linux/drivers/gpu/drm/nouveau/nv50_display.c

4503 lines
116 KiB
C

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <linux/dma-mapping.h>
#include <linux/hdmi.h>
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_edid.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
#include <nvif/cl5070.h>
#include <nvif/cl507a.h>
#include <nvif/cl507b.h>
#include <nvif/cl507c.h>
#include <nvif/cl507d.h>
#include <nvif/cl507e.h>
#include <nvif/event.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fence.h"
#include "nouveau_fbcon.h"
#include "nv50_display.h"
#define EVO_DMA_NR 9
#define EVO_MASTER (0x00)
#define EVO_FLIP(c) (0x01 + (c))
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
#define EVO_CURS(c) (0x0d + (c))
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
#define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
#define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
#define EVO_FLIP_NTFY0(c) EVO_SYNC((c) + 1, 0x20)
#define EVO_FLIP_NTFY1(c) EVO_SYNC((c) + 1, 0x30)
/******************************************************************************
* Atomic state
*****************************************************************************/
#define nv50_atom(p) container_of((p), struct nv50_atom, state)
struct nv50_atom {
struct drm_atomic_state state;
struct list_head outp;
bool lock_core;
bool flush_disable;
};
struct nv50_outp_atom {
struct list_head head;
struct drm_encoder *encoder;
bool flush_disable;
union {
struct {
bool ctrl:1;
};
u8 mask;
} clr;
union {
struct {
bool ctrl:1;
};
u8 mask;
} set;
};
#define nv50_head_atom(p) container_of((p), struct nv50_head_atom, state)
struct nv50_head_atom {
struct drm_crtc_state state;
struct {
u16 iW;
u16 iH;
u16 oW;
u16 oH;
} view;
struct nv50_head_mode {
bool interlace;
u32 clock;
struct {
u16 active;
u16 synce;
u16 blanke;
u16 blanks;
} h;
struct {
u32 active;
u16 synce;
u16 blanke;
u16 blanks;
u16 blank2s;
u16 blank2e;
u16 blankus;
} v;
} mode;
struct {
u32 handle;
u64 offset:40;
} lut;
struct {
bool visible;
u32 handle;
u64 offset:40;
u8 format;
u8 kind:7;
u8 layout:1;
u8 block:4;
u32 pitch:20;
u16 x;
u16 y;
u16 w;
u16 h;
} core;
struct {
bool visible;
u32 handle;
u64 offset:40;
u8 layout:1;
u8 format:1;
} curs;
struct {
u8 depth;
u8 cpp;
u16 x;
u16 y;
u16 w;
u16 h;
} base;
struct {
u8 cpp;
} ovly;
struct {
bool enable:1;
u8 bits:2;
u8 mode:4;
} dither;
struct {
struct {
u16 cos:12;
u16 sin:12;
} sat;
} procamp;
union {
struct {
bool core:1;
bool curs:1;
};
u8 mask;
} clr;
union {
struct {
bool core:1;
bool curs:1;
bool view:1;
bool mode:1;
bool base:1;
bool ovly:1;
bool dither:1;
bool procamp:1;
};
u16 mask;
} set;
};
static inline struct nv50_head_atom *
nv50_head_atom_get(struct drm_atomic_state *state, struct drm_crtc *crtc)
{
struct drm_crtc_state *statec = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(statec))
return (void *)statec;
return nv50_head_atom(statec);
}
#define nv50_wndw_atom(p) container_of((p), struct nv50_wndw_atom, state)
struct nv50_wndw_atom {
struct drm_plane_state state;
u8 interval;
struct drm_rect clip;
struct {
u32 handle;
u16 offset:12;
bool awaken:1;
} ntfy;
struct {
u32 handle;
u16 offset:12;
u32 acquire;
u32 release;
} sema;
struct {
u8 enable:2;
} lut;
struct {
u8 mode:2;
u8 interval:4;
u8 format;
u8 kind:7;
u8 layout:1;
u8 block:4;
u32 pitch:20;
u16 w;
u16 h;
u32 handle;
u64 offset;
} image;
struct {
u16 x;
u16 y;
} point;
union {
struct {
bool ntfy:1;
bool sema:1;
bool image:1;
};
u8 mask;
} clr;
union {
struct {
bool ntfy:1;
bool sema:1;
bool image:1;
bool lut:1;
bool point:1;
};
u8 mask;
} set;
};
/******************************************************************************
* EVO channel
*****************************************************************************/
struct nv50_chan {
struct nvif_object user;
struct nvif_device *device;
};
static int
nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size,
struct nv50_chan *chan)
{
struct nvif_sclass *sclass;
int ret, i, n;
chan->device = device;
ret = n = nvif_object_sclass_get(disp, &sclass);
if (ret < 0)
return ret;
while (oclass[0]) {
for (i = 0; i < n; i++) {
if (sclass[i].oclass == oclass[0]) {
ret = nvif_object_init(disp, 0, oclass[0],
data, size, &chan->user);
if (ret == 0)
nvif_object_map(&chan->user);
nvif_object_sclass_put(&sclass);
return ret;
}
}
oclass++;
}
nvif_object_sclass_put(&sclass);
return -ENOSYS;
}
static void
nv50_chan_destroy(struct nv50_chan *chan)
{
nvif_object_fini(&chan->user);
}
/******************************************************************************
* PIO EVO channel
*****************************************************************************/
struct nv50_pioc {
struct nv50_chan base;
};
static void
nv50_pioc_destroy(struct nv50_pioc *pioc)
{
nv50_chan_destroy(&pioc->base);
}
static int
nv50_pioc_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size,
struct nv50_pioc *pioc)
{
return nv50_chan_create(device, disp, oclass, head, data, size,
&pioc->base);
}
/******************************************************************************
* Overlay Immediate
*****************************************************************************/
struct nv50_oimm {
struct nv50_pioc base;
};
static int
nv50_oimm_create(struct nvif_device *device, struct nvif_object *disp,
int head, struct nv50_oimm *oimm)
{
struct nv50_disp_cursor_v0 args = {
.head = head,
};
static const s32 oclass[] = {
GK104_DISP_OVERLAY,
GF110_DISP_OVERLAY,
GT214_DISP_OVERLAY,
G82_DISP_OVERLAY,
NV50_DISP_OVERLAY,
0
};
return nv50_pioc_create(device, disp, oclass, head, &args, sizeof(args),
&oimm->base);
}
/******************************************************************************
* DMA EVO channel
*****************************************************************************/
struct nv50_dmac_ctxdma {
struct list_head head;
struct nvif_object object;
};
struct nv50_dmac {
struct nv50_chan base;
dma_addr_t handle;
u32 *ptr;
struct nvif_object sync;
struct nvif_object vram;
struct list_head ctxdma;
/* Protects against concurrent pushbuf access to this channel, lock is
* grabbed by evo_wait (if the pushbuf reservation is successful) and
* dropped again by evo_kick. */
struct mutex lock;
};
static void
nv50_dmac_ctxdma_del(struct nv50_dmac_ctxdma *ctxdma)
{
nvif_object_fini(&ctxdma->object);
list_del(&ctxdma->head);
kfree(ctxdma);
}
static struct nv50_dmac_ctxdma *
nv50_dmac_ctxdma_new(struct nv50_dmac *dmac, struct nouveau_framebuffer *fb)
{
struct nouveau_drm *drm = nouveau_drm(fb->base.dev);
struct nv50_dmac_ctxdma *ctxdma;
const u8 kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8;
const u32 handle = 0xfb000000 | kind;
struct {
struct nv_dma_v0 base;
union {
struct nv50_dma_v0 nv50;
struct gf100_dma_v0 gf100;
struct gf119_dma_v0 gf119;
};
} args = {};
u32 argc = sizeof(args.base);
int ret;
list_for_each_entry(ctxdma, &dmac->ctxdma, head) {
if (ctxdma->object.handle == handle)
return ctxdma;
}
if (!(ctxdma = kzalloc(sizeof(*ctxdma), GFP_KERNEL)))
return ERR_PTR(-ENOMEM);
list_add(&ctxdma->head, &dmac->ctxdma);
args.base.target = NV_DMA_V0_TARGET_VRAM;
args.base.access = NV_DMA_V0_ACCESS_RDWR;
args.base.start = 0;
args.base.limit = drm->client.device.info.ram_user - 1;
if (drm->client.device.info.chipset < 0x80) {
args.nv50.part = NV50_DMA_V0_PART_256;
argc += sizeof(args.nv50);
} else
if (drm->client.device.info.chipset < 0xc0) {
args.nv50.part = NV50_DMA_V0_PART_256;
args.nv50.kind = kind;
argc += sizeof(args.nv50);
} else
if (drm->client.device.info.chipset < 0xd0) {
args.gf100.kind = kind;
argc += sizeof(args.gf100);
} else {
args.gf119.page = GF119_DMA_V0_PAGE_LP;
args.gf119.kind = kind;
argc += sizeof(args.gf119);
}
ret = nvif_object_init(&dmac->base.user, handle, NV_DMA_IN_MEMORY,
&args, argc, &ctxdma->object);
if (ret) {
nv50_dmac_ctxdma_del(ctxdma);
return ERR_PTR(ret);
}
return ctxdma;
}
static void
nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp)
{
struct nvif_device *device = dmac->base.device;
struct nv50_dmac_ctxdma *ctxdma, *ctxtmp;
list_for_each_entry_safe(ctxdma, ctxtmp, &dmac->ctxdma, head) {
nv50_dmac_ctxdma_del(ctxdma);
}
nvif_object_fini(&dmac->vram);
nvif_object_fini(&dmac->sync);
nv50_chan_destroy(&dmac->base);
if (dmac->ptr) {
struct device *dev = nvxx_device(device)->dev;
dma_free_coherent(dev, PAGE_SIZE, dmac->ptr, dmac->handle);
}
}
static int
nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
struct nv50_dmac *dmac)
{
struct nv50_disp_core_channel_dma_v0 *args = data;
struct nvif_object pushbuf;
int ret;
mutex_init(&dmac->lock);
dmac->ptr = dma_alloc_coherent(nvxx_device(device)->dev, PAGE_SIZE,
&dmac->handle, GFP_KERNEL);
if (!dmac->ptr)
return -ENOMEM;
ret = nvif_object_init(&device->object, 0, NV_DMA_FROM_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_PCI_US,
.access = NV_DMA_V0_ACCESS_RD,
.start = dmac->handle + 0x0000,
.limit = dmac->handle + 0x0fff,
}, sizeof(struct nv_dma_v0), &pushbuf);
if (ret)
return ret;
args->pushbuf = nvif_handle(&pushbuf);
ret = nv50_chan_create(device, disp, oclass, head, data, size,
&dmac->base);
nvif_object_fini(&pushbuf);
if (ret)
return ret;
ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = syncbuf + 0x0000,
.limit = syncbuf + 0x0fff,
}, sizeof(struct nv_dma_v0),
&dmac->sync);
if (ret)
return ret;
ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = 0,
.limit = device->info.ram_user - 1,
}, sizeof(struct nv_dma_v0),
&dmac->vram);
if (ret)
return ret;
INIT_LIST_HEAD(&dmac->ctxdma);
return ret;
}
/******************************************************************************
* Core
*****************************************************************************/
struct nv50_mast {
struct nv50_dmac base;
};
static int
nv50_core_create(struct nvif_device *device, struct nvif_object *disp,
u64 syncbuf, struct nv50_mast *core)
{
struct nv50_disp_core_channel_dma_v0 args = {
.pushbuf = 0xb0007d00,
};
static const s32 oclass[] = {
GP102_DISP_CORE_CHANNEL_DMA,
GP100_DISP_CORE_CHANNEL_DMA,
GM200_DISP_CORE_CHANNEL_DMA,
GM107_DISP_CORE_CHANNEL_DMA,
GK110_DISP_CORE_CHANNEL_DMA,
GK104_DISP_CORE_CHANNEL_DMA,
GF110_DISP_CORE_CHANNEL_DMA,
GT214_DISP_CORE_CHANNEL_DMA,
GT206_DISP_CORE_CHANNEL_DMA,
GT200_DISP_CORE_CHANNEL_DMA,
G82_DISP_CORE_CHANNEL_DMA,
NV50_DISP_CORE_CHANNEL_DMA,
0
};
return nv50_dmac_create(device, disp, oclass, 0, &args, sizeof(args),
syncbuf, &core->base);
}
/******************************************************************************
* Base
