mirror of https://gitee.com/openkylin/linux.git
930 lines
24 KiB
C
930 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "tree-mod-log.h"
|
|
#include "disk-io.h"
|
|
|
|
struct tree_mod_root {
|
|
u64 logical;
|
|
u8 level;
|
|
};
|
|
|
|
struct tree_mod_elem {
|
|
struct rb_node node;
|
|
u64 logical;
|
|
u64 seq;
|
|
enum btrfs_mod_log_op op;
|
|
|
|
/*
|
|
* This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
|
|
* operations.
|
|
*/
|
|
int slot;
|
|
|
|
/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
|
|
u64 generation;
|
|
|
|
/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
|
|
struct btrfs_disk_key key;
|
|
u64 blockptr;
|
|
|
|
/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
|
|
struct {
|
|
int dst_slot;
|
|
int nr_items;
|
|
} move;
|
|
|
|
/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
|
|
struct tree_mod_root old_root;
|
|
};
|
|
|
|
/*
|
|
* Pull a new tree mod seq number for our operation.
|
|
*/
|
|
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
|
|
{
|
|
return atomic64_inc_return(&fs_info->tree_mod_seq);
|
|
}
|
|
|
|
/*
|
|
* This adds a new blocker to the tree mod log's blocker list if the @elem
|
|
* passed does not already have a sequence number set. So when a caller expects
|
|
* to record tree modifications, it should ensure to set elem->seq to zero
|
|
* before calling btrfs_get_tree_mod_seq.
|
|
* Returns a fresh, unused tree log modification sequence number, even if no new
|
|
* blocker was added.
|
|
*/
|
|
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_seq_list *elem)
|
|
{
|
|
write_lock(&fs_info->tree_mod_log_lock);
|
|
if (!elem->seq) {
|
|
elem->seq = btrfs_inc_tree_mod_seq(fs_info);
|
|
list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
|
|
set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
|
|
}
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
|
|
return elem->seq;
|
|
}
|
|
|
|
void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_seq_list *elem)
|
|
{
|
|
struct rb_root *tm_root;
|
|
struct rb_node *node;
|
|
struct rb_node *next;
|
|
struct tree_mod_elem *tm;
|
|
u64 min_seq = BTRFS_SEQ_LAST;
|
|
u64 seq_putting = elem->seq;
|
|
|
|
if (!seq_putting)
|
|
return;
|
|
|
|
write_lock(&fs_info->tree_mod_log_lock);
|
|
list_del(&elem->list);
|
|
elem->seq = 0;
|
|
|
|
if (list_empty(&fs_info->tree_mod_seq_list)) {
|
|
clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
|
|
} else {
|
|
struct btrfs_seq_list *first;
|
|
|
|
first = list_first_entry(&fs_info->tree_mod_seq_list,
|
|
struct btrfs_seq_list, list);
|
|
if (seq_putting > first->seq) {
|
|
/*
|
|
* Blocker with lower sequence number exists, we cannot
|
|
* remove anything from the log.
|
|
*/
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
return;
|
|
}
|
|
min_seq = first->seq;
|
|
}
|
|
|
|
/*
|
|
* Anything that's lower than the lowest existing (read: blocked)
|
|
* sequence number can be removed from the tree.
|
|
*/
|
|
tm_root = &fs_info->tree_mod_log;
|
|
for (node = rb_first(tm_root); node; node = next) {
|
|
next = rb_next(node);
|
|
tm = rb_entry(node, struct tree_mod_elem, node);
|
|
if (tm->seq >= min_seq)
|
|
continue;
|
|
rb_erase(node, tm_root);
|
|
kfree(tm);
|
|
}
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
}
|
|
|
|
/*
|
|
* Key order of the log:
|
|
* node/leaf start address -> sequence
|
|
*
|
|
* The 'start address' is the logical address of the *new* root node for root
|
|
* replace operations, or the logical address of the affected block for all
|
|
* other operations.
