linux/sound/pci/vx222/vx222_ops.c

1016 lines
34 KiB
C

/*
* Driver for Digigram VX222 V2/Mic soundcards
*
* VX222-specific low-level routines
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <asm/io.h>
#include "vx222.h"
static int vx2_reg_offset[VX_REG_MAX] = {
[VX_ICR] = 0x00,
[VX_CVR] = 0x04,
[VX_ISR] = 0x08,
[VX_IVR] = 0x0c,
[VX_RXH] = 0x14,
[VX_RXM] = 0x18,
[VX_RXL] = 0x1c,
[VX_DMA] = 0x10,
[VX_CDSP] = 0x20,
[VX_CFG] = 0x24,
[VX_RUER] = 0x28,
[VX_DATA] = 0x2c,
[VX_STATUS] = 0x30,
[VX_LOFREQ] = 0x34,
[VX_HIFREQ] = 0x38,
[VX_CSUER] = 0x3c,
[VX_SELMIC] = 0x40,
[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
[VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
[VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
};
static int vx2_reg_index[VX_REG_MAX] = {
[VX_ICR] = 1,
[VX_CVR] = 1,
[VX_ISR] = 1,
[VX_IVR] = 1,
[VX_RXH] = 1,
[VX_RXM] = 1,
[VX_RXL] = 1,
[VX_DMA] = 1,
[VX_CDSP] = 1,
[VX_CFG] = 1,
[VX_RUER] = 1,
[VX_DATA] = 1,
[VX_STATUS] = 1,
[VX_LOFREQ] = 1,
[VX_HIFREQ] = 1,
[VX_CSUER] = 1,
[VX_SELMIC] = 1,
[VX_COMPOT] = 1,
[VX_SCOMPR] = 1,
[VX_GLIMIT] = 1,
[VX_INTCSR] = 0, /* on the PLX */
[VX_CNTRL] = 0, /* on the PLX */
[VX_GPIOC] = 0, /* on the PLX */
};
static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
}
/**
* snd_vx_inb - read a byte from the register
* @offset: register enum
*/
static unsigned char vx2_inb(struct vx_core *chip, int offset)
{
return inb(vx2_reg_addr(chip, offset));
}
/**
* snd_vx_outb - write a byte on the register
* @offset: the register offset
* @val: the value to write
*/
static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
{
outb(val, vx2_reg_addr(chip, offset));
//printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
}
/**
* snd_vx_inl - read a 32bit word from the register
* @offset: register enum
*/
static unsigned int vx2_inl(struct vx_core *chip, int offset)
{
return inl(vx2_reg_addr(chip, offset));
}
/**
* snd_vx_outl - write a 32bit word on the register
* @offset: the register enum
* @val: the value to write
*/
static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
{
// printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
outl(val, vx2_reg_addr(chip, offset));
}
/*
* redefine macros to call directly
*/
#undef vx_inb
#define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
#undef vx_outb
#define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
#undef vx_inl
#define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
#undef vx_outl
#define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
/*
* vx_reset_dsp - reset the DSP
*/
#define XX_DSP_RESET_WAIT_TIME 2 /* ms */
static void vx2_reset_dsp(struct vx_core *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* set the reset dsp bit to 0 */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
mdelay(XX_DSP_RESET_WAIT_TIME);
chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
/* set the reset dsp bit to 1 */
vx_outl(chip, CDSP, chip->regCDSP);
}
static int vx2_test_xilinx(struct vx_core *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
unsigned int data;
snd_printdd("testing xilinx...\n");
/* This test uses several write/read sequences on TEST0 and TEST1 bits
* to figure out whever or not the xilinx was correctly loaded
*/
/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
snd_printdd("bad!\n");
return -ENODEV;
}
/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
snd_printdd("bad! #2\n");
return -ENODEV;
}
if (_chip->type == VX_TYPE_BOARD) {
/* not implemented on VX_2_BOARDS */
/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
snd_printdd("bad! #3\n");
return -ENODEV;
}
/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
snd_printdd("bad! #4\n");
return -ENODEV;
}
}
snd_printdd("ok, xilinx fine.\n");
return 0;
}
/**
* vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
* @do_write: 0 = read, 1 = set up for DMA write
*/
static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
{
/* Interrupt mode and HREQ pin enabled for host transmit data transfers
* (in case of the use of the pseudo-dma facility).
