mirror of https://gitee.com/openkylin/linux.git
1396 lines
37 KiB
C
1396 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (c) 2014-2017 Oracle. All rights reserved.
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* rpc_rdma.c
|
|
*
|
|
* This file contains the guts of the RPC RDMA protocol, and
|
|
* does marshaling/unmarshaling, etc. It is also where interfacing
|
|
* to the Linux RPC framework lives.
|
|
*/
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#include <linux/sunrpc/svc_rdma.h>
|
|
|
|
#include "xprt_rdma.h"
|
|
#include <trace/events/rpcrdma.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
/* Returns size of largest RPC-over-RDMA header in a Call message
|
|
*
|
|
* The largest Call header contains a full-size Read list and a
|
|
* minimal Reply chunk.
|
|
*/
|
|
static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
|
|
{
|
|
unsigned int size;
|
|
|
|
/* Fixed header fields and list discriminators */
|
|
size = RPCRDMA_HDRLEN_MIN;
|
|
|
|
/* Maximum Read list size */
|
|
maxsegs += 2; /* segment for head and tail buffers */
|
|
size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
|
|
|
|
/* Minimal Read chunk size */
|
|
size += sizeof(__be32); /* segment count */
|
|
size += rpcrdma_segment_maxsz * sizeof(__be32);
|
|
size += sizeof(__be32); /* list discriminator */
|
|
|
|
dprintk("RPC: %s: max call header size = %u\n",
|
|
__func__, size);
|
|
return size;
|
|
}
|
|
|
|
/* Returns size of largest RPC-over-RDMA header in a Reply message
|
|
*
|
|
* There is only one Write list or one Reply chunk per Reply
|
|
* message. The larger list is the Write list.
|
|
*/
|
|
static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
|
|
{
|
|
unsigned int size;
|
|
|
|
/* Fixed header fields and list discriminators */
|
|
size = RPCRDMA_HDRLEN_MIN;
|
|
|
|
/* Maximum Write list size */
|
|
maxsegs += 2; /* segment for head and tail buffers */
|
|
size = sizeof(__be32); /* segment count */
|
|
size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
|
|
size += sizeof(__be32); /* list discriminator */
|
|
|
|
dprintk("RPC: %s: max reply header size = %u\n",
|
|
__func__, size);
|
|
return size;
|
|
}
|
|
|
|
void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
|
|
{
|
|
struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
unsigned int maxsegs = ia->ri_max_segs;
|
|
|
|
ia->ri_max_inline_write = cdata->inline_wsize -
|
|
rpcrdma_max_call_header_size(maxsegs);
|
|
ia->ri_max_inline_read = cdata->inline_rsize -
|
|
rpcrdma_max_reply_header_size(maxsegs);
|
|
}
|
|
|
|
/* The client can send a request inline as long as the RPCRDMA header
|
|
* plus the RPC call fit under the transport's inline limit. If the
|
|
* combined call message size exceeds that limit, the client must use
|
|
* a Read chunk for this operation.
|
|
*
|
|
* A Read chunk is also required if sending the RPC call inline would
|
|
* exceed this device's max_sge limit.
|
|
*/
|
|
static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct xdr_buf *xdr = &rqst->rq_snd_buf;
|
|
unsigned int count, remaining, offset;
|
|
|
|
if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
|
|
return false;
|
|
|
|
if (xdr->page_len) {
|
|
remaining = xdr->page_len;
|
|
offset = offset_in_page(xdr->page_base);
|
|
count = RPCRDMA_MIN_SEND_SGES;
|
|
while (remaining) {
|
|
remaining -= min_t(unsigned int,
|
|
PAGE_SIZE - offset, remaining);
|
|
offset = 0;
|
|
if (++count > r_xprt->rx_ia.ri_max_send_sges)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* The client can't know how large the actual reply will be. Thus it
|
|
* plans for the largest possible reply for that particular ULP
|
|
* operation. If the maximum combined reply message size exceeds that
|
|
* limit, the client must provide a write list or a reply chunk for
|
|
* this request.
|
|
*/
|
|
static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
|
|
return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
|
|
}
|
|
|
|
/* Split @vec on page boundaries into SGEs. FMR registers pages, not
|
|
* a byte range. Other modes coalesce these SGEs into a single MR
|
|
* when they can.
|
|
*
|
|
* Returns pointer to next available SGE, and bumps the total number
|
|
* of SGEs consumed.
|
|
*/
|
|
static struct rpcrdma_mr_seg *
|
|
rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
|
|
unsigned int *n)
|
|
{
|
|
u32 remaining, page_offset;
|
|
char *base;
|
|
|
|
base = vec->iov_base;
|
|
page_offset = offset_in_page(base);
|
|
remaining = vec->iov_len;
|
|
while (remaining) {
|
|
seg->mr_page = NULL;
|
|
seg->mr_offset = base;
|
|
seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
|
|
remaining -= seg->mr_len;
|
|
base += seg->mr_len;
|
|
++seg;
|
|
++(*n);
|
|
page_offset = 0;
|
|
}
|
|
return seg;
|
|
}
|
|
|
|
/* Convert @xdrbuf into SGEs no larger than a page each. As they
|
|
* are registered, these SGEs are then coalesced into RDMA segments
|
|
* when the selected memreg mode supports it.
|
|
*
|
|
* Returns positive number of SGEs consumed, or a negative errno.