|
|
*/
|
|
static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
|
|
struct tree_mod_elem *tm)
|
|
{
|
|
struct rb_root *tm_root;
|
|
struct rb_node **new;
|
|
struct rb_node *parent = NULL;
|
|
struct tree_mod_elem *cur;
|
|
|
|
lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
|
|
|
|
tm->seq = btrfs_inc_tree_mod_seq(fs_info);
|
|
|
|
tm_root = &fs_info->tree_mod_log;
|
|
new = &tm_root->rb_node;
|
|
while (*new) {
|
|
cur = rb_entry(*new, struct tree_mod_elem, node);
|
|
parent = *new;
|
|
if (cur->logical < tm->logical)
|
|
new = &((*new)->rb_left);
|
|
else if (cur->logical > tm->logical)
|
|
new = &((*new)->rb_right);
|
|
else if (cur->seq < tm->seq)
|
|
new = &((*new)->rb_left);
|
|
else if (cur->seq > tm->seq)
|
|
new = &((*new)->rb_right);
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
rb_link_node(&tm->node, parent, new);
|
|
rb_insert_color(&tm->node, tm_root);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determines if logging can be omitted. Returns true if it can. Otherwise, it
|
|
* returns false with the tree_mod_log_lock acquired. The caller must hold
|
|
* this until all tree mod log insertions are recorded in the rb tree and then
|
|
* write unlock fs_info::tree_mod_log_lock.
|
|
*/
|
|
static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb)
|
|
{
|
|
if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
|
|
return true;
|
|
if (eb && btrfs_header_level(eb) == 0)
|
|
return true;
|
|
|
|
write_lock(&fs_info->tree_mod_log_lock);
|
|
if (list_empty(&(fs_info)->tree_mod_seq_list)) {
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
|
|
static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb)
|
|
{
|
|
if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
|
|
return false;
|
|
if (eb && btrfs_header_level(eb) == 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
|
|
int slot,
|
|
enum btrfs_mod_log_op op,
|
|
gfp_t flags)
|
|
{
|
|
struct tree_mod_elem *tm;
|
|
|
|
tm = kzalloc(sizeof(*tm), flags);
|
|
if (!tm)
|
|
return NULL;
|
|
|
|
tm->logical = eb->start;
|
|
if (op != BTRFS_MOD_LOG_KEY_ADD) {
|
|
btrfs_node_key(eb, &tm->key, slot);
|
|
tm->blockptr = btrfs_node_blockptr(eb, slot);
|
|
}
|
|
tm->op = op;
|
|
tm->slot = slot;
|
|
tm->generation = btrfs_node_ptr_generation(eb, slot);
|
|
RB_CLEAR_NODE(&tm->node);
|
|
|
|
return tm;
|
|
}
|
|
|
|
int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
|
|
enum btrfs_mod_log_op op, gfp_t flags)
|
|
{
|
|
struct tree_mod_elem *tm;
|
|
int ret;
|
|
|
|
if (!tree_mod_need_log(eb->fs_info, eb))
|
|
return 0;
|
|
|
|
tm = alloc_tree_mod_elem(eb, slot, op, flags);
|
|
if (!tm)
|
|
return -ENOMEM;
|
|
|
|
if (tree_mod_dont_log(eb->fs_info, eb)) {
|
|
kfree(tm);
|
|
return 0;
|
|
}
|
|
|
|
ret = tree_mod_log_insert(eb->fs_info, tm);
|
|
write_unlock(&eb->fs_info->tree_mod_log_lock);
|
|
if (ret)
|
|
kfree(tm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
|
|
int dst_slot, int src_slot,
|
|
int nr_items)
|
|
{
|
|
struct tree_mod_elem *tm = NULL;
|
|
struct tree_mod_elem **tm_list = NULL;
|
|
int ret = 0;
|
|
int i;
|
|
bool locked = false;
|
|
|
|
if (!tree_mod_need_log(eb->fs_info, eb))
|
|
return 0;
|
|
|
|
tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
|
|
if (!tm_list)
|
|
return -ENOMEM;
|
|
|
|
tm = kzalloc(sizeof(*tm), GFP_NOFS);
|
|
if (!tm) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
|
|
tm->logical = eb->start;
|
|
tm->slot = src_slot;
|
|
tm->move.dst_slot = dst_slot;
|
|
tm->move.nr_items = nr_items;
|
|
tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
|
|
|
|
for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
|
|
tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
|
|
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
|
|
if (!tm_list[i]) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
}
|
|
|
|
if (tree_mod_dont_log(eb->fs_info, eb))
|
|
goto free_tms;
|
|
locked = true;
|
|
|
|
/*
|
|
* When we override something during the move, we log these removals.