*****************************************************************************/
struct nv50_sync {
struct nv50_dmac base;
u32 addr;
u32 data;
};
static int
nv50_base_create(struct nvif_device *device, struct nvif_object *disp,
int head, u64 syncbuf, struct nv50_sync *base)
{
struct nv50_disp_base_channel_dma_v0 args = {
.pushbuf = 0xb0007c00 | head,
.head = head,
};
static const s32 oclass[] = {
GK110_DISP_BASE_CHANNEL_DMA,
GK104_DISP_BASE_CHANNEL_DMA,
GF110_DISP_BASE_CHANNEL_DMA,
GT214_DISP_BASE_CHANNEL_DMA,
GT200_DISP_BASE_CHANNEL_DMA,
G82_DISP_BASE_CHANNEL_DMA,
NV50_DISP_BASE_CHANNEL_DMA,
0
};
return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args),
syncbuf, &base->base);
}
/******************************************************************************
* Overlay
*****************************************************************************/
struct nv50_ovly {
struct nv50_dmac base;
};
static int
nv50_ovly_create(struct nvif_device *device, struct nvif_object *disp,
int head, u64 syncbuf, struct nv50_ovly *ovly)
{
struct nv50_disp_overlay_channel_dma_v0 args = {
.pushbuf = 0xb0007e00 | head,
.head = head,
};
static const s32 oclass[] = {
GK104_DISP_OVERLAY_CONTROL_DMA,
GF110_DISP_OVERLAY_CONTROL_DMA,
GT214_DISP_OVERLAY_CHANNEL_DMA,
GT200_DISP_OVERLAY_CHANNEL_DMA,
G82_DISP_OVERLAY_CHANNEL_DMA,
NV50_DISP_OVERLAY_CHANNEL_DMA,
0
};
return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args),
syncbuf, &ovly->base);
}
struct nv50_head {
struct nouveau_crtc base;
struct nv50_ovly ovly;
struct nv50_oimm oimm;
};
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv50_chan(c)->user.oclass
struct nv50_disp {
struct nvif_object *disp;
struct nv50_mast mast;
struct nouveau_bo *sync;
struct mutex mutex;
};
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
{
return nouveau_display(dev)->priv;
}
#define nv50_mast(d) (&nv50_disp(d)->mast)
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
static u32 *
evo_wait(void *evoc, int nr)
{
struct nv50_dmac *dmac = evoc;
struct nvif_device *device = dmac->base.device;
u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
mutex_lock(&dmac->lock);
if (put + nr >= (PAGE_SIZE / 4) - 8) {
dmac->ptr[put] = 0x20000000;
nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
if (nvif_msec(device, 2000,
if (!nvif_rd32(&dmac->base.user, 0x0004))
break;
) < 0) {
mutex_unlock(&dmac->lock);
pr_err("nouveau: evo channel stalled\n");
return NULL;
}
put = 0;
}
return dmac->ptr + put;
}
static void
evo_kick(u32 *push, void *evoc)
{
struct nv50_dmac *dmac = evoc;
nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
mutex_unlock(&dmac->lock);
}
#define evo_mthd(p, m, s) do { \
const u32 _m = (m), _s = (s); \
if (drm_debug & DRM_UT_KMS) \
pr_err("%04x %d %s\n", _m, _s, __func__); \
*((p)++) = ((_s << 18) | _m); \
} while(0)
#define evo_data(p, d) do { \
const u32 _d = (d); \
if (drm_debug & DRM_UT_KMS) \
pr_err("\t%08x\n", _d); \
*((p)++) = _d; \
} while(0)
/******************************************************************************
* Plane
*****************************************************************************/
#define nv50_wndw(p) container_of((p), struct nv50_wndw, plane)
struct nv50_wndw {
const struct nv50_wndw_func *func;
struct nv50_dmac *dmac;
struct drm_plane plane;
struct nvif_notify notify;
u16 ntfy;
u16 sema;
u32 data;
};
struct nv50_wndw_func {
void *(*dtor)(struct nv50_wndw *);
int (*acquire)(struct nv50_wndw *, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh);
void (*release)(struct nv50_wndw *, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh);
void (*prepare)(struct nv50_wndw *, struct nv50_head_atom *asyh,
struct nv50_wndw_atom *asyw);
void (*sema_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*sema_clr)(struct nv50_wndw *);
void (*ntfy_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*ntfy_clr)(struct nv50_wndw *);
int (*ntfy_wait_begun)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*image_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*image_clr)(struct nv50_wndw *);
void (*lut)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*point)(struct nv50_wndw *, struct nv50_wndw_atom *);
u32 (*update)(struct nv50_wndw *, u32 interlock);
};
static int
nv50_wndw_wait_armed(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
if (asyw->set.ntfy)
return wndw->func->ntfy_wait_begun(wndw, asyw);
return 0;
}
static u32
nv50_wndw_flush_clr(struct nv50_wndw *wndw, u32 interlock, bool flush,
struct nv50_wndw_atom *asyw)
{
if (asyw->clr.sema && (!asyw->set.sema || flush))
wndw->func->sema_clr(wndw);
if (asyw->clr.ntfy && (!asyw->set.ntfy || flush))
wndw->func->ntfy_clr(wndw);
if (asyw->clr.image && (!asyw->set.image || flush))
wndw->func->image_clr(wndw);
return flush ? wndw->func->update(wndw, interlock) : 0;
}
static u32
nv50_wndw_flush_set(struct nv50_wndw *wndw, u32 interlock,
struct nv50_wndw_atom *asyw)
{
if (interlock) {
asyw->image.mode = 0;
asyw->image.interval = 1;
}
if (asyw->set.sema ) wndw->func->sema_set (wndw, asyw);
if (asyw->set.ntfy ) wndw->func->ntfy_set (wndw, asyw);
if (asyw->set.image) wndw->func->image_set(wndw, asyw);
if (asyw->set.lut ) wndw->func->lut (wndw, asyw);
if (asyw->set.point) wndw->func->point (wndw, asyw);
return wndw->func->update(wndw, interlock);
}
static void
nv50_wndw_atomic_check_release(struct nv50_wndw *wndw,
struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
NV_ATOMIC(drm, "%s release\n", wndw->plane.name);
wndw->func->release(wndw, asyw, asyh);
asyw->ntfy.handle = 0;
asyw->sema.handle = 0;
}
static int
nv50_wndw_atomic_check_acquire(struct nv50_wndw *wndw,
struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(asyw->state.fb);
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
int ret;
NV_ATOMIC(drm, "%s acquire\n", wndw->plane.name);
asyw->clip.x1 = 0;
asyw->clip.y1 = 0;
asyw->clip.x2 = asyh->state.mode.hdisplay;
asyw->clip.y2 = asyh->state.mode.vdisplay;
asyw->image.w = fb->base.width;
asyw->image.h = fb->base.height;
asyw->image.kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8;
if (asyh->state.pageflip_flags & DRM_MODE_PAGE_FLIP_ASYNC)
asyw->interval = 0;
else
asyw->interval = 1;
if (asyw->image.kind) {
asyw->image.layout = 0;
if (drm->client.device.info.chipset >= 0xc0)
asyw->image.block = fb->nvbo->tile_mode >> 4;
else
asyw->image.block = fb->nvbo->tile_mode;
asyw->image.pitch = (fb->base.pitches[0] / 4) << 4;
} else {
asyw->image.layout = 1;
asyw->image.block = 0;
asyw->image.pitch = fb->base.pitches[0];
}
ret = wndw->func->acquire(wndw, asyw, asyh);
if (ret)
return ret;
if (asyw->set.image) {
if (!(asyw->image.mode = asyw->interval ? 0 : 1))
asyw->image.interval = asyw->interval;
else
asyw->image.interval = 0;
}
return 0;
}
static int
nv50_wndw_atomic_check(struct drm_plane *plane, struct drm_plane_state *state)
{
struct nouveau_drm *drm = nouveau_drm(plane->dev);
struct nv50_wndw *wndw = nv50_wndw(plane);
struct nv50_wndw_atom *armw = nv50_wndw_atom(wndw->plane.state);
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
struct nv50_head_atom *harm = NULL, *asyh = NULL;
bool varm = false, asyv = false, asym = false;
int ret;
NV_ATOMIC(drm, "%s atomic_check\n", plane->name);
if (asyw->state.crtc) {
asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc);
if (IS_ERR(asyh))
return PTR_ERR(asyh);
asym = drm_atomic_crtc_needs_modeset(&asyh->state);
asyv = asyh->state.active;
}
if (armw->state.crtc) {
harm = nv50_head_atom_get(asyw->state.state, armw->state.crtc);
if (IS_ERR(harm))
return PTR_ERR(harm);
varm = harm->state.crtc->state->active;
}
if (asyv) {
asyw->point.x = asyw->state.crtc_x;
asyw->point.y = asyw->state.crtc_y;
if (memcmp(&armw->point, &asyw->point, sizeof(asyw->point)))
asyw->set.point = true;
ret = nv50_wndw_atomic_check_acquire(wndw, asyw, asyh);
if (ret)
return ret;
} else
if (varm) {
nv50_wndw_atomic_check_release(wndw, asyw, harm);
} else {
return 0;
}
if (!asyv || asym) {
asyw->clr.ntfy = armw->ntfy.handle != 0;
asyw->clr.sema = armw->sema.handle != 0;
if (wndw->func->image_clr)
asyw->clr.image = armw->image.handle != 0;
asyw->set.lut = wndw->func->lut && asyv;
}
return 0;
}
static void
nv50_wndw_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(old_state->fb);
struct nouveau_drm *drm = nouveau_drm(plane->dev);
NV_ATOMIC(drm, "%s cleanup: %p\n", plane->name, old_state->fb);
if (!old_state->fb)
return;
nouveau_bo_unpin(fb->nvbo);
}
static int
nv50_wndw_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(state->fb);
struct nouveau_drm *drm = nouveau_drm(plane->dev);
struct nv50_wndw *wndw = nv50_wndw(plane);
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
struct nv50_head_atom *asyh;
struct nv50_dmac_ctxdma *ctxdma;
int ret;
NV_ATOMIC(drm, "%s prepare: %p\n", plane->name, state->fb);
if (!asyw->state.fb)
return 0;
ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM, true);
if (ret)
return ret;
ctxdma = nv50_dmac_ctxdma_new(wndw->dmac, fb);
if (IS_ERR(ctxdma)) {
nouveau_bo_unpin(fb->nvbo);
return PTR_ERR(ctxdma);
}
asyw->state.fence = reservation_object_get_excl_rcu(fb->nvbo->bo.resv);
asyw->image.handle = ctxdma->object.handle;
asyw->image.offset = fb->nvbo->bo.offset;
if (wndw->func->prepare) {
asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc);
if (IS_ERR(asyh))
return PTR_ERR(asyh);
wndw->func->prepare(wndw, asyh, asyw);
}
return 0;
}
static const struct drm_plane_helper_funcs
nv50_wndw_helper = {
.prepare_fb = nv50_wndw_prepare_fb,
.cleanup_fb = nv50_wndw_cleanup_fb,
.atomic_check = nv50_wndw_atomic_check,
};
static void
nv50_wndw_atomic_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
__drm_atomic_helper_plane_destroy_state(&asyw->state);
kfree(asyw);
}
static struct drm_plane_state *
nv50_wndw_atomic_duplicate_state(struct drm_plane *plane)
{
struct nv50_wndw_atom *armw = nv50_wndw_atom(plane->state);
struct nv50_wndw_atom *asyw;
if (!(asyw = kmalloc(sizeof(*asyw), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &asyw->state);
asyw->interval = 1;
asyw->sema = armw->sema;
asyw->ntfy = armw->ntfy;
asyw->image = armw->image;
asyw->point = armw->point;
asyw->lut = armw->lut;
asyw->clr.mask = 0;
asyw->set.mask = 0;
return &asyw->state;
}
static void
nv50_wndw_reset(struct drm_plane *plane)
{
struct nv50_wndw_atom *asyw;
if (WARN_ON(!(asyw = kzalloc(sizeof(*asyw), GFP_KERNEL))))
return;
if (plane->state)
plane->funcs->atomic_destroy_state(plane, plane->state);
plane->state = &asyw->state;
plane->state->plane = plane;