|
|
*/
|
|
|
|
static int
|
|
rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
|
|
unsigned int pos, enum rpcrdma_chunktype type,
|
|
struct rpcrdma_mr_seg *seg)
|
|
{
|
|
unsigned long page_base;
|
|
unsigned int len, n;
|
|
struct page **ppages;
|
|
|
|
n = 0;
|
|
if (pos == 0)
|
|
seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
|
|
|
|
len = xdrbuf->page_len;
|
|
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
|
|
page_base = offset_in_page(xdrbuf->page_base);
|
|
while (len) {
|
|
if (unlikely(!*ppages)) {
|
|
/* XXX: Certain upper layer operations do
|
|
* not provide receive buffer pages.
|
|
*/
|
|
*ppages = alloc_page(GFP_ATOMIC);
|
|
if (!*ppages)
|
|
return -ENOBUFS;
|
|
}
|
|
seg->mr_page = *ppages;
|
|
seg->mr_offset = (char *)page_base;
|
|
seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
|
|
len -= seg->mr_len;
|
|
++ppages;
|
|
++seg;
|
|
++n;
|
|
page_base = 0;
|
|
}
|
|
|
|
/* When encoding a Read chunk, the tail iovec contains an
|
|
* XDR pad and may be omitted.
|
|
*/
|
|
if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
|
|
goto out;
|
|
|
|
/* When encoding a Write chunk, some servers need to see an
|
|
* extra segment for non-XDR-aligned Write chunks. The upper
|
|
* layer provides space in the tail iovec that may be used
|
|
* for this purpose.
|
|
*/
|
|
if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
|
|
goto out;
|
|
|
|
if (xdrbuf->tail[0].iov_len)
|
|
seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
|
|
|
|
out:
|
|
if (unlikely(n > RPCRDMA_MAX_SEGS))
|
|
return -EIO;
|
|
return n;
|
|
}
|
|
|
|
static inline int
|
|
encode_item_present(struct xdr_stream *xdr)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_reserve_space(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EMSGSIZE;
|
|
|
|
*p = xdr_one;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
encode_item_not_present(struct xdr_stream *xdr)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_reserve_space(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EMSGSIZE;
|
|
|
|
*p = xdr_zero;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
|
|
{
|
|
*iptr++ = cpu_to_be32(mr->mr_handle);
|
|
*iptr++ = cpu_to_be32(mr->mr_length);
|
|
xdr_encode_hyper(iptr, mr->mr_offset);
|
|
}
|
|
|
|
static int
|
|
encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_reserve_space(xdr, 4 * sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EMSGSIZE;
|
|
|
|
xdr_encode_rdma_segment(p, mr);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
|
|
u32 position)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_reserve_space(xdr, 6 * sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EMSGSIZE;
|
|
|
|
*p++ = xdr_one; /* Item present */
|
|
*p++ = cpu_to_be32(position);
|
|
xdr_encode_rdma_segment(p, mr);
|
|
return 0;
|
|
}
|
|
|
|
/* Register and XDR encode the Read list. Supports encoding a list of read
|
|
* segments that belong to a single read chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Read chunklist (a linked list):
|
|
* N elements, position P (same P for all chunks of same arg!):
|
|
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
|
|
*
|
|
* Returns zero on success, or a negative errno if a failure occurred.
|
|
* @xdr is advanced to the next position in the stream.
|
|
*
|
|
* Only a single @pos value is currently supported.
|
|
*/
|
|
static noinline int
|
|
rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
|
|
struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
|
|
{
|
|
struct xdr_stream *xdr = &req->rl_stream;
|
|
struct rpcrdma_mr_seg *seg;
|
|
struct rpcrdma_mr *mr;
|
|
unsigned int pos;
|
|
int nsegs;
|
|
|
|
pos = rqst->rq_snd_buf.head[0].iov_len;
|
|
if (rtype == rpcrdma_areadch)
|
|
pos = 0;
|
|
seg = req->rl_segments;
|
|
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
|
|
rtype, seg);
|
|
if (nsegs < 0)
|
|
return nsegs;
|
|
|
|
do {
|
|
seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
|
|
false, &mr);
|
|
if (IS_ERR(seg))
|
|
return PTR_ERR(seg);
|
|
rpcrdma_mr_push(mr, &req->rl_registered);
|
|
|
|
if (encode_read_segment(xdr, mr, pos) < 0)
|
|
return -EMSGSIZE;
|
|
|
|
trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs);
|
|
r_xprt->rx_stats.read_chunk_count++;
|
|
nsegs -= mr->mr_nents;
|
|
} while (nsegs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Register and XDR encode the Write list. Supports encoding a list
|
|
* containing one array of plain segments that belong to a single
|
|
* write chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Write chunklist (a list of (one) counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO - 0
|
|
*
|
|
* Returns zero on success, or a negative errno if a failure occurred.
|
|
* @xdr is advanced to the next position in the stream.
|
|
*
|
|
* Only a single Write chunk is currently supported.