|
|
* This can only happen when we move towards the beginning of the
|
|
* buffer, i.e. dst_slot < src_slot.
|
|
*/
|
|
for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
|
|
ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
|
|
if (ret)
|
|
goto free_tms;
|
|
}
|
|
|
|
ret = tree_mod_log_insert(eb->fs_info, tm);
|
|
if (ret)
|
|
goto free_tms;
|
|
write_unlock(&eb->fs_info->tree_mod_log_lock);
|
|
kfree(tm_list);
|
|
|
|
return 0;
|
|
|
|
free_tms:
|
|
for (i = 0; i < nr_items; i++) {
|
|
if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
|
|
rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
|
|
kfree(tm_list[i]);
|
|
}
|
|
if (locked)
|
|
write_unlock(&eb->fs_info->tree_mod_log_lock);
|
|
kfree(tm_list);
|
|
kfree(tm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
|
|
struct tree_mod_elem **tm_list,
|
|
int nritems)
|
|
{
|
|
int i, j;
|
|
int ret;
|
|
|
|
for (i = nritems - 1; i >= 0; i--) {
|
|
ret = tree_mod_log_insert(fs_info, tm_list[i]);
|
|
if (ret) {
|
|
for (j = nritems - 1; j > i; j--)
|
|
rb_erase(&tm_list[j]->node,
|
|
&fs_info->tree_mod_log);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
|
|
struct extent_buffer *new_root,
|
|
bool log_removal)
|
|
{
|
|
struct btrfs_fs_info *fs_info = old_root->fs_info;
|
|
struct tree_mod_elem *tm = NULL;
|
|
struct tree_mod_elem **tm_list = NULL;
|
|
int nritems = 0;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (!tree_mod_need_log(fs_info, NULL))
|
|
return 0;
|
|
|
|
if (log_removal && btrfs_header_level(old_root) > 0) {
|
|
nritems = btrfs_header_nritems(old_root);
|
|
tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
|
|
GFP_NOFS);
|
|
if (!tm_list) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
for (i = 0; i < nritems; i++) {
|
|
tm_list[i] = alloc_tree_mod_elem(old_root, i,
|
|
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
|
|
if (!tm_list[i]) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
}
|
|
}
|
|
|
|
tm = kzalloc(sizeof(*tm), GFP_NOFS);
|
|
if (!tm) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
|
|
tm->logical = new_root->start;
|
|
tm->old_root.logical = old_root->start;
|
|
tm->old_root.level = btrfs_header_level(old_root);
|
|
tm->generation = btrfs_header_generation(old_root);
|
|
tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
|
|
|
|
if (tree_mod_dont_log(fs_info, NULL))
|
|
goto free_tms;
|
|
|
|
if (tm_list)
|
|
ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
|
|
if (!ret)
|
|
ret = tree_mod_log_insert(fs_info, tm);
|
|
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
if (ret)
|
|
goto free_tms;
|
|
kfree(tm_list);
|
|
|
|
return ret;
|
|
|
|
free_tms:
|
|
if (tm_list) {
|
|
for (i = 0; i < nritems; i++)
|
|
kfree(tm_list[i]);
|
|
kfree(tm_list);
|
|
}
|
|
kfree(tm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 min_seq,
|
|
bool smallest)
|
|
{
|
|
struct rb_root *tm_root;
|
|
struct rb_node *node;
|
|
struct tree_mod_elem *cur = NULL;
|
|
struct tree_mod_elem *found = NULL;
|
|
|
|
read_lock(&fs_info->tree_mod_log_lock);
|
|
tm_root = &fs_info->tree_mod_log;
|
|
node = tm_root->rb_node;
|
|
while (node) {
|
|
cur = rb_entry(node, struct tree_mod_elem, node);
|
|
if (cur->logical < start) {
|
|
node = node->rb_left;
|
|
} else if (cur->logical > start) {
|
|
node = node->rb_right;
|
|
} else if (cur->seq < min_seq) {
|
|
node = node->rb_left;
|
|
} else if (!smallest) {
|
|
/* We want the node with the highest seq */
|
|
if (found)
|
|
BUG_ON(found->seq > cur->seq);
|
|
found = cur;
|
|
node = node->rb_left;
|
|
} else if (cur->seq > min_seq) {
|
|
/* We want the node with the smallest seq */
|
|
if (found)
|
|
BUG_ON(found->seq < cur->seq);
|
|
found = cur;
|
|
node = node->rb_right;
|
|
} else {
|
|
found = cur;
|
|
break;
|
|
}
|
|
}
|
|
read_unlock(&fs_info->tree_mod_log_lock);
|
|
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* This returns the element from the log with the smallest time sequence
|
|
* value that's in the log (the oldest log item). Any element with a time
|
|
* sequence lower than min_seq will be ignored.