*/
vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
/* Reset the pseudo-dma register (in case of the use of the
* pseudo-dma facility).
*/
vx_outl(chip, RESET_DMA, 0);
}
/*
* vx_release_pseudo_dma - disable the pseudo-DMA mode
*/
static inline void vx2_release_pseudo_dma(struct vx_core *chip)
{
/* HREQ pin disabled. */
vx_outl(chip, ICR, 0);
}
/* pseudo-dma write */
static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
struct vx_pipe *pipe, int count)
{
unsigned long port = vx2_reg_addr(chip, VX_DMA);
int offset = pipe->hw_ptr;
u32 *addr = (u32 *)(runtime->dma_area + offset);
snd_assert(count % 4 == 0, return);
vx2_setup_pseudo_dma(chip, 1);
/* Transfer using pseudo-dma.
*/
if (offset + count > pipe->buffer_bytes) {
int length = pipe->buffer_bytes - offset;
count -= length;
length >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (length-- > 0) {
outl(cpu_to_le32(*addr), port);
addr++;
}
addr = (u32 *)runtime->dma_area;
pipe->hw_ptr = 0;
}
pipe->hw_ptr += count;
count >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (count-- > 0) {
outl(cpu_to_le32(*addr), port);
addr++;
}
vx2_release_pseudo_dma(chip);
}
/* pseudo dma read */
static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
struct vx_pipe *pipe, int count)
{
int offset = pipe->hw_ptr;
u32 *addr = (u32 *)(runtime->dma_area + offset);
unsigned long port = vx2_reg_addr(chip, VX_DMA);
snd_assert(count % 4 == 0, return);
vx2_setup_pseudo_dma(chip, 0);
/* Transfer using pseudo-dma.
*/
if (offset + count > pipe->buffer_bytes) {
int length = pipe->buffer_bytes - offset;
count -= length;
length >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (length-- > 0)
*addr++ = le32_to_cpu(inl(port));
addr = (u32 *)runtime->dma_area;
pipe->hw_ptr = 0;
}
pipe->hw_ptr += count;
count >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (count-- > 0)
*addr++ = le32_to_cpu(inl(port));
vx2_release_pseudo_dma(chip);
}
#define VX_XILINX_RESET_MASK 0x40000000
#define VX_USERBIT0_MASK 0x00000004
#define VX_USERBIT1_MASK 0x00000020
#define VX_CNTRL_REGISTER_VALUE 0x00172012
/*
* transfer counts bits to PLX
*/
static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
{
unsigned int i;
for (i = 0; i < counts; i++) {
unsigned int val;
/* set the clock bit to 0. */
val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
udelay(1);
if (data & (1 << i))
val |= VX_USERBIT1_MASK;
else
val &= ~VX_USERBIT1_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
/* set the clock bit to 1. */
val |= VX_USERBIT0_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
udelay(1);
}
return 0;
}
/*
* load the xilinx image
*/
static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
{
unsigned int i;
unsigned int port;
unsigned char *image;
/* XILINX reset (wait at least 1 milisecond between reset on and off). */
vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
vx_inl(chip, CNTRL);
msleep(10);
vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
vx_inl(chip, CNTRL);
msleep(10);
if (chip->type == VX_TYPE_BOARD)
port = VX_CNTRL;
else
port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
image = xilinx->data;
for (i = 0; i < xilinx->size; i++, image++) {
if (put_xilinx_data(chip, port, 8, *image) < 0)
return -EINVAL;
/* don't take too much time in this loop... */
cond_resched();
}
put_xilinx_data(chip, port, 4, 0xff); /* end signature */
msleep(200);
/* test after loading (is buggy with VX222) */
if (chip->type != VX_TYPE_BOARD) {
/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
i = vx_inl(chip, GPIOC);
if (i & 0x0100)
return 0;
snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
return -EINVAL;
}
return 0;
}
/*
* load the boot/dsp images
*/
static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
{
int err;
switch (index) {
case 1:
/* xilinx image */
if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
return err;
if ((err = vx2_test_xilinx(vx)) < 0)
return err;
return 0;
case 2:
/* DSP boot */
return snd_vx_dsp_boot(vx, dsp);
case 3:
/* DSP image */
return snd_vx_dsp_load(vx, dsp);
default:
snd_BUG();
return -EINVAL;
}
}
/*
* vx_test_and_ack - test and acknowledge interrupt
*
* called from irq hander, too
*
* spinlock held!