|
|
*/
|
|
static noinline int
|
|
rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
|
|
struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
|
|
{
|
|
struct xdr_stream *xdr = &req->rl_stream;
|
|
struct rpcrdma_mr_seg *seg;
|
|
struct rpcrdma_mr *mr;
|
|
int nsegs, nchunks;
|
|
__be32 *segcount;
|
|
|
|
seg = req->rl_segments;
|
|
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
|
|
rqst->rq_rcv_buf.head[0].iov_len,
|
|
wtype, seg);
|
|
if (nsegs < 0)
|
|
return nsegs;
|
|
|
|
if (encode_item_present(xdr) < 0)
|
|
return -EMSGSIZE;
|
|
segcount = xdr_reserve_space(xdr, sizeof(*segcount));
|
|
if (unlikely(!segcount))
|
|
return -EMSGSIZE;
|
|
/* Actual value encoded below */
|
|
|
|
nchunks = 0;
|
|
do {
|
|
seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
|
|
true, &mr);
|
|
if (IS_ERR(seg))
|
|
return PTR_ERR(seg);
|
|
rpcrdma_mr_push(mr, &req->rl_registered);
|
|
|
|
if (encode_rdma_segment(xdr, mr) < 0)
|
|
return -EMSGSIZE;
|
|
|
|
trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs);
|
|
r_xprt->rx_stats.write_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += mr->mr_length;
|
|
nchunks++;
|
|
nsegs -= mr->mr_nents;
|
|
} while (nsegs);
|
|
|
|
/* Update count of segments in this Write chunk */
|
|
*segcount = cpu_to_be32(nchunks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Register and XDR encode the Reply chunk. Supports encoding an array
|
|
* of plain segments that belong to a single write (reply) chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Reply chunk (a counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO
|
|
*
|
|
* Returns zero on success, or a negative errno if a failure occurred.
|
|
* @xdr is advanced to the next position in the stream.
|
|
*/
|
|
static noinline int
|
|
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
|
|
struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
|
|
{
|
|
struct xdr_stream *xdr = &req->rl_stream;
|
|
struct rpcrdma_mr_seg *seg;
|
|
struct rpcrdma_mr *mr;
|
|
int nsegs, nchunks;
|
|
__be32 *segcount;
|
|
|
|
seg = req->rl_segments;
|
|
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
|
|
if (nsegs < 0)
|
|
return nsegs;
|
|
|
|
if (encode_item_present(xdr) < 0)
|
|
return -EMSGSIZE;
|
|
segcount = xdr_reserve_space(xdr, sizeof(*segcount));
|
|
if (unlikely(!segcount))
|
|
return -EMSGSIZE;
|
|
/* Actual value encoded below */
|
|
|
|
nchunks = 0;
|
|
do {
|
|
seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
|
|
true, &mr);
|
|
if (IS_ERR(seg))
|
|
return PTR_ERR(seg);
|
|
rpcrdma_mr_push(mr, &req->rl_registered);
|
|
|
|
if (encode_rdma_segment(xdr, mr) < 0)
|
|
return -EMSGSIZE;
|
|
|
|
trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs);
|
|
r_xprt->rx_stats.reply_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += mr->mr_length;
|
|
nchunks++;
|
|
nsegs -= mr->mr_nents;
|
|
} while (nsegs);
|
|
|
|
/* Update count of segments in the Reply chunk */
|
|
*segcount = cpu_to_be32(nchunks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rpcrdma_unmap_sendctx - DMA-unmap Send buffers
|
|
* @sc: sendctx containing SGEs to unmap
|
|
*
|
|
*/
|
|
void
|
|
rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
|
|
{
|
|
struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
|
|
struct ib_sge *sge;
|
|
unsigned int count;
|
|
|
|
/* The first two SGEs contain the transport header and
|
|
* the inline buffer. These are always left mapped so
|
|
* they can be cheaply re-used.
|
|
*/
|
|
sge = &sc->sc_sges[2];
|
|
for (count = sc->sc_unmap_count; count; ++sge, --count)
|
|
ib_dma_unmap_page(ia->ri_device,
|
|
sge->addr, sge->length, DMA_TO_DEVICE);
|
|
|
|
if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
|
|
}
|
|
}
|
|
|
|
/* Prepare an SGE for the RPC-over-RDMA transport header.
|
|
*/
|
|
static bool
|
|
rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
|
|
u32 len)
|
|
{
|
|
struct rpcrdma_sendctx *sc = req->rl_sendctx;
|
|
struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
|
|
struct ib_sge *sge = sc->sc_sges;
|
|
|
|
if (!rpcrdma_dma_map_regbuf(ia, rb))
|
|
goto out_regbuf;
|
|
sge->addr = rdmab_addr(rb);
|
|
sge->length = len;
|
|
sge->lkey = rdmab_lkey(rb);
|
|
|
|
ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
|
|
sge->length, DMA_TO_DEVICE);
|
|
sc->sc_wr.num_sge++;
|
|
return true;
|
|
|
|
out_regbuf:
|
|
pr_err("rpcrdma: failed to DMA map a Send buffer\n");
|
|
return false;
|
|
}
|
|
|
|
/* Prepare the Send SGEs. The head and tail iovec, and each entry
|
|
* in the page list, gets its own SGE.
|
|
*/
|
|
static bool
|
|
rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
|
|
struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
|
|
{
|
|
struct rpcrdma_sendctx *sc = req->rl_sendctx;
|
|
unsigned int sge_no, page_base, len, remaining;
|
|
struct rpcrdma_regbuf *rb = req->rl_sendbuf;
|
|
struct ib_device *device = ia->ri_device;
|
|
struct ib_sge *sge = sc->sc_sges;
|
|
u32 lkey = ia->ri_pd->local_dma_lkey;
|
|
struct page *page, **ppages;
|
|
|
|
/* The head iovec is straightforward, as it is already
|
|
* DMA-mapped. Sync the content that has changed.