|
|
*/
|
|
static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 min_seq)
|
|
{
|
|
return __tree_mod_log_search(fs_info, start, min_seq, true);
|
|
}
|
|
|
|
/*
|
|
* This returns the element from the log with the largest time sequence
|
|
* value that's in the log (the most recent log item). Any element with
|
|
* a time sequence lower than min_seq will be ignored.
|
|
*/
|
|
static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 min_seq)
|
|
{
|
|
return __tree_mod_log_search(fs_info, start, min_seq, false);
|
|
}
|
|
|
|
int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
|
|
struct extent_buffer *src,
|
|
unsigned long dst_offset,
|
|
unsigned long src_offset,
|
|
int nr_items)
|
|
{
|
|
struct btrfs_fs_info *fs_info = dst->fs_info;
|
|
int ret = 0;
|
|
struct tree_mod_elem **tm_list = NULL;
|
|
struct tree_mod_elem **tm_list_add, **tm_list_rem;
|
|
int i;
|
|
bool locked = false;
|
|
|
|
if (!tree_mod_need_log(fs_info, NULL))
|
|
return 0;
|
|
|
|
if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
|
|
return 0;
|
|
|
|
tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
|
|
GFP_NOFS);
|
|
if (!tm_list)
|
|
return -ENOMEM;
|
|
|
|
tm_list_add = tm_list;
|
|
tm_list_rem = tm_list + nr_items;
|
|
for (i = 0; i < nr_items; i++) {
|
|
tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
|
|
BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
|
|
if (!tm_list_rem[i]) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
|
|
tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
|
|
BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
|
|
if (!tm_list_add[i]) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
}
|
|
|
|
if (tree_mod_dont_log(fs_info, NULL))
|
|
goto free_tms;
|
|
locked = true;
|
|
|
|
for (i = 0; i < nr_items; i++) {
|
|
ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
|
|
if (ret)
|
|
goto free_tms;
|
|
ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
|
|
if (ret)
|
|
goto free_tms;
|
|
}
|
|
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
kfree(tm_list);
|
|
|
|
return 0;
|
|
|
|
free_tms:
|
|
for (i = 0; i < nr_items * 2; i++) {
|
|
if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
|
|
rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
|
|
kfree(tm_list[i]);
|
|
}
|
|
if (locked)
|
|
write_unlock(&fs_info->tree_mod_log_lock);
|
|
kfree(tm_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
|
|
{
|
|
struct tree_mod_elem **tm_list = NULL;
|
|
int nritems = 0;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
if (!tree_mod_need_log(eb->fs_info, eb))
|
|
return 0;
|
|
|
|
nritems = btrfs_header_nritems(eb);
|
|
tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
|
|
if (!tm_list)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
tm_list[i] = alloc_tree_mod_elem(eb, i,
|
|
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
|
|
if (!tm_list[i]) {
|
|
ret = -ENOMEM;
|
|
goto free_tms;
|
|
}
|
|
}
|
|
|
|
if (tree_mod_dont_log(eb->fs_info, eb))
|
|
goto free_tms;
|
|
|
|
ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
|
|
write_unlock(&eb->fs_info->tree_mod_log_lock);
|
|
if (ret)
|
|
goto free_tms;
|
|
kfree(tm_list);
|
|
|
|
return 0;
|
|
|
|
free_tms:
|
|
for (i = 0; i < nritems; i++)
|
|
kfree(tm_list[i]);
|
|
kfree(tm_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns the logical address of the oldest predecessor of the given root.