*/
static int vx2_test_and_ack(struct vx_core *chip)
{
/* not booted yet? */
if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
return -ENXIO;
if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
return -EIO;
/* ok, interrupts generated, now ack it */
/* set ACQUIT bit up and down */
vx_outl(chip, STATUS, 0);
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle )
*/
vx_inl(chip, STATUS);
/* ack */
vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle ) */
vx_inl(chip, STATUS);
/* clear */
vx_outl(chip, STATUS, 0);
return 0;
}
/*
* vx_validate_irq - enable/disable IRQ
*/
static void vx2_validate_irq(struct vx_core *_chip, int enable)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* Set the interrupt enable bit to 1 in CDSP register */
if (enable) {
/* Set the PCI interrupt enable bit to 1.*/
vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
} else {
/* Set the PCI interrupt enable bit to 0. */
vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
}
vx_outl(chip, CDSP, chip->regCDSP);
}
/*
* write an AKM codec data (24bit)
*/
static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
{
unsigned int i;
vx_inl(chip, HIFREQ);
/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
for (i = 0; i < 24; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
/* Terminate access to codec registers */
vx_inl(chip, RUER);
}
#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
#define AKM_CODEC_RESET_ON_CMD 0xA100
#define AKM_CODEC_RESET_OFF_CMD 0xA103
#define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
#define AKM_CODEC_MUTE_CMD 0xA38D
#define AKM_CODEC_UNMUTE_CMD 0xA30D
#define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
#define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
/*
* pseudo-codec write entry
*/
static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
{
unsigned int val;
if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
return;
}
/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
a look up table, as there is no linear matching between the driver codec values
and the real dBu value
*/
snd_assert(data < sizeof(vx2_akm_gains_lut), return);
switch (reg) {
case XX_CODEC_LEVEL_LEFT_REGISTER:
val = AKM_CODEC_LEFT_LEVEL_CMD;
break;
case XX_CODEC_LEVEL_RIGHT_REGISTER:
val = AKM_CODEC_RIGHT_LEVEL_CMD;
break;
default:
snd_BUG();
return;
}
val |= vx2_akm_gains_lut[data];
vx2_write_codec_reg(chip, val);
}
/*
* write codec bit for old VX222 board
*/
static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
{
int i;
/* activate access to codec registers */
vx_inl(chip, HIFREQ);
for (i = 0; i < 24; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
/* Terminate access to codec registers */
vx_inl(chip, RUER);
}
/*
* reset codec bit
*/
static void vx2_reset_codec(struct vx_core *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* Set the reset CODEC bit to 0. */
vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
vx_inl(chip, CDSP);
msleep(10);
/* Set the reset CODEC bit to 1. */
chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
vx_outl(chip, CDSP, chip->regCDSP);
vx_inl(chip, CDSP);
if (_chip->type == VX_TYPE_BOARD) {
msleep(1);
return;
}
msleep(5); /* additionnel wait time for AKM's */
vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
if (_chip->type == VX_TYPE_MIC) {
/* set up the micro input selector */
chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
MICRO_SELECT_PREAMPLI_G_0 |
MICRO_SELECT_NOISE_T_52DB;
/* reset phantom power supply */
chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
vx_outl(_chip, SELMIC, chip->regSELMIC);
}
}
/*
* change the audio source
*/
static void vx2_change_audio_source(struct vx_core *_chip, int src)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
switch (src) {
case VX_AUDIO_SRC_DIGITAL:
chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
break;
default:
chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
break;
}
vx_outl(chip, CFG, chip->regCFG);
}
/*
* set the clock source
*/
static void vx2_set_clock_source(struct vx_core *_chip, int source)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
if (source == INTERNAL_QUARTZ)
chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
else
chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
vx_outl(chip, CFG, chip->regCFG);
}
/*
* reset the board
*/
static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* initialize the register values */
chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
chip->regCFG = 0;
}
/*
* input level controls for VX222 Mic
*/