|
|
*/
|
|
if (!rpcrdma_dma_map_regbuf(ia, rb))
|
|
goto out_regbuf;
|
|
sge_no = 1;
|
|
sge[sge_no].addr = rdmab_addr(rb);
|
|
sge[sge_no].length = xdr->head[0].iov_len;
|
|
sge[sge_no].lkey = rdmab_lkey(rb);
|
|
ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
|
|
sge[sge_no].length, DMA_TO_DEVICE);
|
|
|
|
/* If there is a Read chunk, the page list is being handled
|
|
* via explicit RDMA, and thus is skipped here. However, the
|
|
* tail iovec may include an XDR pad for the page list, as
|
|
* well as additional content, and may not reside in the
|
|
* same page as the head iovec.
|
|
*/
|
|
if (rtype == rpcrdma_readch) {
|
|
len = xdr->tail[0].iov_len;
|
|
|
|
/* Do not include the tail if it is only an XDR pad */
|
|
if (len < 4)
|
|
goto out;
|
|
|
|
page = virt_to_page(xdr->tail[0].iov_base);
|
|
page_base = offset_in_page(xdr->tail[0].iov_base);
|
|
|
|
/* If the content in the page list is an odd length,
|
|
* xdr_write_pages() has added a pad at the beginning
|
|
* of the tail iovec. Force the tail's non-pad content
|
|
* to land at the next XDR position in the Send message.
|
|
*/
|
|
page_base += len & 3;
|
|
len -= len & 3;
|
|
goto map_tail;
|
|
}
|
|
|
|
/* If there is a page list present, temporarily DMA map
|
|
* and prepare an SGE for each page to be sent.
|
|
*/
|
|
if (xdr->page_len) {
|
|
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
|
|
page_base = offset_in_page(xdr->page_base);
|
|
remaining = xdr->page_len;
|
|
while (remaining) {
|
|
sge_no++;
|
|
if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
|
|
goto out_mapping_overflow;
|
|
|
|
len = min_t(u32, PAGE_SIZE - page_base, remaining);
|
|
sge[sge_no].addr = ib_dma_map_page(device, *ppages,
|
|
page_base, len,
|
|
DMA_TO_DEVICE);
|
|
if (ib_dma_mapping_error(device, sge[sge_no].addr))
|
|
goto out_mapping_err;
|
|
sge[sge_no].length = len;
|
|
sge[sge_no].lkey = lkey;
|
|
|
|
sc->sc_unmap_count++;
|
|
ppages++;
|
|
remaining -= len;
|
|
page_base = 0;
|
|
}
|
|
}
|
|
|
|
/* The tail iovec is not always constructed in the same
|
|
* page where the head iovec resides (see, for example,
|
|
* gss_wrap_req_priv). To neatly accommodate that case,
|
|
* DMA map it separately.
|
|
*/
|
|
if (xdr->tail[0].iov_len) {
|
|
page = virt_to_page(xdr->tail[0].iov_base);
|
|
page_base = offset_in_page(xdr->tail[0].iov_base);
|
|
len = xdr->tail[0].iov_len;
|
|
|
|
map_tail:
|
|
sge_no++;
|
|
sge[sge_no].addr = ib_dma_map_page(device, page,
|
|
page_base, len,
|
|
DMA_TO_DEVICE);
|
|
if (ib_dma_mapping_error(device, sge[sge_no].addr))
|
|
goto out_mapping_err;
|
|
sge[sge_no].length = len;
|
|
sge[sge_no].lkey = lkey;
|
|
sc->sc_unmap_count++;
|
|
}
|
|
|
|
out:
|
|
sc->sc_wr.num_sge += sge_no;
|
|
if (sc->sc_unmap_count)
|
|
__set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
|
|
return true;
|
|
|
|
out_regbuf:
|
|
pr_err("rpcrdma: failed to DMA map a Send buffer\n");
|
|
return false;
|
|
|
|
out_mapping_overflow:
|
|
rpcrdma_unmap_sendctx(sc);
|
|
pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
|
|
return false;
|
|
|
|
out_mapping_err:
|
|
rpcrdma_unmap_sendctx(sc);
|
|
pr_err("rpcrdma: Send mapping error\n");
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
|
|
* @r_xprt: controlling transport
|
|
* @req: context of RPC Call being marshalled
|
|
* @hdrlen: size of transport header, in bytes
|
|
* @xdr: xdr_buf containing RPC Call
|
|
* @rtype: chunk type being encoded
|
|
*
|
|
* Returns 0 on success; otherwise a negative errno is returned.
|
|
*/
|
|
int
|
|
rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
|
|
struct rpcrdma_req *req, u32 hdrlen,
|
|
struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
|
|
{
|
|
req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
|
|
if (!req->rl_sendctx)
|
|
return -EAGAIN;
|
|
req->rl_sendctx->sc_wr.num_sge = 0;
|
|
req->rl_sendctx->sc_unmap_count = 0;
|
|
req->rl_sendctx->sc_req = req;
|
|
__clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
|
|
|
|
if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
|
|
return -EIO;
|
|
|
|
if (rtype != rpcrdma_areadch)
|
|
if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rpcrdma_marshal_req - Marshal and send one RPC request
|
|
* @r_xprt: controlling transport
|
|
* @rqst: RPC request to be marshaled
|
|
*
|
|
* For the RPC in "rqst", this function:
|
|
* - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
|
|
* - Registers Read, Write, and Reply chunks
|
|
* - Constructs the transport header
|
|
* - Posts a Send WR to send the transport header and request
|
|
*
|
|
* Returns:
|
|
* %0 if the RPC was sent successfully,
|
|
* %-ENOTCONN if the connection was lost,
|
|
* %-EAGAIN if the caller should call again with the same arguments,
|
|
* %-ENOBUFS if the caller should call again after a delay,
|
|
* %-EMSGSIZE if the transport header is too small,
|
|
* %-EIO if a permanent problem occurred while marshaling.