plane->state->rotation = DRM_MODE_ROTATE_0;
}
static void
nv50_wndw_destroy(struct drm_plane *plane)
{
struct nv50_wndw *wndw = nv50_wndw(plane);
void *data;
nvif_notify_fini(&wndw->notify);
data = wndw->func->dtor(wndw);
drm_plane_cleanup(&wndw->plane);
kfree(data);
}
static const struct drm_plane_funcs
nv50_wndw = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = nv50_wndw_destroy,
.reset = nv50_wndw_reset,
.set_property = drm_atomic_helper_plane_set_property,
.atomic_duplicate_state = nv50_wndw_atomic_duplicate_state,
.atomic_destroy_state = nv50_wndw_atomic_destroy_state,
};
static void
nv50_wndw_fini(struct nv50_wndw *wndw)
{
nvif_notify_put(&wndw->notify);
}
static void
nv50_wndw_init(struct nv50_wndw *wndw)
{
nvif_notify_get(&wndw->notify);
}
static int
nv50_wndw_ctor(const struct nv50_wndw_func *func, struct drm_device *dev,
enum drm_plane_type type, const char *name, int index,
struct nv50_dmac *dmac, const u32 *format, int nformat,
struct nv50_wndw *wndw)
{
int ret;
wndw->func = func;
wndw->dmac = dmac;
ret = drm_universal_plane_init(dev, &wndw->plane, 0, &nv50_wndw, format,
nformat, type, "%s-%d", name, index);
if (ret)
return ret;
drm_plane_helper_add(&wndw->plane, &nv50_wndw_helper);
return 0;
}
/******************************************************************************
* Cursor plane
*****************************************************************************/
#define nv50_curs(p) container_of((p), struct nv50_curs, wndw)
struct nv50_curs {
struct nv50_wndw wndw;
struct nvif_object chan;
};
static u32
nv50_curs_update(struct nv50_wndw *wndw, u32 interlock)
{
struct nv50_curs *curs = nv50_curs(wndw);
nvif_wr32(&curs->chan, 0x0080, 0x00000000);
return 0;
}
static void
nv50_curs_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_curs *curs = nv50_curs(wndw);
nvif_wr32(&curs->chan, 0x0084, (asyw->point.y << 16) | asyw->point.x);
}
static void
nv50_curs_prepare(struct nv50_wndw *wndw, struct nv50_head_atom *asyh,
struct nv50_wndw_atom *asyw)
{
u32 handle = nv50_disp(wndw->plane.dev)->mast.base.vram.handle;
u32 offset = asyw->image.offset;
if (asyh->curs.handle != handle || asyh->curs.offset != offset) {
asyh->curs.handle = handle;
asyh->curs.offset = offset;
asyh->set.curs = asyh->curs.visible;
}
}
static void
nv50_curs_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
asyh->curs.visible = false;
}
static int
nv50_curs_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
int ret;
ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true);
asyh->curs.visible = asyw->state.visible;
if (ret || !asyh->curs.visible)
return ret;
switch (asyw->state.fb->width) {
case 32: asyh->curs.layout = 0; break;
case 64: asyh->curs.layout = 1; break;
default:
return -EINVAL;
}
if (asyw->state.fb->width != asyw->state.fb->height)
return -EINVAL;
switch (asyw->state.fb->format->format) {
case DRM_FORMAT_ARGB8888: asyh->curs.format = 1; break;
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static void *
nv50_curs_dtor(struct nv50_wndw *wndw)
{
struct nv50_curs *curs = nv50_curs(wndw);
nvif_object_fini(&curs->chan);
return curs;
}
static const u32
nv50_curs_format[] = {
DRM_FORMAT_ARGB8888,
};
static const struct nv50_wndw_func
nv50_curs = {
.dtor = nv50_curs_dtor,
.acquire = nv50_curs_acquire,
.release = nv50_curs_release,
.prepare = nv50_curs_prepare,
.point = nv50_curs_point,
.update = nv50_curs_update,
};
static int
nv50_curs_new(struct nouveau_drm *drm, struct nv50_head *head,
struct nv50_curs **pcurs)
{
static const struct nvif_mclass curses[] = {
{ GK104_DISP_CURSOR, 0 },
{ GF110_DISP_CURSOR, 0 },
{ GT214_DISP_CURSOR, 0 },
{ G82_DISP_CURSOR, 0 },
{ NV50_DISP_CURSOR, 0 },
{}
};
struct nv50_disp_cursor_v0 args = {
.head = head->base.index,
};
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_curs *curs;
int cid, ret;
cid = nvif_mclass(disp->disp, curses);
if (cid < 0) {
NV_ERROR(drm, "No supported cursor immediate class\n");
return cid;
}
if (!(curs = *pcurs = kzalloc(sizeof(*curs), GFP_KERNEL)))
return -ENOMEM;
ret = nv50_wndw_ctor(&nv50_curs, drm->dev, DRM_PLANE_TYPE_CURSOR,
"curs", head->base.index, &disp->mast.base,
nv50_curs_format, ARRAY_SIZE(nv50_curs_format),
&curs->wndw);
if (ret) {
kfree(curs);
return ret;
}
ret = nvif_object_init(disp->disp, 0, curses[cid].oclass, &args,
sizeof(args), &curs->chan);
if (ret) {
NV_ERROR(drm, "curs%04x allocation failed: %d\n",
curses[cid].oclass, ret);
return ret;
}
return 0;
}
/******************************************************************************
* Primary plane
*****************************************************************************/
#define nv50_base(p) container_of((p), struct nv50_base, wndw)
struct nv50_base {
struct nv50_wndw wndw;
struct nv50_sync chan;
int id;
};
static int
nv50_base_notify(struct nvif_notify *notify)
{
return NVIF_NOTIFY_KEEP;
}
static void
nv50_base_lut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, asyw->lut.enable << 30);
evo_kick(push, &base->chan);
}
}
static void
nv50_base_image_clr(struct nv50_wndw *wndw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 4))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_kick(push, &base->chan);
}
}
static void
nv50_base_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
const s32 oclass = base->chan.base.base.user.oclass;
u32 *push;
if ((push = evo_wait(&base->chan, 10))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, (asyw->image.mode << 8) |
(asyw->image.interval << 4));
evo_mthd(push, 0x00c0, 1);
evo_data(push, asyw->image.handle);
if (oclass < G82_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 20) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, (asyw->image.kind << 16) |
(asyw->image.format << 8));
} else
if (oclass < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 20) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, asyw->image.format << 8);
} else {
evo_mthd(push, 0x0400, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 24) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, asyw->image.format << 8);
}
evo_kick(push, &base->chan);
}
}
static void
nv50_base_ntfy_clr(struct nv50_wndw *wndw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x00a4, 1);
evo_data(push, 0x00000000);
evo_kick(push, &base->chan);
}
}
static void
nv50_base_ntfy_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 3))) {
evo_mthd(push, 0x00a0, 2);
evo_data(push, (asyw->ntfy.awaken << 30) | asyw->ntfy.offset);
evo_data(push, asyw->ntfy.handle);
evo_kick(push, &base->chan);
}
}
static void
nv50_base_sema_clr(struct nv50_wndw *wndw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_kick(push, &base->chan);
}
}
static void
nv50_base_sema_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 5))) {
evo_mthd(push, 0x0088, 4);
evo_data(push, asyw->sema.offset);
evo_data(push, asyw->sema.acquire);
evo_data(push, asyw->sema.release);
evo_data(push, asyw->sema.handle);
evo_kick(push, &base->chan);
}
}
static u32
nv50_base_update(struct nv50_wndw *wndw, u32 interlock)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if (!(push = evo_wait(&base->chan, 2)))
return 0;
evo_mthd(push, 0x0080, 1);
evo_data(push, interlock);
evo_kick(push, &base->chan);
if (base->chan.base.base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA)
return interlock ? 2 << (base->id * 8) : 0;
return interlock ? 2 << (base->id * 4) : 0;
}
static int
nv50_base_ntfy_wait_begun(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
struct nv50_disp *disp = nv50_disp(wndw->plane.dev);
if (nvif_msec(&drm->client.device, 2000ULL,
u32 data = nouveau_bo_rd32(disp->sync, asyw->ntfy.offset / 4);
if ((data & 0xc0000000) == 0x40000000)
break;
usleep_range(1, 2);
) < 0)
return -ETIMEDOUT;
return 0;
}
static void
nv50_base_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
asyh->base.cpp = 0;
}
static int
nv50_base_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
const struct drm_framebuffer *fb = asyw->state.fb;
int ret;
if (!fb->format->depth)
return -EINVAL;
ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
false, true);
if (ret)
return ret;
asyh->base.depth = fb->format->depth;
asyh->base.cpp = fb->format->cpp[0];
asyh->base.x = asyw->state.src.x1 >> 16;
asyh->base.y = asyw->state.src.y1 >> 16;
asyh->base.w = asyw->state.fb->width;
asyh->base.h = asyw->state.fb->height;
switch (fb->format->format) {
case DRM_FORMAT_C8 : asyw->image.format = 0x1e; break;
case DRM_FORMAT_RGB565 : asyw->image.format = 0xe8; break;
case DRM_FORMAT_XRGB1555 :
case DRM_FORMAT_ARGB1555 : asyw->image.format = 0xe9; break;
case DRM_FORMAT_XRGB8888 :
case DRM_FORMAT_ARGB8888 : asyw->image.format = 0xcf; break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010: asyw->image.format = 0xd1; break;
case DRM_FORMAT_XBGR8888 :
case DRM_FORMAT_ABGR8888 : asyw->image.format = 0xd5; break;
default:
WARN_ON(1);
return -EINVAL;
}
asyw->lut.enable = 1;
asyw->set.image = true;
return 0;
}
static void *
nv50_base_dtor(struct nv50_wndw *wndw)
{
struct nv50_disp *disp = nv50_disp(wndw->plane.dev);
struct nv50_base *base = nv50_base(wndw);
nv50_dmac_destroy(&base->chan.base, disp->disp);
return base;
}
static const u32
nv50_base_format[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ABGR2101010,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
};
static const struct nv50_wndw_func
nv50_base = {
.dtor = nv50_base_dtor,
.acquire = nv50_base_acquire,
.release = nv50_base_release,
.sema_set = nv50_base_sema_set,
.sema_clr = nv50_base_sema_clr,
.ntfy_set = nv50_base_ntfy_set,
.ntfy_clr = nv50_base_ntfy_clr,
.ntfy_wait_begun = nv50_base_ntfy_wait_begun,
.image_set = nv50_base_image_set,
.image_clr = nv50_base_image_clr,
.lut = nv50_base_lut,
.update = nv50_base_update,
};
static int
nv50_base_new(struct nouveau_drm *drm, struct nv50_head *head,
struct nv50_base **pbase)
{
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_base *base;
int ret;
if (!(base = *pbase = kzalloc(sizeof(*base), GFP_KERNEL)))
return -ENOMEM;
base->id = head->base.index;
base->wndw.ntfy = EVO_FLIP_NTFY0(base->id);
base->wndw.sema = EVO_FLIP_SEM0(base->id);
base->wndw.data = 0x00000000;
ret = nv50_wndw_ctor(&nv50_base, drm->dev, DRM_PLANE_TYPE_PRIMARY,
"base", base->id, &base->chan.base,
nv50_base_format, ARRAY_SIZE(nv50_base_format),
&base->wndw);
if (ret) {
kfree(base);
return ret;
}
ret = nv50_base_create(&drm->client.device, disp->disp, base->id,
disp->sync->bo.offset, &base->chan);
if (ret)
return ret;
