx)
{
__build_epilogue(false, ctx);
}
static int build_body(struct rv_jit_context *ctx, bool extra_pass, int *offset)
{
const struct bpf_prog *prog = ctx->prog;
int i;
for (i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &prog->insnsi[i];
int ret;
ret = emit_insn(insn, ctx, extra_pass);
if (ret > 0) {
i++;
if (offset)
offset[i] = ctx->ninsns;
continue;
}
if (offset)
offset[i] = ctx->ninsns;
if (ret)
return ret;
}
return 0;
}
static void bpf_fill_ill_insns(void *area, unsigned int size)
{
memset(area, 0, size);
}
static void bpf_flush_icache(void *start, void *end)
{
flush_icache_range((unsigned long)start, (unsigned long)end);
}
bool bpf_jit_needs_zext(void)
{
return true;
}
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
bool tmp_blinded = false, extra_pass = false;
struct bpf_prog *tmp, *orig_prog = prog;
int pass = 0, prev_ninsns = 0, i;
struct rv_jit_data *jit_data;
unsigned int image_size = 0;
struct rv_jit_context *ctx;
if (!prog->jit_requested)
return orig_prog;
tmp = bpf_jit_blind_constants(prog);
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
jit_data = prog->aux->jit_data;
if (!jit_data) {
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
if (!jit_data) {
prog = orig_prog;
goto out;
}
prog->aux->jit_data = jit_data;
}
ctx = &jit_data->ctx;
if (ctx->offset) {
extra_pass = true;
image_size = sizeof(u32) * ctx->ninsns;
goto skip_init_ctx;
}
ctx->prog = prog;
ctx->offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
if (!ctx->offset) {
prog = orig_prog;
goto out_offset;
}
for (i = 0; i < prog->len; i++) {
prev_ninsns += 32;
ctx->offset[i] = prev_ninsns;
}
for (i = 0; i < 16; i++) {
pass++;
ctx->ninsns = 0;
if (build_body(ctx, extra_pass, ctx->offset)) {
prog = orig_prog;
goto out_offset;
}
build_prologue(ctx);
ctx->epilogue_offset = ctx->ninsns;
build_epilogue(ctx);
if (ctx->ninsns == prev_ninsns) {
if (jit_data->header)
break;
image_size = sizeof(u32) * ctx->ninsns;
jit_data->header =
bpf_jit_binary_alloc(image_size,
&jit_data->image,
sizeof(u32),
bpf_fill_ill_insns);
if (!jit_data->header) {
prog = orig_prog;
goto out_offset;
}
ctx->insns = (u32 *)jit_data->image;
/* Now, when the image is allocated, the image
* can potentially shrink more (auipc/jalr ->
* jal).
*/
}
prev_ninsns = ctx->ninsns;
}
if (i == 16) {
pr_err("bpf-jit: image did not converge in <%d passes!\n", i);
bpf_jit_binary_free(jit_data->header);
prog = orig_prog;
goto out_offset;
}
skip_init_ctx:
pass++;
ctx->ninsns = 0;
build_prologue(ctx);
if (build_body(ctx, extra_pass, NULL)) {
bpf_jit_binary_free(jit_data->header);
prog = orig_prog;
goto out_offset;
}
build_epilogue(ctx);
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, image_size, pass, ctx->insns);
prog->bpf_func = (void *)ctx->insns;
prog->jited = 1;
prog->jited_len = image_size;
bpf_flush_icache(jit_data->header, ctx->insns + ctx->ninsns);
if (!prog->is_func || extra_pass) {
out_offset:
kfree(ctx->offset);
kfree(jit_data);
prog->aux->jit_data = NULL;
}
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
}
void *bpf_jit_alloc_exec(unsigned long size)
{
return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
BPF_JIT_REGION_END, GFP_KERNEL,
PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
void bpf_jit_free_exec(void *addr)
{
return vfree(addr);
}