|
|
*/
|
|
int
|
|
rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
|
|
{
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
struct xdr_stream *xdr = &req->rl_stream;
|
|
enum rpcrdma_chunktype rtype, wtype;
|
|
bool ddp_allowed;
|
|
__be32 *p;
|
|
int ret;
|
|
|
|
rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
|
|
xdr_init_encode(xdr, &req->rl_hdrbuf,
|
|
req->rl_rdmabuf->rg_base);
|
|
|
|
/* Fixed header fields */
|
|
ret = -EMSGSIZE;
|
|
p = xdr_reserve_space(xdr, 4 * sizeof(*p));
|
|
if (!p)
|
|
goto out_err;
|
|
*p++ = rqst->rq_xid;
|
|
*p++ = rpcrdma_version;
|
|
*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
|
|
|
|
/* When the ULP employs a GSS flavor that guarantees integrity
|
|
* or privacy, direct data placement of individual data items
|
|
* is not allowed.
|
|
*/
|
|
ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
|
|
RPCAUTH_AUTH_DATATOUCH);
|
|
|
|
/*
|
|
* Chunks needed for results?
|
|
*
|
|
* o If the expected result is under the inline threshold, all ops
|
|
* return as inline.
|
|
* o Large read ops return data as write chunk(s), header as
|
|
* inline.
|
|
* o Large non-read ops return as a single reply chunk.
|
|
*/
|
|
if (rpcrdma_results_inline(r_xprt, rqst))
|
|
wtype = rpcrdma_noch;
|
|
else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
|
|
wtype = rpcrdma_writech;
|
|
else
|
|
wtype = rpcrdma_replych;
|
|
|
|
/*
|
|
* Chunks needed for arguments?
|
|
*
|
|
* o If the total request is under the inline threshold, all ops
|
|
* are sent as inline.
|
|
* o Large write ops transmit data as read chunk(s), header as
|
|
* inline.
|
|
* o Large non-write ops are sent with the entire message as a
|
|
* single read chunk (protocol 0-position special case).
|
|
*
|
|
* This assumes that the upper layer does not present a request
|
|
* that both has a data payload, and whose non-data arguments
|
|
* by themselves are larger than the inline threshold.
|
|
*/
|
|
if (rpcrdma_args_inline(r_xprt, rqst)) {
|
|
*p++ = rdma_msg;
|
|
rtype = rpcrdma_noch;
|
|
} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
|
|
*p++ = rdma_msg;
|
|
rtype = rpcrdma_readch;
|
|
} else {
|
|
r_xprt->rx_stats.nomsg_call_count++;
|
|
*p++ = rdma_nomsg;
|
|
rtype = rpcrdma_areadch;
|
|
}
|
|
|
|
/* If this is a retransmit, discard previously registered
|
|
* chunks. Very likely the connection has been replaced,
|
|
* so these registrations are invalid and unusable.
|
|
*/
|
|
while (unlikely(!list_empty(&req->rl_registered))) {
|
|
struct rpcrdma_mr *mr;
|
|
|
|
mr = rpcrdma_mr_pop(&req->rl_registered);
|
|
rpcrdma_mr_defer_recovery(mr);
|
|
}
|
|
|
|
/* This implementation supports the following combinations
|
|
* of chunk lists in one RPC-over-RDMA Call message:
|
|
*
|
|
* - Read list
|
|
* - Write list
|
|
* - Reply chunk
|
|
* - Read list + Reply chunk
|
|
*
|
|
* It might not yet support the following combinations:
|
|
*
|
|
* - Read list + Write list
|
|
*
|
|
* It does not support the following combinations:
|
|
*
|
|
* - Write list + Reply chunk
|
|
* - Read list + Write list + Reply chunk
|
|
*
|
|
* This implementation supports only a single chunk in each
|
|
* Read or Write list. Thus for example the client cannot
|
|
* send a Call message with a Position Zero Read chunk and a
|
|
* regular Read chunk at the same time.
|
|
*/
|
|
if (rtype != rpcrdma_noch) {
|
|
ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
ret = encode_item_not_present(xdr);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (wtype == rpcrdma_writech) {
|
|
ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
ret = encode_item_not_present(xdr);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (wtype != rpcrdma_replych)
|
|
ret = encode_item_not_present(xdr);
|
|
else
|
|
ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
|
|
|
|
ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
|
|
&rqst->rq_snd_buf, rtype);
|
|
if (ret)
|
|
goto out_err;
|
|
return 0;
|
|
|
|
out_err:
|
|
switch (ret) {
|
|
case -EAGAIN:
|
|
xprt_wait_for_buffer_space(rqst->rq_task, NULL);
|
|
break;
|
|
case -ENOBUFS:
|
|
break;
|
|
default:
|
|
r_xprt->rx_stats.failed_marshal_count++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
|
|
* @rqst: controlling RPC request
|
|
* @srcp: points to RPC message payload in receive buffer
|
|
* @copy_len: remaining length of receive buffer content
|
|
* @pad: Write chunk pad bytes needed (zero for pure inline)
|
|
*
|
|
* The upper layer has set the maximum number of bytes it can
|
|
* receive in each component of rq_rcv_buf. These values are set in
|
|
* the head.iov_len, page_len, tail.iov_len, and buflen fields.