|
|
* Entries older than time_seq are ignored.
|
|
*/
|
|
static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
|
|
u64 time_seq)
|
|
{
|
|
struct tree_mod_elem *tm;
|
|
struct tree_mod_elem *found = NULL;
|
|
u64 root_logical = eb_root->start;
|
|
bool looped = false;
|
|
|
|
if (!time_seq)
|
|
return NULL;
|
|
|
|
/*
|
|
* The very last operation that's logged for a root is the replacement
|
|
* operation (if it is replaced at all). This has the logical address
|
|
* of the *new* root, making it the very first operation that's logged
|
|
* for this root.
|
|
*/
|
|
while (1) {
|
|
tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
|
|
time_seq);
|
|
if (!looped && !tm)
|
|
return NULL;
|
|
/*
|
|
* If there are no tree operation for the oldest root, we simply
|
|
* return it. This should only happen if that (old) root is at
|
|
* level 0.
|
|
*/
|
|
if (!tm)
|
|
break;
|
|
|
|
/*
|
|
* If there's an operation that's not a root replacement, we
|
|
* found the oldest version of our root. Normally, we'll find a
|
|
* BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
|
|
*/
|
|
if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
|
|
break;
|
|
|
|
found = tm;
|
|
root_logical = tm->old_root.logical;
|
|
looped = true;
|
|
}
|
|
|
|
/* If there's no old root to return, return what we found instead */
|
|
if (!found)
|
|
found = tm;
|
|
|
|
return found;
|
|
}
|
|
|
|
|
|
/*
|
|
* tm is a pointer to the first operation to rewind within eb. Then, all
|
|
* previous operations will be rewound (until we reach something older than
|
|
* time_seq).
|
|
*/
|
|
static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb,
|
|
u64 time_seq,
|
|
struct tree_mod_elem *first_tm)
|
|
{
|
|
u32 n;
|
|
struct rb_node *next;
|
|
struct tree_mod_elem *tm = first_tm;
|
|
unsigned long o_dst;
|
|
unsigned long o_src;
|
|
unsigned long p_size = sizeof(struct btrfs_key_ptr);
|
|
|
|
n = btrfs_header_nritems(eb);
|
|
read_lock(&fs_info->tree_mod_log_lock);
|
|
while (tm && tm->seq >= time_seq) {
|
|
/*
|
|
* All the operations are recorded with the operator used for
|
|
* the modification. As we're going backwards, we do the
|
|
* opposite of each operation here.
|
|
*/
|
|
switch (tm->op) {
|
|
case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
|
|
BUG_ON(tm->slot < n);
|
|
fallthrough;
|
|
case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
|
|
case BTRFS_MOD_LOG_KEY_REMOVE:
|
|
btrfs_set_node_key(eb, &tm->key, tm->slot);
|
|
btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
|
|
btrfs_set_node_ptr_generation(eb, tm->slot,
|
|
tm->generation);
|
|
n++;
|
|
break;
|
|
case BTRFS_MOD_LOG_KEY_REPLACE:
|
|
BUG_ON(tm->slot >= n);
|
|
btrfs_set_node_key(eb, &tm->key, tm->slot);
|
|
btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
|
|
btrfs_set_node_ptr_generation(eb, tm->slot,
|
|
tm->generation);
|
|
break;
|
|
case BTRFS_MOD_LOG_KEY_ADD:
|
|
/* if a move operation is needed it's in the log */
|
|
n--;
|
|
break;
|
|
case BTRFS_MOD_LOG_MOVE_KEYS:
|
|
o_dst = btrfs_node_key_ptr_offset(tm->slot);
|
|
o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
|
|
memmove_extent_buffer(eb, o_dst, o_src,
|
|
tm->move.nr_items * p_size);
|
|
break;
|
|
case BTRFS_MOD_LOG_ROOT_REPLACE:
|
|
/*
|
|
* This operation is special. For roots, this must be
|
|
* handled explicitly before rewinding.