/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
* 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
* as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
*/
#define V2_MICRO_LEVEL_RANGE (318 - 255)
static void vx2_set_input_level(struct snd_vx222 *chip)
{
int i, miclevel, preamp;
unsigned int data;
miclevel = chip->mic_level;
miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
preamp = 0;
while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
preamp++; /* raise pre ampli + 18dB */
miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
}
snd_assert(preamp < 4, return);
/* set pre-amp level */
chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
vx_outl(chip, SELMIC, chip->regSELMIC);
data = (unsigned int)miclevel << 16 |
(unsigned int)chip->input_level[1] << 8 |
(unsigned int)chip->input_level[0];
vx_inl(chip, DATA); /* Activate input level programming */
/* We have to send 32 bits (4 x 8 bits) */
for (i = 0; i < 32; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
vx_inl(chip, RUER); /* Terminate input level programming */
}
#define MIC_LEVEL_MAX 0xff
static DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
/*
* controls API for input levels
*/
/* input levels */
static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = MIC_LEVEL_MAX;
return 0;
}
static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
mutex_lock(&_chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->input_level[0];
ucontrol->value.integer.value[1] = chip->input_level[1];
mutex_unlock(&_chip->mixer_mutex);
return 0;
}
static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
mutex_lock(&_chip->mixer_mutex);
if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
chip->input_level[1] != ucontrol->value.integer.value[1]) {
chip->input_level[0] = ucontrol->value.integer.value[0];
chip->input_level[1] = ucontrol->value.integer.value[1];
vx2_set_input_level(chip);
mutex_unlock(&_chip->mixer_mutex);
return 1;
}
mutex_unlock(&_chip->mixer_mutex);
return 0;
}
/* mic level */
static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = MIC_LEVEL_MAX;
return 0;
}
static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
ucontrol->value.integer.value[0] = chip->mic_level;
return 0;
}
static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
mutex_lock(&_chip->mixer_mutex);
if (chip->mic_level != ucontrol->value.integer.value[0]) {
chip->mic_level = ucontrol->value.integer.value[0];
vx2_set_input_level(chip);
mutex_unlock(&_chip->mixer_mutex);
return 1;
}
mutex_unlock(&_chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_input_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Capture Volume",
.info = vx_input_level_info,
.get = vx_input_level_get,
.put = vx_input_level_put,
.tlv = { .p = db_scale_mic },
};
static struct snd_kcontrol_new vx_control_mic_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Mic Capture Volume",
.info = vx_mic_level_info,
.get = vx_mic_level_get,
.put = vx_mic_level_put,
.tlv = { .p = db_scale_mic },
};
/*
* FIXME: compressor/limiter implementation is missing yet...
*/
static int vx2_add_mic_controls(struct vx_core *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
int err;
if (_chip->type != VX_TYPE_MIC)
return 0;
/* mute input levels */
chip->input_level[0] = chip->input_level[1] = 0;
chip->mic_level = 0;
vx2_set_input_level(chip);
/* controls */
if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
return err;
if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
return err;
return 0;
}
/*
* callbacks
*/
struct snd_vx_ops vx222_ops = {
.in8 = vx2_inb,
.in32 = vx2_inl,
.out8 = vx2_outb,
.out32 = vx2_outl,
.test_and_ack = vx2_test_and_ack,
.validate_irq = vx2_validate_irq,
.akm_write = vx2_write_akm,
.reset_codec = vx2_reset_codec,
.change_audio_source = vx2_change_audio_source,
.set_clock_source = vx2_set_clock_source,
.load_dsp = vx2_load_dsp,
.reset_dsp = vx2_reset_dsp,
.reset_board = vx2_reset_board,
.dma_write = vx2_dma_write,
.dma_read = vx2_dma_read,
.add_controls = vx2_add_mic_controls,
};
/* for old VX222 board */
struct snd_vx_ops vx222_old_ops = {
.in8 = vx2_inb,
.in32 = vx2_inl,
.out8 = vx2_outb,
.out32 = vx2_outl,
.test_and_ack = vx2_test_and_ack,
.validate_irq = vx2_validate_irq,
.write_codec = vx2_old_write_codec_bit,
.reset_codec = vx2_reset_codec,
.change_audio_source = vx2_change_audio_source,
.set_clock_source = vx2_set_clock_source,
.load_dsp = vx2_load_dsp,
.reset_dsp = vx2_reset_dsp,
.reset_board = vx2_reset_board,
.dma_write = vx2_dma_write,
.dma_read = vx2_dma_read,
};