|
|
*
|
|
* Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
|
|
* many cases this function simply updates iov_base pointers in
|
|
* rq_rcv_buf to point directly to the received reply data, to
|
|
* avoid copying reply data.
|
|
*
|
|
* Returns the count of bytes which had to be memcopied.
|
|
*/
|
|
static unsigned long
|
|
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
|
|
{
|
|
unsigned long fixup_copy_count;
|
|
int i, npages, curlen;
|
|
char *destp;
|
|
struct page **ppages;
|
|
int page_base;
|
|
|
|
/* The head iovec is redirected to the RPC reply message
|
|
* in the receive buffer, to avoid a memcopy.
|
|
*/
|
|
rqst->rq_rcv_buf.head[0].iov_base = srcp;
|
|
rqst->rq_private_buf.head[0].iov_base = srcp;
|
|
|
|
/* The contents of the receive buffer that follow
|
|
* head.iov_len bytes are copied into the page list.
|
|
*/
|
|
curlen = rqst->rq_rcv_buf.head[0].iov_len;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
trace_xprtrdma_fixup(rqst, copy_len, curlen);
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
|
|
ppages = rqst->rq_rcv_buf.pages +
|
|
(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
|
|
page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
|
|
fixup_copy_count = 0;
|
|
if (copy_len && rqst->rq_rcv_buf.page_len) {
|
|
int pagelist_len;
|
|
|
|
pagelist_len = rqst->rq_rcv_buf.page_len;
|
|
if (pagelist_len > copy_len)
|
|
pagelist_len = copy_len;
|
|
npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
|
|
for (i = 0; i < npages; i++) {
|
|
curlen = PAGE_SIZE - page_base;
|
|
if (curlen > pagelist_len)
|
|
curlen = pagelist_len;
|
|
|
|
trace_xprtrdma_fixup_pg(rqst, i, srcp,
|
|
copy_len, curlen);
|
|
destp = kmap_atomic(ppages[i]);
|
|
memcpy(destp + page_base, srcp, curlen);
|
|
flush_dcache_page(ppages[i]);
|
|
kunmap_atomic(destp);
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
fixup_copy_count += curlen;
|
|
pagelist_len -= curlen;
|
|
if (!pagelist_len)
|
|
break;
|
|
page_base = 0;
|
|
}
|
|
|
|
/* Implicit padding for the last segment in a Write
|
|
* chunk is inserted inline at the front of the tail
|
|
* iovec. The upper layer ignores the content of
|
|
* the pad. Simply ensure inline content in the tail
|
|
* that follows the Write chunk is properly aligned.
|
|
*/
|
|
if (pad)
|
|
srcp -= pad;
|
|
}
|
|
|
|
/* The tail iovec is redirected to the remaining data
|
|
* in the receive buffer, to avoid a memcopy.
|
|
*/
|
|
if (copy_len || pad) {
|
|
rqst->rq_rcv_buf.tail[0].iov_base = srcp;
|
|
rqst->rq_private_buf.tail[0].iov_base = srcp;
|
|
}
|
|
|
|
return fixup_copy_count;
|
|
}
|
|
|
|
/* By convention, backchannel calls arrive via rdma_msg type
|
|
* messages, and never populate the chunk lists. This makes
|
|
* the RPC/RDMA header small and fixed in size, so it is
|
|
* straightforward to check the RPC header's direction field.
|
|
*/
|
|
static bool
|
|
rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
{
|
|
struct xdr_stream *xdr = &rep->rr_stream;
|
|
__be32 *p;
|
|
|
|
if (rep->rr_proc != rdma_msg)
|
|
return false;
|
|
|
|
/* Peek at stream contents without advancing. */
|
|
p = xdr_inline_decode(xdr, 0);
|
|
|
|
/* Chunk lists */
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
|
|
/* RPC header */
|
|
if (*p++ != rep->rr_xid)
|
|
return false;
|
|
if (*p != cpu_to_be32(RPC_CALL))
|
|
return false;
|
|
|
|
/* Now that we are sure this is a backchannel call,
|
|
* advance to the RPC header.
|
|
*/
|
|
p = xdr_inline_decode(xdr, 3 * sizeof(*p));
|
|
if (unlikely(!p))
|
|
goto out_short;
|
|
|
|
rpcrdma_bc_receive_call(r_xprt, rep);
|
|
return true;
|
|
|
|
out_short:
|
|
pr_warn("RPC/RDMA short backward direction call\n");
|
|
return true;
|
|
}
|
|
#else /* CONFIG_SUNRPC_BACKCHANNEL */
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
|
|
|
|
static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
|
|
{
|
|
u32 handle;
|
|
u64 offset;
|
|
__be32 *p;
|
|
|
|
p = xdr_inline_decode(xdr, 4 * sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
|
|
handle = be32_to_cpup(p++);
|
|
*length = be32_to_cpup(p++);
|
|
xdr_decode_hyper(p, &offset);
|
|
|
|
trace_xprtrdma_decode_seg(handle, *length, offset);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
|
|
{
|
|
u32 segcount, seglength;
|
|
__be32 *p;
|
|
|
|
p = xdr_inline_decode(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
|
|
*length = 0;
|
|
segcount = be32_to_cpup(p);
|
|
while (segcount--) {
|
|
if (decode_rdma_segment(xdr, &seglength))
|
|
return -EIO;
|
|
*length += seglength;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* In RPC-over-RDMA Version One replies, a Read list is never
|
|
* expected. This decoder is a stub that returns an error if
|
|
* a Read list is present.