|
|
* For non-roots, this operation may exist if the node
|
|
* was a root: root A -> child B; then A gets empty and
|
|
* B is promoted to the new root. In the mod log, we'll
|
|
* have a root-replace operation for B, a tree block
|
|
* that is no root. We simply ignore that operation.
|
|
*/
|
|
break;
|
|
}
|
|
next = rb_next(&tm->node);
|
|
if (!next)
|
|
break;
|
|
tm = rb_entry(next, struct tree_mod_elem, node);
|
|
if (tm->logical != first_tm->logical)
|
|
break;
|
|
}
|
|
read_unlock(&fs_info->tree_mod_log_lock);
|
|
btrfs_set_header_nritems(eb, n);
|
|
}
|
|
|
|
/*
|
|
* Called with eb read locked. If the buffer cannot be rewound, the same buffer
|
|
* is returned. If rewind operations happen, a fresh buffer is returned. The
|
|
* returned buffer is always read-locked. If the returned buffer is not the
|
|
* input buffer, the lock on the input buffer is released and the input buffer
|
|
* is freed (its refcount is decremented).
|
|
*/
|
|
struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb,
|
|
u64 time_seq)
|
|
{
|
|
struct extent_buffer *eb_rewin;
|
|
struct tree_mod_elem *tm;
|
|
|
|
if (!time_seq)
|
|
return eb;
|
|
|
|
if (btrfs_header_level(eb) == 0)
|
|
return eb;
|
|
|
|
tm = tree_mod_log_search(fs_info, eb->start, time_seq);
|
|
if (!tm)
|
|
return eb;
|
|
|
|
if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
|
|
BUG_ON(tm->slot != 0);
|
|
eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
|
|
if (!eb_rewin) {
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
return NULL;
|
|
}
|
|
btrfs_set_header_bytenr(eb_rewin, eb->start);
|
|
btrfs_set_header_backref_rev(eb_rewin,
|
|
btrfs_header_backref_rev(eb));
|
|
btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
|
|
btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
|
|
} else {
|
|
eb_rewin = btrfs_clone_extent_buffer(eb);
|
|
if (!eb_rewin) {
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
|
|
eb_rewin, btrfs_header_level(eb_rewin));
|
|
btrfs_tree_read_lock(eb_rewin);
|
|
tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
|
|
WARN_ON(btrfs_header_nritems(eb_rewin) >
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
|
|
|
|
return eb_rewin;
|
|
}
|
|
|
|
/*
|
|
* Rewind the state of @root's root node to the given @time_seq value.
|
|
* If there are no changes, the current root->root_node is returned. If anything
|
|
* changed in between, there's a fresh buffer allocated on which the rewind
|
|
* operations are done. In any case, the returned buffer is read locked.
|
|
* Returns NULL on error (with no locks held).
|
|
*/
|
|
struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct tree_mod_elem *tm;
|
|
struct extent_buffer *eb = NULL;
|
|
struct extent_buffer *eb_root;
|
|
u64 eb_root_owner = 0;
|
|
struct extent_buffer *old;
|
|
struct tree_mod_root *old_root = NULL;
|
|
u64 old_generation = 0;
|
|
u64 logical;
|
|
int level;
|
|
|
|
eb_root = btrfs_read_lock_root_node(root);
|
|
tm = tree_mod_log_oldest_root(eb_root, time_seq);
|
|
if (!tm)
|
|
return eb_root;
|
|
|
|
if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
|
|
old_root = &tm->old_root;
|
|
old_generation = tm->generation;
|
|
logical = old_root->logical;
|
|
level = old_root->level;
|
|
} else {
|
|
logical = eb_root->start;
|
|
level = btrfs_header_level(eb_root);
|
|
}
|
|
|
|
tm = tree_mod_log_search(fs_info, logical, time_seq);
|
|
if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
|
|
btrfs_tree_read_unlock(eb_root);
|
|
free_extent_buffer(eb_root);
|
|
old = read_tree_block(fs_info, logical, root->root_key.objectid,
|
|
0, level, NULL);
|
|
if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
|
|
if (!IS_ERR(old))
|
|
free_extent_buffer(old);
|
|
btrfs_warn(fs_info,
|
|
"failed to read tree block %llu from get_old_root",
|
|
logical);
|
|
} else {
|
|
struct tree_mod_elem *tm2;
|
|
|
|
btrfs_tree_read_lock(old);
|
|
eb = btrfs_clone_extent_buffer(old);
|
|
/*
|
|
* After the lookup for the most recent tree mod operation
|
|
* above and before we locked and cloned the extent buffer
|
|
* 'old', a new tree mod log operation may have been added.