return nvif_notify_init(&base->chan.base.base.user, nv50_base_notify,
false,
NV50_DISP_BASE_CHANNEL_DMA_V0_NTFY_UEVENT,
&(struct nvif_notify_uevent_req) {},
sizeof(struct nvif_notify_uevent_req),
sizeof(struct nvif_notify_uevent_rep),
&base->wndw.notify);
}
/******************************************************************************
* Head
*****************************************************************************/
static void
nv50_head_procamp(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x08a8 + (head->base.index * 0x400), 1);
else
evo_mthd(push, 0x0498 + (head->base.index * 0x300), 1);
evo_data(push, (asyh->procamp.sat.sin << 20) |
(asyh->procamp.sat.cos << 8));
evo_kick(push, core);
}
}
static void
nv50_head_dither(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x08a0 + (head->base.index * 0x0400), 1);
else
if (core->base.user.oclass < GK104_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0490 + (head->base.index * 0x0300), 1);
else
evo_mthd(push, 0x04a0 + (head->base.index * 0x0300), 1);
evo_data(push, (asyh->dither.mode << 3) |
(asyh->dither.bits << 1) |
asyh->dither.enable);
evo_kick(push, core);
}
}
static void
nv50_head_ovly(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 bounds = 0;
u32 *push;
if (asyh->base.cpp) {
switch (asyh->base.cpp) {
case 8: bounds |= 0x00000500; break;
case 4: bounds |= 0x00000300; break;
case 2: bounds |= 0x00000100; break;
default:
WARN_ON(1);
break;
}
bounds |= 0x00000001;
}
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0904 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x04d4 + head->base.index * 0x300, 1);
evo_data(push, bounds);
evo_kick(push, core);
}
}
static void
nv50_head_base(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 bounds = 0;
u32 *push;
if (asyh->base.cpp) {
switch (asyh->base.cpp) {
case 8: bounds |= 0x00000500; break;
case 4: bounds |= 0x00000300; break;
case 2: bounds |= 0x00000100; break;
case 1: bounds |= 0x00000000; break;
default:
WARN_ON(1);
break;
}
bounds |= 0x00000001;
}
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0900 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x04d0 + head->base.index * 0x300, 1);
evo_data(push, bounds);
evo_kick(push, core);
}
}
static void
nv50_head_curs_clr(struct nv50_head *head)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 4))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 1);
evo_data(push, 0x05000000);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x089c + head->base.index * 0x400, 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0480 + head->base.index * 0x300, 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + head->base.index * 0x300, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, core);
}
}
static void
nv50_head_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 5))) {
if (core->base.user.oclass < G82_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
} else
if (core->base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
evo_mthd(push, 0x089c + head->base.index * 0x400, 1);
evo_data(push, asyh->curs.handle);
} else {
evo_mthd(push, 0x0480 + head->base.index * 0x300, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
evo_mthd(push, 0x048c + head->base.index * 0x300, 1);
evo_data(push, asyh->curs.handle);
}
evo_kick(push, core);
}
}
static void
nv50_head_core_clr(struct nv50_head *head)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0874 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x0474 + head->base.index * 0x300, 1);
evo_data(push, 0x00000000);
evo_kick(push, core);
}
}
static void
nv50_head_core_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 9))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + head->base.index * 0x400, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0868 + head->base.index * 0x400, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 20 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.kind << 16 |
asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
/* EVO will complain with INVALID_STATE if we have an
* active cursor and (re)specify HeadSetContextDmaIso
* without also updating HeadSetOffsetCursor.
*/
asyh->set.curs = asyh->curs.visible;
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + head->base.index * 0x400, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0868 + head->base.index * 0x400, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 20 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
} else {
evo_mthd(push, 0x0460 + head->base.index * 0x300, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0468 + head->base.index * 0x300, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 24 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x04b0 + head->base.index * 0x300, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
}
evo_kick(push, core);
}
}
static void
nv50_head_lut_clr(struct nv50_head *head)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 4))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1);
evo_data(push, 0x40000000);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1);
evo_data(push, 0x40000000);
evo_mthd(push, 0x085c + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0440 + (head->base.index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (head->base.index * 0x300), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, core);
}
}
static void
nv50_head_lut_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 7))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, asyh->lut.offset >> 8);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, asyh->lut.offset >> 8);
evo_mthd(push, 0x085c + (head->base.index * 0x400), 1);
evo_data(push, asyh->lut.handle);
} else {
evo_mthd(push, 0x0440 + (head->base.index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, asyh->lut.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (head->base.index * 0x300), 1);
evo_data(push, asyh->lut.handle);
}
evo_kick(push, core);
}
}
static void
nv50_head_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
struct nv50_head_mode *m = &asyh->mode;
u32 *push;
if ((push = evo_wait(core, 14))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0804 + (head->base.index * 0x400), 2);
evo_data(push, 0x00800000 | m->clock);
evo_data(push, m->interlace ? 0x00000002 : 0x00000000);
evo_mthd(push, 0x0810 + (head->base.index * 0x400), 7);
evo_data(push, 0x00000000);
evo_data(push, (m->v.active << 16) | m->h.active );
evo_data(push, (m->v.synce << 16) | m->h.synce );
evo_data(push, (m->v.blanke << 16) | m->h.blanke );
evo_data(push, (m->v.blanks << 16) | m->h.blanks );
evo_data(push, (m->v.blank2e << 16) | m->v.blank2s);
evo_data(push, asyh->mode.v.blankus);
evo_mthd(push, 0x082c + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0410 + (head->base.index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (m->v.active << 16) | m->h.active );
evo_data(push, (m->v.synce << 16) | m->h.synce );
evo_data(push, (m->v.blanke << 16) | m->h.blanke );
evo_data(push, (m->v.blanks << 16) | m->h.blanks );
evo_data(push, (m->v.blank2e << 16) | m->v.blank2s);
evo_mthd(push, 0x042c + (head->base.index * 0x300), 2);
evo_data(push, 0x00000000); /* ??? */
evo_data(push, 0xffffff00);
evo_mthd(push, 0x0450 + (head->base.index * 0x300), 3);
evo_data(push, m->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, m->clock * 1000);
}
evo_kick(push, core);
}
}
static void
nv50_head_view(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 10))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a4 + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x08c8 + (head->base.index * 0x400), 1);
evo_data(push, (asyh->view.iH << 16) | asyh->view.iW);
evo_mthd(push, 0x08d8 + (head->base.index * 0x400), 2);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
} else {
evo_mthd(push, 0x0494 + (head->base.index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (head->base.index * 0x300), 1);
evo_data(push, (asyh->view.iH << 16) | asyh->view.iW);
evo_mthd(push, 0x04c0 + (head->base.index * 0x300), 3);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
}
evo_kick(push, core);
}
}
static void
nv50_head_flush_clr(struct nv50_head *head, struct nv50_head_atom *asyh, bool y)
{
if (asyh->clr.core && (!asyh->set.core || y))
nv50_head_lut_clr(head);
if (asyh->clr.core && (!asyh->set.core || y))
nv50_head_core_clr(head);
if (asyh->clr.curs && (!asyh->set.curs || y))
nv50_head_curs_clr(head);
}
static void
nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
if (asyh->set.view ) nv50_head_view (head, asyh);
if (asyh->set.mode ) nv50_head_mode (head, asyh);
if (asyh->set.core ) nv50_head_lut_set (head, asyh);
if (asyh->set.core ) nv50_head_core_set(head, asyh);
if (asyh->set.curs ) nv50_head_curs_set(head, asyh);
if (asyh->set.base ) nv50_head_base (head, asyh);
if (asyh->set.ovly ) nv50_head_ovly (head, asyh);
if (asyh->set.dither ) nv50_head_dither (head, asyh);
if (asyh->set.procamp) nv50_head_procamp (head, asyh);
}
static void
nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
const int vib = asyc->procamp.color_vibrance - 100;
const int hue = asyc->procamp.vibrant_hue - 90;
const int adj = (vib > 0) ? 50 : 0;
asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
asyh->set.procamp = true;
}
static void
nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
struct drm_connector *connector = asyc->state.connector;
u32 mode = 0x00;
if (asyc->dither.mode == DITHERING_MODE_AUTO) {
if (asyh->base.depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = asyc->dither.mode;
}
if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= asyc->dither.depth;
}
asyh->dither.enable = mode;
asyh->dither.bits = mode >> 1;
asyh->dither.mode = mode >> 3;
asyh->set.dither = true;
}
static void
nv50_head_atomic_check_view(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
struct drm_connector *connector = asyc->state.connector;
struct drm_display_mode *omode = &asyh->state.adjusted_mode;
struct drm_display_mode *umode = &asyh->state.mode;
int mode = asyc->scaler.mode;
struct edid *edid;
int umode_vdisplay, omode_hdisplay, omode_vdisplay;
if (connector->edid_blob_ptr)
edid = (struct edid *)connector->edid_blob_ptr->data;
else
edid = NULL;
if (!asyc->scaler.full) {
if (mode == DRM_MODE_SCALE_NONE)
omode = umode;
} else {
/* Non-EDID LVDS/eDP mode. */
mode = DRM_MODE_SCALE_FULLSCREEN;
}
/* For the user-specified mode, we must ignore doublescan and
* the like, but honor frame packing.