|
|
*/
|
|
static int decode_read_list(struct xdr_stream *xdr)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_inline_decode(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
if (unlikely(*p != xdr_zero))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/* Supports only one Write chunk in the Write list
|
|
*/
|
|
static int decode_write_list(struct xdr_stream *xdr, u32 *length)
|
|
{
|
|
u32 chunklen;
|
|
bool first;
|
|
__be32 *p;
|
|
|
|
*length = 0;
|
|
first = true;
|
|
do {
|
|
p = xdr_inline_decode(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
if (*p == xdr_zero)
|
|
break;
|
|
if (!first)
|
|
return -EIO;
|
|
|
|
if (decode_write_chunk(xdr, &chunklen))
|
|
return -EIO;
|
|
*length += chunklen;
|
|
first = false;
|
|
} while (true);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
|
|
{
|
|
__be32 *p;
|
|
|
|
p = xdr_inline_decode(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
|
|
*length = 0;
|
|
if (*p != xdr_zero)
|
|
if (decode_write_chunk(xdr, length))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct xdr_stream *xdr = &rep->rr_stream;
|
|
u32 writelist, replychunk, rpclen;
|
|
char *base;
|
|
|
|
/* Decode the chunk lists */
|
|
if (decode_read_list(xdr))
|
|
return -EIO;
|
|
if (decode_write_list(xdr, &writelist))
|
|
return -EIO;
|
|
if (decode_reply_chunk(xdr, &replychunk))
|
|
return -EIO;
|
|
|
|
/* RDMA_MSG sanity checks */
|
|
if (unlikely(replychunk))
|
|
return -EIO;
|
|
|
|
/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
|
|
base = (char *)xdr_inline_decode(xdr, 0);
|
|
rpclen = xdr_stream_remaining(xdr);
|
|
r_xprt->rx_stats.fixup_copy_count +=
|
|
rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
|
|
|
|
r_xprt->rx_stats.total_rdma_reply += writelist;
|
|
return rpclen + xdr_align_size(writelist);
|
|
}
|
|
|
|
static noinline int
|
|
rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
|
|
{
|
|
struct xdr_stream *xdr = &rep->rr_stream;
|
|
u32 writelist, replychunk;
|
|
|
|
/* Decode the chunk lists */
|
|
if (decode_read_list(xdr))
|
|
return -EIO;
|
|
if (decode_write_list(xdr, &writelist))
|
|
return -EIO;
|
|
if (decode_reply_chunk(xdr, &replychunk))
|
|
return -EIO;
|
|
|
|
/* RDMA_NOMSG sanity checks */
|
|
if (unlikely(writelist))
|
|
return -EIO;
|
|
if (unlikely(!replychunk))
|
|
return -EIO;
|
|
|
|
/* Reply chunk buffer already is the reply vector */
|
|
r_xprt->rx_stats.total_rdma_reply += replychunk;
|
|
return replychunk;
|
|
}
|
|
|
|
static noinline int
|
|
rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct xdr_stream *xdr = &rep->rr_stream;
|
|
__be32 *p;
|
|
|
|
p = xdr_inline_decode(xdr, sizeof(*p));
|
|
if (unlikely(!p))
|
|
return -EIO;
|
|
|
|
switch (*p) {
|
|
case err_vers:
|
|
p = xdr_inline_decode(xdr, 2 * sizeof(*p));
|
|
if (!p)
|
|
break;
|
|
dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
|
|
rqst->rq_task->tk_pid, __func__,
|
|
be32_to_cpup(p), be32_to_cpu(*(p + 1)));
|
|
break;
|
|
case err_chunk:
|
|
dprintk("RPC: %5u: %s: server reports header decoding error\n",
|
|
rqst->rq_task->tk_pid, __func__);
|
|
break;
|
|
default:
|
|
dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
|
|
rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
|
|
}
|
|
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
/* Perform XID lookup, reconstruction of the RPC reply, and
|
|
* RPC completion while holding the transport lock to ensure
|
|
* the rep, rqst, and rq_task pointers remain stable.
|
|
*/
|
|
void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
struct rpc_rqst *rqst = rep->rr_rqst;
|
|
unsigned long cwnd;
|
|
int status;
|
|
|
|
xprt->reestablish_timeout = 0;
|
|
|
|
switch (rep->rr_proc) {
|
|
case rdma_msg:
|
|
status = rpcrdma_decode_msg(r_xprt, rep, rqst);
|
|
break;
|
|
case rdma_nomsg:
|
|
status = rpcrdma_decode_nomsg(r_xprt, rep);
|
|
break;
|
|
case rdma_error:
|
|
status = rpcrdma_decode_error(r_xprt, rep, rqst);
|
|
break;
|
|
default:
|
|
status = -EIO;
|
|
}
|
|
if (status < 0)
|
|
goto out_badheader;
|
|
|
|
out:
|
|
spin_lock(&xprt->recv_lock);
|
|
cwnd = xprt->cwnd;
|
|
xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT;
|
|
if (xprt->cwnd > cwnd)
|
|
xprt_release_rqst_cong(rqst->rq_task);
|
|
|
|
xprt_complete_rqst(rqst->rq_task, status);
|
|
xprt_unpin_rqst(rqst);
|
|
spin_unlock(&xprt->recv_lock);
|
|
return;
|
|
|
|
/* If the incoming reply terminated a pending RPC, the next
|
|
* RPC call will post a replacement receive buffer as it is
|
|
* being marshaled.