|
|
* So lookup for a more recent one to make sure the number
|
|
* of mod log operations we replay is consistent with the
|
|
* number of items we have in the cloned extent buffer,
|
|
* otherwise we can hit a BUG_ON when rewinding the extent
|
|
* buffer.
|
|
*/
|
|
tm2 = tree_mod_log_search(fs_info, logical, time_seq);
|
|
btrfs_tree_read_unlock(old);
|
|
free_extent_buffer(old);
|
|
ASSERT(tm2);
|
|
ASSERT(tm2 == tm || tm2->seq > tm->seq);
|
|
if (!tm2 || tm2->seq < tm->seq) {
|
|
free_extent_buffer(eb);
|
|
return NULL;
|
|
}
|
|
tm = tm2;
|
|
}
|
|
} else if (old_root) {
|
|
eb_root_owner = btrfs_header_owner(eb_root);
|
|
btrfs_tree_read_unlock(eb_root);
|
|
free_extent_buffer(eb_root);
|
|
eb = alloc_dummy_extent_buffer(fs_info, logical);
|
|
} else {
|
|
eb = btrfs_clone_extent_buffer(eb_root);
|
|
btrfs_tree_read_unlock(eb_root);
|
|
free_extent_buffer(eb_root);
|
|
}
|
|
|
|
if (!eb)
|
|
return NULL;
|
|
if (old_root) {
|
|
btrfs_set_header_bytenr(eb, eb->start);
|
|
btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(eb, eb_root_owner);
|
|
btrfs_set_header_level(eb, old_root->level);
|
|
btrfs_set_header_generation(eb, old_generation);
|
|
}
|
|
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
|
|
btrfs_header_level(eb));
|
|
btrfs_tree_read_lock(eb);
|
|
if (tm)
|
|
tree_mod_log_rewind(fs_info, eb, time_seq, tm);
|
|
else
|
|
WARN_ON(btrfs_header_level(eb) != 0);
|
|
WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
|
|
|
|
return eb;
|
|
}
|
|
|
|
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
|
|
{
|
|
struct tree_mod_elem *tm;
|
|
int level;
|
|
struct extent_buffer *eb_root = btrfs_root_node(root);
|
|
|
|
tm = tree_mod_log_oldest_root(eb_root, time_seq);
|
|
if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
|
|
level = tm->old_root.level;
|
|
else
|
|
level = btrfs_header_level(eb_root);
|
|
|
|
free_extent_buffer(eb_root);
|
|
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Return the lowest sequence number in the tree modification log.
|
|
*
|
|
* Return the sequence number of the oldest tree modification log user, which
|
|
* corresponds to the lowest sequence number of all existing users. If there are
|
|
* no users it returns 0.
|
|
*/
|
|
u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 ret = 0;
|
|
|
|
read_lock(&fs_info->tree_mod_log_lock);
|
|
if (!list_empty(&fs_info->tree_mod_seq_list)) {
|
|
struct btrfs_seq_list *elem;
|
|
|
|
elem = list_first_entry(&fs_info->tree_mod_seq_list,
|
|
struct btrfs_seq_list, list);
|
|
ret = elem->seq;
|
|
}
|
|
read_unlock(&fs_info->tree_mod_log_lock);
|
|
|
|
return ret;
|
|
}
|