*/
umode_vdisplay = umode->vdisplay;
if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
umode_vdisplay += umode->vtotal;
asyh->view.iW = umode->hdisplay;
asyh->view.iH = umode_vdisplay;
/* For the output mode, we can just use the stock helper. */
drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay);
asyh->view.oW = omode_hdisplay;
asyh->view.oH = omode_vdisplay;
/* Add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
(asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
drm_detect_hdmi_monitor(edid)))) {
u32 bX = asyc->scaler.underscan.hborder;
u32 bY = asyc->scaler.underscan.vborder;
u32 r = (asyh->view.oH << 19) / asyh->view.oW;
if (bX) {
asyh->view.oW -= (bX * 2);
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
} else {
asyh->view.oW -= (asyh->view.oW >> 4) + 32;
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
}
/* Handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation.
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
asyh->view.oW = min((u16)umode->hdisplay, asyh->view.oW);
asyh->view.oH = min((u16)umode_vdisplay, asyh->view.oH);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (asyh->view.oH < asyh->view.oW) {
u32 r = (asyh->view.iW << 19) / asyh->view.iH;
asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
} else {
u32 r = (asyh->view.iH << 19) / asyh->view.iW;
asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
break;
default:
break;
}
asyh->set.view = true;
}
static void
nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
struct nv50_head_mode *m = &asyh->mode;
u32 blankus;
drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE);
/*
* DRM modes are defined in terms of a repeating interval
* starting with the active display area. The hardware modes
* are defined in terms of a repeating interval starting one
* unit (pixel or line) into the sync pulse. So, add bias.
*/
m->h.active = mode->crtc_htotal;
m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1;
m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1;
m->h.blanks = m->h.blanke + mode->crtc_hdisplay;
m->v.active = mode->crtc_vtotal;
m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1;
m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1;
m->v.blanks = m->v.blanke + mode->crtc_vdisplay;
/*XXX: Safe underestimate, even "0" works */
blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active;
blankus *= 1000;
blankus /= mode->crtc_clock;
m->v.blankus = blankus;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
m->v.blank2e = m->v.active + m->v.blanke;
m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay;
m->v.active = (m->v.active * 2) + 1;
m->interlace = true;
} else {
m->v.blank2e = 0;
m->v.blank2s = 1;
m->interlace = false;
}
m->clock = mode->crtc_clock;
asyh->set.mode = true;
}
static int
nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
struct nv50_head_atom *asyh = nv50_head_atom(state);
struct nouveau_conn_atom *asyc = NULL;
struct drm_connector_state *conns;
struct drm_connector *conn;
int i;
NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
if (asyh->state.active) {
for_each_connector_in_state(asyh->state.state, conn, conns, i) {
if (conns->crtc == crtc) {
asyc = nouveau_conn_atom(conns);
break;
}
}
if (armh->state.active) {
if (asyc) {
if (asyh->state.mode_changed)
asyc->set.scaler = true;
if (armh->base.depth != asyh->base.depth)
asyc->set.dither = true;
}
} else {
if (asyc)
asyc->set.mask = ~0;
asyh->set.mask = ~0;
}
if (asyh->state.mode_changed)
nv50_head_atomic_check_mode(head, asyh);
if (asyc) {
if (asyc->set.scaler)
nv50_head_atomic_check_view(armh, asyh, asyc);
if (asyc->set.dither)
nv50_head_atomic_check_dither(armh, asyh, asyc);
if (asyc->set.procamp)
nv50_head_atomic_check_procamp(armh, asyh, asyc);
}
if ((asyh->core.visible = (asyh->base.cpp != 0))) {
asyh->core.x = asyh->base.x;
asyh->core.y = asyh->base.y;
asyh->core.w = asyh->base.w;
asyh->core.h = asyh->base.h;
} else
if ((asyh->core.visible = asyh->curs.visible)) {
/*XXX: We need to either find some way of having the
* primary base layer appear black, while still
* being able to display the other layers, or we
* need to allocate a dummy black surface here.
*/
asyh->core.x = 0;
asyh->core.y = 0;
asyh->core.w = asyh->state.mode.hdisplay;
asyh->core.h = asyh->state.mode.vdisplay;
}
asyh->core.handle = disp->mast.base.vram.handle;
asyh->core.offset = 0;
asyh->core.format = 0xcf;
asyh->core.kind = 0;
asyh->core.layout = 1;
asyh->core.block = 0;
asyh->core.pitch = ALIGN(asyh->core.w, 64) * 4;
asyh->lut.handle = disp->mast.base.vram.handle;
asyh->lut.offset = head->base.lut.nvbo->bo.offset;
asyh->set.base = armh->base.cpp != asyh->base.cpp;
asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
} else {
asyh->core.visible = false;
asyh->curs.visible = false;
asyh->base.cpp = 0;
asyh->ovly.cpp = 0;
}
if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
if (asyh->core.visible) {
if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
asyh->set.core = true;
} else
if (armh->core.visible) {
asyh->clr.core = true;
}
if (asyh->curs.visible) {
if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
asyh->set.curs = true;
} else
if (armh->curs.visible) {
asyh->clr.curs = true;
}
} else {
asyh->clr.core = armh->core.visible;
asyh->clr.curs = armh->curs.visible;
asyh->set.core = asyh->core.visible;
asyh->set.curs = asyh->curs.visible;
}
if (asyh->clr.mask || asyh->set.mask)
nv50_atom(asyh->state.state)->lock_core = true;
return 0;
}
static void
nv50_head_lut_load(struct drm_crtc *crtc)
{
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
u16 r = nv_crtc->lut.r[i] >> 2;
u16 g = nv_crtc->lut.g[i] >> 2;
u16 b = nv_crtc->lut.b[i] >> 2;
if (disp->disp->oclass < GF110_DISP) {
writew(r + 0x0000, lut + (i * 0x08) + 0);
writew(g + 0x0000, lut + (i * 0x08) + 2);
writew(b + 0x0000, lut + (i * 0x08) + 4);
} else {
writew(r + 0x6000, lut + (i * 0x20) + 0);
writew(g + 0x6000, lut + (i * 0x20) + 2);
writew(b + 0x6000, lut + (i * 0x20) + 4);
}
}
}
static const struct drm_crtc_helper_funcs
nv50_head_help = {
.load_lut = nv50_head_lut_load,
.atomic_check = nv50_head_atomic_check,
};
static int
nv50_head_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t size,
struct drm_modeset_acquire_ctx *ctx)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 i;
for (i = 0; i < size; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
nv50_head_lut_load(crtc);
return 0;
}
static void
nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct nv50_head_atom *asyh = nv50_head_atom(state);
__drm_atomic_helper_crtc_destroy_state(&asyh->state);
kfree(asyh);
}
static struct drm_crtc_state *
nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
struct nv50_head_atom *asyh;
if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
asyh->view = armh->view;
asyh->mode = armh->mode;
asyh->lut = armh->lut;
asyh->core = armh->core;
asyh->curs = armh->curs;
asyh->base = armh->base;
asyh->ovly = armh->ovly;
asyh->dither = armh->dither;
asyh->procamp = armh->procamp;
asyh->clr.mask = 0;
asyh->set.mask = 0;
return &asyh->state;
}
static void
__drm_atomic_helper_crtc_reset(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
if (crtc->state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
crtc->state = state;
crtc->state->crtc = crtc;
}
static void
nv50_head_reset(struct drm_crtc *crtc)
{
struct nv50_head_atom *asyh;
if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
return;
__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
}
static void
nv50_head_destroy(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
nv50_dmac_destroy(&head->ovly.base, disp->disp);
nv50_pioc_destroy(&head->oimm.base);
nouveau_bo_unmap(nv_crtc->lut.nvbo);
if (nv_crtc->lut.nvbo)
nouveau_bo_unpin(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_funcs
nv50_head_func = {
.reset = nv50_head_reset,
.gamma_set = nv50_head_gamma_set,
.destroy = nv50_head_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.set_property = drm_atomic_helper_crtc_set_property,
.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
.atomic_destroy_state = nv50_head_atomic_destroy_state,
};
static int
nv50_head_create(struct drm_device *dev, int index)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->client.device;
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_head *head;
struct nv50_base *base;
struct nv50_curs *curs;
struct drm_crtc *crtc;
int ret, i;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOMEM;
head->base.index = index;
for (i = 0; i < 256; i++) {
head->base.lut.r[i] = i << 8;
head->base.lut.g[i] = i << 8;
head->base.lut.b[i] = i << 8;
}
ret = nv50_base_new(drm, head, &base);
if (ret == 0)
ret = nv50_curs_new(drm, head, &curs);
if (ret) {
kfree(head);
return ret;
}
crtc = &head->base.base;
drm_crtc_init_with_planes(dev, crtc, &base->wndw.plane,
&curs->wndw.plane, &nv50_head_func,
"head-%d", head->base.index);
drm_crtc_helper_add(crtc, &nv50_head_help);
drm_mode_crtc_set_gamma_size(crtc, 256);
ret = nouveau_bo_new(&drm->client, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &head->base.lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(head->base.lut.nvbo);
if (ret)
nouveau_bo_unpin(head->base.lut.nvbo);
}
if (ret)
nouveau_bo_ref(NULL, &head->base.lut.nvbo);
}
if (ret)
goto out;
/* allocate overlay resources */
ret = nv50_oimm_create(device, disp->disp, index, &head->oimm);
if (ret)
goto out;
ret = nv50_ovly_create(device, disp->disp, index, disp->sync->bo.offset,
&head->ovly);
if (ret)
goto out;
out:
if (ret)
nv50_head_destroy(crtc);
return ret;
}
/******************************************************************************
* Output path helpers
*****************************************************************************/
static void
nv50_outp_release(struct nouveau_encoder *nv_encoder)
{
struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
struct {
struct nv50_disp_mthd_v1 base;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_RELEASE,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nv_encoder->or = -1;
nv_encoder->link = 0;
}
static int
nv50_outp_acquire(struct nouveau_encoder *nv_encoder)
{
struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
struct nv50_disp *disp = nv50_disp(drm->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_acquire_v0 info;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (ret) {
NV_ERROR(drm, "error acquiring output path: %d\n", ret);
return ret;
}
nv_encoder->or = args.info.or;
nv_encoder->link = args.info.link;
return 0;
}
static int
nv50_outp_atomic_check_view(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct drm_display_mode *native_mode)
{
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct drm_display_mode *mode = &crtc_state->mode;
struct drm_connector *connector = conn_state->connector;
struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
asyc->scaler.full = false;
if (!native_mode)
return 0;
if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
case DRM_MODE_CONNECTOR_eDP:
/* Force use of scaler for non-EDID modes. */
if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
break;
mode = native_mode;
asyc->scaler.full = true;
break;
default:
break;
}
} else {
mode = native_mode;
}
if (!drm_mode_equal(adjusted_mode, mode)) {
drm_mode_copy(adjusted_mode, mode);
crtc_state->mode_changed = true;
}
return 0;
}
static int
nv50_outp_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nouveau_connector *nv_connector =
nouveau_connector(conn_state->connector);
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
nv_connector->native_mode);