|
|
*/
|
|
out_badheader:
|
|
trace_xprtrdma_reply_hdr(rep);
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
status = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
|
|
{
|
|
/* Invalidate and unmap the data payloads before waking
|
|
* the waiting application. This guarantees the memory
|
|
* regions are properly fenced from the server before the
|
|
* application accesses the data. It also ensures proper
|
|
* send flow control: waking the next RPC waits until this
|
|
* RPC has relinquished all its Send Queue entries.
|
|
*/
|
|
if (!list_empty(&req->rl_registered))
|
|
r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
|
|
&req->rl_registered);
|
|
|
|
/* Ensure that any DMA mapped pages associated with
|
|
* the Send of the RPC Call have been unmapped before
|
|
* allowing the RPC to complete. This protects argument
|
|
* memory not controlled by the RPC client from being
|
|
* re-used before we're done with it.
|
|
*/
|
|
if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
|
|
r_xprt->rx_stats.reply_waits_for_send++;
|
|
out_of_line_wait_on_bit(&req->rl_flags,
|
|
RPCRDMA_REQ_F_TX_RESOURCES,
|
|
bit_wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
}
|
|
}
|
|
|
|
/* Reply handling runs in the poll worker thread. Anything that
|
|
* might wait is deferred to a separate workqueue.
|
|
*/
|
|
void rpcrdma_deferred_completion(struct work_struct *work)
|
|
{
|
|
struct rpcrdma_rep *rep =
|
|
container_of(work, struct rpcrdma_rep, rr_work);
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
|
|
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
|
|
|
|
trace_xprtrdma_defer_cmp(rep);
|
|
if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
|
|
r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered);
|
|
rpcrdma_release_rqst(r_xprt, req);
|
|
rpcrdma_complete_rqst(rep);
|
|
}
|
|
|
|
/* Process received RPC/RDMA messages.
|
|
*
|
|
* Errors must result in the RPC task either being awakened, or
|
|
* allowed to timeout, to discover the errors at that time.
|
|
*/
|
|
void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
|
|
struct rpcrdma_req *req;
|
|
struct rpc_rqst *rqst;
|
|
u32 credits;
|
|
__be32 *p;
|
|
|
|
--buf->rb_posted_receives;
|
|
|
|
if (rep->rr_hdrbuf.head[0].iov_len == 0)
|
|
goto out_badstatus;
|
|
|
|
/* Fixed transport header fields */
|
|
xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
|
|
rep->rr_hdrbuf.head[0].iov_base);
|
|
p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
|
|
if (unlikely(!p))
|
|
goto out_shortreply;
|
|
rep->rr_xid = *p++;
|
|
rep->rr_vers = *p++;
|
|
credits = be32_to_cpu(*p++);
|
|
rep->rr_proc = *p++;
|
|
|
|
if (rep->rr_vers != rpcrdma_version)
|
|
goto out_badversion;
|
|
|
|
if (rpcrdma_is_bcall(r_xprt, rep))
|
|
return;
|
|
|
|
/* Match incoming rpcrdma_rep to an rpcrdma_req to
|
|
* get context for handling any incoming chunks.
|
|
*/
|
|
spin_lock(&xprt->recv_lock);
|
|
rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
|
|
if (!rqst)
|
|
goto out_norqst;
|
|
xprt_pin_rqst(rqst);
|
|
|
|
if (credits == 0)
|
|
credits = 1; /* don't deadlock */
|
|
else if (credits > buf->rb_max_requests)
|
|
credits = buf->rb_max_requests;
|
|
buf->rb_credits = credits;
|
|
|
|
spin_unlock(&xprt->recv_lock);
|
|
|
|
req = rpcr_to_rdmar(rqst);
|
|
req->rl_reply = rep;
|
|
rep->rr_rqst = rqst;
|
|
clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
|
|
|
|
trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
|
|
|
|
rpcrdma_post_recvs(r_xprt, false);
|
|
queue_work(rpcrdma_receive_wq, &rep->rr_work);
|
|
return;
|
|
|
|
out_badversion:
|
|
trace_xprtrdma_reply_vers(rep);
|
|
goto repost;
|
|
|
|
/* The RPC transaction has already been terminated, or the header
|
|
* is corrupt.
|
|
*/
|
|
out_norqst:
|
|
spin_unlock(&xprt->recv_lock);
|
|
trace_xprtrdma_reply_rqst(rep);
|
|
goto repost;
|
|
|
|
out_shortreply:
|
|
trace_xprtrdma_reply_short(rep);
|
|
|
|
/* If no pending RPC transaction was matched, post a replacement
|
|
* receive buffer before returning.
|
|
*/
|
|
repost:
|
|
rpcrdma_post_recvs(r_xprt, false);
|
|
out_badstatus:
|
|
rpcrdma_recv_buffer_put(rep);
|
|
}
|