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nv50_dac_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0400 + (or * 0x080), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0180 + (or * 0x020), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
nv50_outp_release(nv_encoder);
}
static void
nv50_dac_enable(struct drm_encoder *encoder)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
u32 *push;
nv50_outp_acquire(nv_encoder);
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 syncs = 0x00000000;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000002;
evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, syncs);
} else {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
evo_data(push, 1 << nv_crtc->index);
}
evo_kick(push, mast);
}
nv_encoder->crtc = encoder->crtc;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_load_v0 load;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
if (args.load.data == 0)
args.load.data = 340;
ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (ret || !args.load.load)
return connector_status_disconnected;
return connector_status_connected;
}
static const struct drm_encoder_helper_funcs
nv50_dac_help = {
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_dac_enable,
.disable = nv50_dac_disable,
.detect = nv50_dac_detect
};
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
"dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_dac_help);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hda_eld_v0 eld;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static void
nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct __packed {
struct {
struct nv50_disp_mthd_v1 mthd;
struct nv50_disp_sor_hda_eld_v0 eld;
} base;
u8 data[sizeof(nv_connector->base.eld)];
} args = {
.base.mthd.version = 1,
.base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.mthd.hasht = nv_encoder->dcb->hasht,
.base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
nvif_mthd(disp->disp, 0, &args,
sizeof(args.base) + drm_eld_size(args.data));
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static void
nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.pwr.state = 1,
.pwr.rekey = 56, /* binary driver, and tegra, constant */
};
struct nouveau_connector *nv_connector;
u32 max_ac_packet;
union hdmi_infoframe avi_frame;
union hdmi_infoframe vendor_frame;
int ret;
int size;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, mode);
if (!ret) {
/* We have an AVI InfoFrame, populate it to the display */
args.pwr.avi_infoframe_length
= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
}
ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi, mode);
if (!ret) {
/* We have a Vendor InfoFrame, populate it to the display */
args.pwr.vendor_infoframe_length
= hdmi_infoframe_pack(&vendor_frame,
args.infoframes
+ args.pwr.avi_infoframe_length,
17);
}
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= args.pwr.rekey;
max_ac_packet -= 18; /* constant from tegra */
args.pwr.max_ac_packet = max_ac_packet / 32;
size = sizeof(args.base)
+ sizeof(args.pwr)
+ args.pwr.avi_infoframe_length
+ args.pwr.vendor_infoframe_length;
nvif_mthd(disp->disp, 0, &args, size);
nv50_audio_enable(encoder, mode);
}
/******************************************************************************
* MST
*****************************************************************************/
#define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
#define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
#define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
struct nv50_mstm {
struct nouveau_encoder *outp;
struct drm_dp_mst_topology_mgr mgr;
struct nv50_msto *msto[4];
bool modified;
bool disabled;
int links;
};
struct nv50_mstc {
struct nv50_mstm *mstm;
struct drm_dp_mst_port *port;
struct drm_connector connector;
struct drm_display_mode *native;
struct edid *edid;
int pbn;
};
struct nv50_msto {
struct drm_encoder encoder;
struct nv50_head *head;
struct nv50_mstc *mstc;
bool disabled;
};
static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
int vcpi = mstc->port->vcpi.vcpi, i;
NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
mstm->outp->base.base.name, i, payload->vcpi,
payload->start_slot, payload->num_slots);
}
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
if (payload->vcpi == vcpi)
return payload;
}
return NULL;
}
static void
nv50_msto_cleanup(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0 && !nv50_msto_payload(msto))
drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
if (msto->disabled) {
msto->mstc = NULL;
msto->head = NULL;
msto->disabled = false;
}
}
static void
nv50_msto_prepare(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
.base.hasht = mstm->outp->dcb->hasht,
.base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
(0x0100 << msto->head->base.index),
};
NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0) {
struct drm_dp_payload *payload = nv50_msto_payload(msto);
if (payload) {
args.vcpi.start_slot = payload->start_slot;
args.vcpi.num_slots = payload->num_slots;
args.vcpi.pbn = mstc->port->vcpi.pbn;
args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
}
}
NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
msto->encoder.name, msto->head->base.base.name,
args.vcpi.start_slot, args.vcpi.num_slots,
args.vcpi.pbn, args.vcpi.aligned_pbn);
nvif_mthd(&drm->display->disp, 0, &args, sizeof(args));
}
static int
nv50_msto_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nv50_mstc *mstc = nv50_mstc(conn_state->connector);
struct nv50_mstm *mstm = mstc->mstm;
int bpp = conn_state->connector->display_info.bpc * 3;
int slots;
mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, bpp);
slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
if (slots < 0)
return slots;
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
mstc->native);
}
static void
nv50_msto_enable(struct drm_encoder *encoder)
{
struct nv50_head *head = nv50_head(encoder->crtc);
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = NULL;
struct nv50_mstm *mstm = NULL;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
u8 proto, depth;
int slots;
bool r;
drm_connector_list_iter_begin(encoder->dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->best_encoder == &msto->encoder) {
mstc = nv50_mstc(connector);
mstm = mstc->mstm;
break;
}
}
drm_connector_list_iter_end(&conn_iter);
if (WARN_ON(!mstc))
return;
slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, slots);
WARN_ON(!r);
if (!mstm->links++)
nv50_outp_acquire(mstm->outp);
if (mstm->outp->link & 1)
proto = 0x8;
else
proto = 0x9;
switch (mstc->connector.display_info.bpc) {
case 6: depth = 0x2; break;
case 8: depth = 0x5; break;
case 10:
default: depth = 0x6; break;
}
mstm->outp->update(mstm->outp, head->base.index,
&head->base.base.state->adjusted_mode, proto, depth);
msto->head = head;
msto->mstc = mstc;
mstm->modified = true;
}
static void
nv50_msto_disable(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
if (mstc->port)
drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
mstm->modified = true;
if (!--mstm->links)
mstm->disabled = true;
msto->disabled = true;
}
static const struct drm_encoder_helper_funcs
nv50_msto_help = {
.disable = nv50_msto_disable,
.enable = nv50_msto_enable,
.atomic_check = nv50_msto_atomic_check,
};
static void
nv50_msto_destroy(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
drm_encoder_cleanup(&msto->encoder);
kfree(msto);
}
static const struct drm_encoder_funcs
nv50_msto = {
.destroy = nv50_msto_destroy,
};
static int
nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
struct nv50_msto **pmsto)
{
struct nv50_msto *msto;
int ret;
if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
return -ENOMEM;
ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
if (ret) {
kfree(*pmsto);
*pmsto = NULL;
return ret;
}
drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
msto->encoder.possible_crtcs = heads;
return 0;
}
static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
struct drm_connector_state *connector_state)
{
struct nv50_head *head = nv50_head(connector_state->crtc);
struct nv50_mstc *mstc = nv50_mstc(connector);
if (mstc->port) {
struct nv50_mstm *mstm = mstc->mstm;
return &mstm->msto[head->base.index]->encoder;
}
return NULL;
}
static struct drm_encoder *
nv50_mstc_best_encoder(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
if (mstc->port) {
struct nv50_mstm *mstm = mstc->mstm;
return &mstm->msto[0]->encoder;
}
return NULL;
}
static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
return MODE_OK;
}
static int
nv50_mstc_get_modes(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
int ret = 0;
mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
drm_mode_connector_update_edid_property(&mstc->connector, mstc->edid);
if (mstc->edid) {
ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
drm_edid_to_eld(&mstc->connector, mstc->edid);
}
if (!mstc->connector.display_info.bpc)
mstc->connector.display_info.bpc = 8;
if (mstc->native)
drm_mode_destroy(mstc->connector.dev, mstc->native);
mstc->native = nouveau_conn_native_mode(&mstc->connector);
return ret;
}
static const struct drm_connector_helper_funcs
nv50_mstc_help = {
.get_modes = nv50_mstc_get_modes,
.mode_valid = nv50_mstc_mode_valid,
.best_encoder = nv50_mstc_best_encoder,
.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
};
static enum drm_connector_status
nv50_mstc_detect(struct drm_connector *connector, bool force)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
if (!mstc->port)
return connector_status_disconnected;
return drm_dp_mst_detect_port(connector, mstc->port->mgr, mstc->port);
}
static void
nv50_mstc_destroy(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_cleanup(&mstc->connector);
kfree(mstc);
}
static const struct drm_connector_funcs
nv50_mstc = {
.dpms = drm_atomic_helper_connector_dpms,
.reset = nouveau_conn_reset,
.detect = nv50_mstc_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = drm_atomic_helper_connector_set_property,
.destroy = nv50_mstc_destroy,
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
static int
nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
const char *path, struct nv50_mstc **pmstc)
{
struct drm_device *dev = mstm->outp->base.base.dev;
struct nv50_mstc *mstc;
int ret, i;
if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
return -ENOMEM;
mstc->mstm = mstm;
mstc->port = port;
ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
kfree(*pmstc);
*pmstc = NULL;
return ret;
}
drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
mstc->connector.funcs->reset(&mstc->connector);
nouveau_conn_attach_properties(&mstc->connector);
for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto; i++)
drm_mode_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
drm_mode_connector_set_path_property(&mstc->connector, path);
return 0;
}
static void
nv50_mstm_cleanup(struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
ret = drm_dp_check_act_status(&mstm->mgr);
ret = drm_dp_update_payload_part2(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_cleanup(msto);
}
}
mstm->modified = false;
}
static void
nv50_mstm_prepare(struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
ret = drm_dp_update_payload_part1(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_prepare(msto);
}
}
if (mstm->disabled) {
if (!mstm->links)
nv50_outp_release(mstm->outp);
mstm->disabled = false;
}
}
static void
nv50_mstm_hotplug(struct drm_dp_mst_topology_mgr *mgr)
{
struct nv50_mstm *mstm = nv50_mstm(mgr);
drm_kms_helper_hotplug_event(mstm->outp->base.base.dev);
}
static void
nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_unregister(&mstc->connector);
drm_modeset_lock_all(drm->dev);
drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
mstc->port = NULL;
drm_modeset_unlock_all(drm->dev);
drm_connector_unreference(&mstc->connector);
}
static void
nv50_mstm_register_connector(struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
drm_modeset_lock_all(drm->dev);
drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
drm_modeset_unlock_all(drm->dev);
drm_connector_register(connector);
}
static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, const char *path)
{
struct nv50_mstm *mstm = nv50_mstm(mgr);
struct nv50_mstc *mstc;
int ret;
ret = nv50_mstc_new(mstm, port, path, &mstc);
if (ret) {
if (mstc)
mstc->connector.funcs->destroy(&mstc->connector);
return NULL;
}
return &mstc->connector;
}
static const struct drm_dp_mst_topology_cbs
nv50_mstm = {
.add_connector = nv50_mstm_add_connector,
.register_connector = nv50_mstm_register_connector,
.destroy_connector = nv50_mstm_destroy_connector,
.hotplug = nv50_mstm_hotplug,
};
void
nv50_mstm_service(struct nv50_mstm *mstm)
{
struct drm_dp_aux *aux = mstm->mgr.aux;
bool handled = true;
int ret;
u8 esi[8] = {};
while (handled) {
ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
if (ret != 8) {
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
return;
}
drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
if (!handled)
break;
drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
}
}
void
nv50_mstm_remove(struct nv50_mstm *mstm)
{
if (mstm)
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
}
static int
nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
{
struct nouveau_encoder *outp = mstm->outp;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_mst_link_v0 mst;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
.base.hasht = outp->dcb->hasht,
.base.hashm = outp->dcb->hashm,
.mst.state = state,
};
struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
struct nvif_object *disp = &drm->display->disp;
int ret;
if (dpcd >= 0x12) {
ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CTRL, &dpcd);
if (ret < 0)
return ret;
dpcd &= ~DP_MST_EN;
if (state)
dpcd |= DP_MST_EN;
ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, dpcd);
if (ret < 0)
return ret;
}
return nvif_mthd(disp, 0, &args, sizeof(args));
}
int
nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
{
int ret, state = 0;
if (!mstm)
return 0;
if (dpcd[0] >= 0x12) {
ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CAP, &dpcd[1]);
if (ret < 0)
return ret;
if (!(dpcd[1] & DP_MST_CAP))
dpcd[0] = 0x11;
else
state = allow;
}
ret = nv50_mstm_enable(mstm, dpcd[0], state);
if (ret)
return ret;
ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, state);
if (ret)
return nv50_mstm_enable(mstm, dpcd[0], 0);
return mstm->mgr.mst_state;
}
static void
nv50_mstm_fini(struct nv50_mstm *mstm)
{
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
}
static void
nv50_mstm_init(struct nv50_mstm *mstm)
{
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_resume(&mstm->mgr);
}
static void
nv50_mstm_del(struct nv50_mstm **pmstm)
{
struct nv50_mstm *mstm = *pmstm;
if (mstm) {
kfree(*pmstm);
*pmstm = NULL;
}
}
static int
nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
int conn_base_id, struct nv50_mstm **pmstm)
{
const int max_payloads = hweight8(outp->dcb->heads);
struct drm_device *dev = outp->base.base.dev;
struct nv50_mstm *mstm;
int ret, i;
u8 dpcd;
/* This is a workaround for some monitors not functioning
* correctly in MST mode on initial module load. I think
* some bad interaction with the VBIOS may be responsible.
*
* A good ol' off and on again seems to work here ;)
*/
ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
if (ret >= 0 && dpcd >= 0x12)
drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
return -ENOMEM;
mstm->outp = outp;
mstm->mgr.cbs = &nv50_mstm;
ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
max_payloads, conn_base_id);
if (ret)
return ret;
for (i = 0; i < max_payloads; i++) {
ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
i, &mstm->msto[i]);
if (ret)
return ret;
}
return 0;
}
/******************************************************************************
* SOR
*****************************************************************************/
static void
nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
struct drm_display_mode *mode, u8 proto, u8 depth)
{
struct nv50_dmac *core = &nv50_mast(nv_encoder->base.base.dev)->base;
u32 *push;
if (!mode) {
nv_encoder->ctrl &= ~BIT(head);
if (!(nv_encoder->ctrl & 0x0000000f))
nv_encoder->ctrl = 0;
} else {
nv_encoder->ctrl |= proto << 8;
nv_encoder->ctrl |= BIT(head);
}
if ((push = evo_wait(core, 6))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
if (mode) {
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
nv_encoder->ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
nv_encoder->ctrl |= 0x00002000;
nv_encoder->ctrl |= depth << 16;
}
evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1);
} else {
if (mode) {
u32 magic = 0x31ec6000 | (head << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (head * 0x300), 2);
evo_data(push, syncs | (depth << 6));
evo_data(push, magic);
}
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
}
evo_data(push, nv_encoder->ctrl);
evo_kick(push, core);
}
}
static void
nv50_sor_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
nv_encoder->crtc = NULL;
if (nv_crtc) {
struct nvkm_i2c_aux *aux = nv_encoder->aux;
u8 pwr;
if (aux) {
int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
if (ret == 0) {
pwr &= ~DP_SET_POWER_MASK;
pwr |= DP_SET_POWER_D3;
nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
}
}
nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
nv50_audio_disable(encoder, nv_crtc);
nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
nv50_outp_release(nv_encoder);
}
}
static void
nv50_sor_enable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_lvds_script_v0 lvds;
} lvds = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &drm->vbios;
u8 proto = 0xf;
u8 depth = 0x0;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
nv_encoder->crtc = encoder->crtc;
nv50_outp_acquire(nv_encoder);
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (nv_encoder->link & 1) {
proto = 0x1;
/* Only enable dual-link if:
* - Need to (i.e. rate > 165MHz)
* - DCB says we can
* - Not an HDMI monitor, since there's no dual-link
* on HDMI.
*/
if (mode->clock >= 165000 &&
nv_encoder->dcb->duallink_possible &&
!drm_detect_hdmi_monitor(nv_connector->edid))
proto |= 0x4;
} else {
proto = 0x2;
}
nv50_hdmi_enable(&nv_encoder->base.base, mode);
break;
case DCB_OUTPUT_LVDS:
proto = 0x0;
if (bios->fp_no_ddc) {
if (bios->fp.dual_link)
lvds.lvds.script |= 0x0100;
if (bios->fp.if_is_24bit)
lvds.lvds.script |= 0x0200;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
lvds.lvds.script |= 0x0100;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
lvds.lvds.script |= 0x0100;
}
if (lvds.lvds.script & 0x0100) {
if (bios->fp.strapless_is_24bit & 2)
lvds.lvds.script |= 0x0200;
} else {
if (bios->fp.strapless_is_24bit & 1)
lvds.lvds.script |= 0x0200;
}
if (nv_connector->base.display_info.bpc == 8)
lvds.lvds.script |= 0x0200;
}
nvif_mthd(disp->disp, 0, &lvds, sizeof(lvds));
break;
case DCB_OUTPUT_DP:
if (nv_connector->base.display_info.bpc == 6)
depth = 0x2;
else
if (nv_connector->base.display_info.bpc == 8)
depth = 0x5;
else
depth = 0x6;
if (nv_encoder->link & 1)
proto = 0x8;
else
proto = 0x9;
nv50_audio_enable(encoder, mode);
break;
default:
BUG();
break;
}
nv_encoder->update(nv_encoder, nv_crtc->index, mode, proto, depth);
}
static const struct drm_encoder_helper_funcs
nv50_sor_help = {
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_sor_enable,
.disable = nv50_sor_disable,
};
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nv50_mstm_del(&nv_encoder->dp.mstm);
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_sor_func = {
.destroy = nv50_sor_destroy,
};
static int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type, ret;
switch (dcbe->type) {
case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
default:
type = DRM_MODE_ENCODER_TMDS;
break;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->update = nv50_sor_update;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
"sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_sor_help);
drm_mode_connector_attach_encoder(connector, encoder);
if (dcbe->type == DCB_OUTPUT_DP) {
struct nvkm_i2c_aux *aux =
nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
if (aux) {
nv_encoder->i2c = &nv_connector->aux.ddc;
nv_encoder->aux = aux;
}
/*TODO: Use DP Info Table to check for support. */
if (nv50_disp(encoder->dev)->disp->oclass >= GF110_DISP) {
ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
nv_connector->base.base.id,
&nv_encoder->dp.mstm);
if (ret)
return ret;
}
} else {
struct nvkm_i2c_bus *bus =
nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
}
return 0;
}
/******************************************************************************
* PIOR
*****************************************************************************/
static int
nv50_pior_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
if (ret)
return ret;
crtc_state->adjusted_mode.clock *= 2;
return 0;
}
static void
nv50_pior_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0700 + (or * 0x040), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
nv50_outp_release(nv_encoder);
}
static void
nv50_pior_enable(struct drm_encoder *encoder)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
u8 owner = 1 << nv_crtc->index;
u8 proto, depth;
u32 *push;
nv50_outp_acquire(nv_encoder);
nv_connector = nouveau_encoder_connector_get(nv_encoder);
switch (nv_connector->base.display_info.bpc) {
case 10: depth = 0x6; break;
case 8: depth = 0x5; break;
case 6: depth = 0x2; break;
default: depth = 0x0; break;
}
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
proto = 0x0;
break;
default:
BUG();
break;
}
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 ctrl = (depth << 16) | (proto << 8) | owner;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl |= 0x00002000;
evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
evo_data(push, ctrl);
}
evo_kick(push, mast);
}
nv_encoder->crtc = encoder->crtc;
}
static const struct drm_encoder_helper_funcs
nv50_pior_help = {
.atomic_check = nv50_pior_atomic_check,
.enable = nv50_pior_enable,
.disable = nv50_pior_disable,
};
static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_pior_func = {
.destroy = nv50_pior_destroy,
};
static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus = NULL;
struct nvkm_i2c_aux *aux = NULL;
struct i2c_adapter *ddc;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
ddc = bus ? &bus->i2c : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
case DCB_OUTPUT_DP:
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
ddc = aux ? &nv_connector->aux.ddc : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
default:
return -ENODEV;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->i2c = ddc;
nv_encoder->aux = aux;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
"pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_pior_help);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Atomic
*****************************************************************************/
static void
nv50_disp_atomic_commit_core(struct nouveau_drm *drm, u32 interlock)
{
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_dmac *core = &disp->mast.base;
struct nv50_mstm *mstm;
struct drm_encoder *encoder;
u32 *push;
NV_ATOMIC(drm, "commit core %08x\n", interlock);
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_prepare(mstm);
}
}
if ((push = evo_wait(core, 5))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000);
evo_mthd(push, 0x0080, 2);
evo_data(push, interlock);
evo_data(push, 0x00000000);
nouveau_bo_wr32(disp->sync, 0, 0x00000000);
evo_kick(push, core);
if (nvif_msec(&drm->client.device, 2000ULL,
if (nouveau_bo_rd32(disp->sync, 0))
break;
usleep_range(1, 2);
) < 0)
NV_ERROR(drm, "EVO timeout\n");
}
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_cleanup(mstm);
}
}
}
static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct drm_plane_state *plane_state;
struct drm_plane *plane;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
u32 interlock_core = 0;
u32 interlock_chan = 0;
int i;
NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
drm_atomic_helper_wait_for_fences(dev, state, false);
drm_atomic_helper_wait_for_dependencies(state);
drm_atomic_helper_update_legacy_modeset_state(dev, state);
if (atom->lock_core)
mutex_lock(&disp->mutex);
/* Disable head(s). */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(crtc->state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
asyh->clr.mask, asyh->set.mask);
if (asyh->clr.mask) {
nv50_head_flush_clr(head, asyh, atom->flush_disable);
interlock_core |= 1;
}
}
/* Disable plane(s). */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
asyw->clr.mask, asyw->set.mask);
if (!asyw->clr.mask)
continue;
interlock_chan |= nv50_wndw_flush_clr(wndw, interlock_core,
atom->flush_disable,
asyw);
}
/* Disable output path(s). */
list_for_each_entry(outp, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
outp->clr.mask, outp->set.mask);
if (outp->clr.mask) {
help->disable(encoder);
interlock_core |= 1;
if (outp->flush_disable) {
nv50_disp_atomic_commit_core(drm, interlock_chan);
interlock_core = 0;
interlock_chan = 0;
}
}
}
/* Flush disable. */
if (interlock_core) {
if (atom->flush_disable) {
nv50_disp_atomic_commit_core(drm, interlock_chan);
interlock_core = 0;
interlock_chan = 0;
}
}
/* Update output path(s). */
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
outp->set.mask, outp->clr.mask);
if (outp->set.mask) {
help->enable(encoder);
interlock_core = 1;
}
list_del(&outp->head);
kfree(outp);
}
/* Update head(s). */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(crtc->state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
asyh->set.mask, asyh->clr.mask);
if (asyh->set.mask) {
nv50_head_flush_set(head, asyh);
interlock_core = 1;
}
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc->state->event)
drm_crtc_vblank_get(crtc);
}
/* Update plane(s). */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
asyw->set.mask, asyw->clr.mask);
if ( !asyw->set.mask &&
(!asyw->clr.mask || atom->flush_disable))
continue;
interlock_chan |= nv50_wndw_flush_set(wndw, interlock_core, asyw);
}
/* Flush update. */
if (interlock_core) {
if (!interlock_chan && atom->state.legacy_cursor_update) {
u32 *push = evo_wait(&disp->mast, 2);
if (push) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, &disp->mast);
}
} else {
nv50_disp_atomic_commit_core(drm, interlock_chan);
}
}
if (atom->lock_core)
mutex_unlock(&disp->mutex);
/* Wait for HW to signal completion. */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
int ret = nv50_wndw_wait_armed(wndw, asyw);
if (ret)
NV_ERROR(drm, "%s: timeout\n", plane->name);
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc->state->event) {
unsigned long flags;
/* Get correct count/ts if racing with vblank irq */
drm_accurate_vblank_count(crtc);
spin_lock_irqsave(&crtc->dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
crtc->state->event = NULL;
drm_crtc_vblank_put(crtc);
}
}
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_helper_commit_cleanup_done(state);
drm_atomic_state_put(state);
}
static void
nv50_disp_atomic_commit_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, typeof(*state), commit_work);
nv50_disp_atomic_commit_tail(state);
}
static int
nv50_disp_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state, bool nonblock)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct drm_plane_state *plane_state;
struct drm_plane *plane;
struct drm_crtc *crtc;
bool active = false;
int ret, i;
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0 && ret != -EACCES)
return ret;
ret = drm_atomic_helper_setup_commit(state, nonblock);
if (ret)
goto done;
INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
goto done;
if (!nonblock) {
ret = drm_atomic_helper_wait_for_fences(dev, state, true);
if (ret)
goto done;
}
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
if (asyw->set.image) {
asyw->ntfy.handle = wndw->dmac->sync.handle;
asyw->ntfy.offset = wndw->ntfy;
asyw->ntfy.awaken = false;
asyw->set.ntfy = true;
nouveau_bo_wr32(disp->sync, wndw->ntfy / 4, 0x00000000);
wndw->ntfy ^= 0x10;
}
}
drm_atomic_helper_swap_state(state, true);
drm_atomic_state_get(state);
if (nonblock)
queue_work(system_unbound_wq, &state->commit_work);
else
nv50_disp_atomic_commit_tail(state);
drm_for_each_crtc(crtc, dev) {
if (crtc->state->enable) {
if (!drm->have_disp_power_ref) {
drm->have_disp_power_ref = true;
return ret;
}
active = true;
break;
}
}
if (!active && drm->have_disp_power_ref) {
pm_runtime_put_autosuspend(dev->dev);
drm->have_disp_power_ref = false;
}
done:
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
{
struct nv50_outp_atom *outp;
list_for_each_entry(outp, &atom->outp, head) {
if (outp->encoder == encoder)
return outp;
}
outp = kzalloc(sizeof(*outp), GFP_KERNEL);
if (!outp)
return ERR_PTR(-ENOMEM);
list_add(&outp->head, &atom->outp);
outp->encoder = encoder;
return outp;
}
static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
struct drm_connector *connector)
{
struct drm_encoder *encoder = connector->state->best_encoder;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector->state->crtc))
return 0;
crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc);
if (crtc->state->active && drm_atomic_crtc_needs_modeset(crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
outp->flush_disable = true;
atom->flush_disable = true;
}
outp->clr.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
struct drm_connector_state *connector_state)
{
struct drm_encoder *encoder = connector_state->best_encoder;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector_state->crtc))
return 0;
crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc);
if (crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
outp->set.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct drm_connector_state *connector_state;
struct drm_connector *connector;
int ret, i;
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
for_each_connector_in_state(state, connector, connector_state, i) {
ret = nv50_disp_outp_atomic_check_clr(atom, connector);
if (ret)
return ret;
ret = nv50_disp_outp_atomic_check_set(atom, connector_state);
if (ret)
return ret;
}
return 0;
}
static void
nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
list_del(&outp->head);
kfree(outp);
}
drm_atomic_state_default_clear(state);
}
static void
nv50_disp_atomic_state_free(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
drm_atomic_state_default_release(&atom->state);
kfree(atom);
}
static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device *dev)
{
struct nv50_atom *atom;
if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
drm_atomic_state_init(dev, &atom->state) < 0) {
kfree(atom);
return NULL;
}
INIT_LIST_HEAD(&atom->outp);
return &atom->state;
}
static const struct drm_mode_config_funcs
nv50_disp_func = {
.fb_create = nouveau_user_framebuffer_create,
.output_poll_changed = nouveau_fbcon_output_poll_changed,
.atomic_check = nv50_disp_atomic_check,
.atomic_commit = nv50_disp_atomic_commit,
.atomic_state_alloc = nv50_disp_atomic_state_alloc,
.atomic_state_clear = nv50_disp_atomic_state_clear,
.atomic_state_free = nv50_disp_atomic_state_free,
};
/******************************************************************************
* Init
*****************************************************************************/
void
nv50_display_fini(struct drm_device *dev)
{
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
struct drm_plane *plane;
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_fini(wndw);
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
nv_encoder = nouveau_encoder(encoder);
nv50_mstm_fini(nv_encoder->dp.mstm);
}
}
}
int
nv50_display_init(struct drm_device *dev)
{
struct drm_encoder *encoder;
struct drm_plane *plane;
struct drm_crtc *crtc;
u32 *push;
push = evo_wait(nv50_mast(dev), 32);
if (!push)
return -EBUSY;
evo_mthd(push, 0x0088, 1);
evo_data(push, nv50_mast(dev)->base.sync.handle);
evo_kick(push, nv50_mast(dev));
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
struct nouveau_encoder *nv_encoder =
nouveau_encoder(encoder);
nv50_mstm_init(nv_encoder->dp.mstm);
}
}
drm_for_each_crtc(crtc, dev) {
nv50_head_lut_load(crtc);
}
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_init(wndw);
}
return 0;
}
void
nv50_display_destroy(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
nv50_dmac_destroy(&disp->mast.base, disp->disp);
nouveau_bo_unmap(disp->sync);
if (disp->sync)
nouveau_bo_unpin(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_display(dev)->priv = NULL;
kfree(disp);
}
MODULE_PARM_DESC(atomic, "Expose atomic ioctl (default: disabled)");
static int nouveau_atomic = 0;
module_param_named(atomic, nouveau_atomic, int, 0400);
int
nv50_display_create(struct drm_device *dev)
{
struct nvif_device *device = &nouveau_drm(dev)->client.device;
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcb = &drm->vbios.dcb;
struct drm_connector *connector, *tmp;
struct nv50_disp *disp;
struct dcb_output *dcbe;
int crtcs, ret, i;
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
mutex_init(&disp->mutex);
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nv50_display_destroy;
nouveau_display(dev)->init = nv50_display_init;
nouveau_display(dev)->fini = nv50_display_fini;
disp->disp = &nouveau_display(dev)->disp;
dev->mode_config.funcs = &nv50_disp_func;
if (nouveau_atomic)
dev->driver->driver_features |= DRIVER_ATOMIC;
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_unpin(disp->sync);
}
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
/* allocate master evo channel */
ret = nv50_core_create(device, disp->disp, disp->sync->bo.offset,
&disp->mast);
if (ret)
goto out;
/* create crtc objects to represent the hw heads */
if (disp->disp->oclass >= GF110_DISP)
crtcs = nvif_rd32(&device->object, 0x022448);
else
crtcs = 2;
for (i = 0; i < crtcs; i++) {
ret = nv50_head_create(dev, i);
if (ret)
goto out;
}
/* create encoder/connector objects based on VBIOS DCB table */
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe->connector);
if (IS_ERR(connector))
continue;
if (dcbe->location == DCB_LOC_ON_CHIP) {
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_LVDS:
case DCB_OUTPUT_DP:
ret = nv50_sor_create(connector, dcbe);
break;
case DCB_OUTPUT_ANALOG:
ret = nv50_dac_create(connector, dcbe);
break;
default:
ret = -ENODEV;
break;
}
} else {
ret = nv50_pior_create(connector, dcbe);
}
if (ret) {
NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
dcbe->location, dcbe->type,
ffs(dcbe->or) - 1, ret);
ret = 0;
}
}
/* cull any connectors we created that don't have an encoder */
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->encoder_ids[0])
continue;
NV_WARN(drm, "%s has no encoders, removing\n",
connector->name);
connector->funcs->destroy(connector);
}
out:
if (ret)
nv50_display_destroy(dev);
return ret;
}